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Abstract. In this paper, we study the existence and exponential stability in p th moment of mild
solutions for a class of impulsive fractional stochastic differential equations driven by Poisson
jumps. Firstly, we discuss the existence and uniqueness of mild solutions for the considered
equations by the Banach fixed point theorem. Next, we establish a new impulsive-integral in-
equality that can effectively improve some previous results [4, 17, 5, 3, 6]. Then, we obtain the
exponential stability in the p th moment of mild solutions for the considered equations with the
aid of the new inequality. Finally, an example is given to illustrate the efficiency of the obtained
theoretical results.

1. Introduction

As we know, stochastic differential equations are viewed as an excellent tool
for describing real-life phenomena when noises and stochastic perturbation are non-
negligible in a wide variety of applications such as economics, finance, engineering and
social sciences and so on. Naturally, studies on the existence, uniqueness and stabil-
ity of solutions for stochastic differential equations or impulsive stochastic differential
equations have been heat research topics. For examples, Chen in literature [4] studied
the exponential stability in the p th moment of mild solutions for impulsive stochas-
tic partial differential equations with delays by establishing an impulsive-integral in-
equality; Shu et al. in literature [6, 14] studied the existence and exponential stability
of mild solutions for neutral stochastic functional differential equations by using the
noncompact measurement strategy, Mönch fixed point theorem and some inequality
techniques; Luo in literature [11] discussed exponential stability of mild solutions of
stochastic partial differential equations with delays by fixed point theory; Xu et al. in
literature [16] investigated the mean square exponential stability of mild solutions for
impulsive stochastic partial differential equations with delays by using a delay differ-
ential inequality and stochastic analysis technique; Li and Fan in literature [9] con-
cerned exponential stability of mild solutions for impulsive stochastic partial differen-
tial equations with delays by employing the formula for the variation of parameters and
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inequality technique; Xu et al. in literature [15] concerned the p th moment globally
exponential stability and quasi sure globally exponential stability for impulsive stochas-
tic differential equations driven by G-Brownian motion by using G-Lyapunov function
methods and inequality techniques; Guo et al. in literature [7] discussed both the p th
moment and almost sure exponential stability of solutions to stochastic functional dif-
ferential equations with impulsive by using the Razumikhin-type technique; Li et al.
in literature [10] studied the existence and Hyers-Ulam stability of random impulsive
stochastic functional differential equations with finite delays via fixed point theorem
and Gronwall inequality.

On the other hand, stochastic differential equations driven by Poisson random
measures arise in many different fields. For example, they have been used to develop
models for neuronal activity that account for synaptic impulses occurring randomly,
both in time and at different locations of a spatially extended neuron. Other appli-
cations arise in chemical reaction-diffusion systems and stochastic turbulence models.
To the best of our knowledge, the existing paper on the existence and stability analy-
sis of the mild solutions for stochastic partial differential equations driven by Poisson
jump are relatively few. For example, Anguraj et al. in literature [1] investigated the
Hyers-Ulam stability results under the Lipschitz condition on a bounded and closed in-
terval by using stochastic analysis and the Gronwall inequality. In paper [8], Hou et al.
considered the exponential stability of energy solutions to stochastic partial differential
equations with variable delays and Poisson jumps by estimating the coefficients func-
tions in the stochastic energy equality. Also Chen et al. in [5] concerned exponential
stability of a class of impulsive neutral stochastic partial differential equations with de-
lays and Poisson jumps via an impulsive-integral inequality. In recent years, with the
development of fractional calculus, many scholars devote themselves to the study of the
existence and stability of solutions of fractional stochastic differential equations. For
example, In paper [3], the authors studied the existence and exponential stability of neu-
tral stochastic fractional differential equations with impulses driven by Poisson jumps
via the fixed point theorem and inequality strategy. It should be pointed out that the
restrictive conditions of impulsive-integral inequality in [3] are too strict which shows
that impulsive-integral inequality has room for improvement. Based on this discussion,
in this paper, we concern with the following stochastic fractional differential equations
in the Hilbert space (X ;‖ · ‖X) with the inner product (·, ·)X :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cDq
t x(t) = Ax(t)+J

2−q
t

(
f1(t,x(t − δ1(t)))

)
+J

1−q
t

(
f2(t,x(t − δ2(t)))

dW (t)
dt

+
∫
Z f3(t,x(t− δ3(t)),y)Ñ(dt,dy)

)
, t �= tk, t ∈ [0,T ] = J,

x(t) = ϕ(t) ∈ PC, t ∈ [−r,0], x′(0) = y1 ∈ X , a.s.,

Δx(tk) = Ik(x(tk)), Δx′(tk) = Jk(x(tk)), t = tk, k = 1,2, · · · ,
(1.1)

where cDq
t denotes the Caputo fractional derivative of order 1 < q < 2, Jq denotes the

q th order fractional integral, A is a closed and densely linear operator in a Hilbert space
X , Z ∈ Bσ (U), where Bσ (U) is the Borel σ -algebra of separable Hilbert space U .
y1 is a F0 -measurable X -valued random variable independent of the Wiener process
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W (t). The function f1 : J ×C([−r,0],X) → 2X is non-empty, bounded, closed and
convexmultivalued map and f2 : J×C([−r,0],X)→ L(Y,X) , f3 : J×X×Z →X . Ik(·) ,
Jk(·) : X → X are continuous functions and the fixed times tk satisfy 0 = t0 < t1 < · · ·<
tk < · · · , Δx(tk) = x(t+k )−x(t−k ) and x(t−k ) = x(tk) , where x(t+k ) and x(t−k ) are represent
the right and left limits of x(t) at tk, respectively. δi(t) : R+ → [0,r] , i = 1,2,3 are
continuous functions. PC be the space of all almost surely bounded, F0 -measure and
continuous functions everywhere except for an infinite number of point s at which
ξ (s) and left limit ξ (s) exist and ξ (s+) = ξ (s) from [−r,0] into X and equipped
with the supremum norm ‖ϕ‖0 = supθ∈[−r,0] ‖ϕ(θ )‖ and let PCb

F0
([−r,0],X) denotes

the space of all bounded F0 -measurable PC([−r,0],X)-valued random variable u such
that ‖u‖p

PC = sups∈[−r,0] E‖u(s)‖p. Also, we define the measure Ñ by Ñ(dx,dy) =
Np(dt,dy)− v(dy)dt, where v is the characteristic measure of Np, which is called
the compensated Poisson random measure. For a Borel set Z ∈ Bσ (U −{0}), the
space P p(J×Z,X) , p � 2 denotes the space of all predictable maps f : J×Z×Ω →
X with

∫ T
0

∫
Z E‖ f (t,u)‖pdtϑ(du) < ∞. This section ends by highlighting the main

contributions of this paper:

• The existence and uniqueness of solution for impulsive fractional stochastic
system are proved.

• A new impulsive-integral inequality is established which can effectively im-
prove some previous results [4, 17, 5, 3, 6].

• Exponential stability results are established by applying appropriate hypotheses
and new impulsive-integral inequality.

The arrangement of the rest paper is as follows. In Section 2, some preliminaries
and results which are applied in the later paper are presented. Section 3 is devoted to
studying the exponential stability in the pth moment of the mild solutions of (1.1).

2. Preliminaries

Let X and Y be two real, separable Hilbert spaces and L(Y,X) be the space
of a bounded linear operator from Y to X . C(J,X) stands for the Banach space of
continuous functions from J to X with supremum norm, i.e., ‖x‖J = supt∈J ‖x(t)‖ ,
∀x∈C(J,X) and L1(J,X) represents the Banach space of functions from J to X which
are Bochner integrable normed by ‖x‖L1 =

∫ T
0 ‖x‖dt , ∀x∈ L1(J,X). Let (Ω,F,P) be a

complete filtered probability space with a filtration {Ft}t�0 satisfying the usual condi-
tions (i.e. right continuous and F0 containing all P0 -null sets). Let βn(t) (n = 1,2, · · ·)
be a sequence of real-valued one-dimensional standard Brownian motions mutually in-
dependent over (Ω,F,P) . Set W (t) = ∑+∞

n=1

√
λnβn(t)en (t � 0), where λn � 0(n =

1,2, · · ·) are nonnegative real numbers and {en} (n = 1,2, · · ·) is a complete orthonor-
mal basis in Y . Let Q ∈ L(Y,X) be an operator defined by Qen = λnen with a finite
trace trQ = ∑+∞

n=1 λn < +∞. Then, the above Y -valued stochastic process W (t) is called
a Q-Wiener process.
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DEFINITION 1. Let φ ∈ L(Y,X) and define

‖φ‖2
L0

2
:= tr(φQφ∗) =

{ +∞

∑
n=1

‖
√

λnφen

}
.

If ‖φ‖2
L0

2
< +∞, then φ is a Q-Hilbert-Schmidt operator and define L0

2(Y,X) the space

of all Q-Hilbert-Schmidt operators φ : Y → X .

For more details about the X -valued stochastic integral of an L0
2(Y,X)-valued, Ft -

adapted predictable process h(t) with respect to the Q-Wiener process W (t), we can
see reference [12].

DEFINITION 2. The Riemann-Liouville fractional integral operator J of order
q > 0 is defined by

J
q
t f (t) =

1
Γ(q)

∫ t

0
(t− s)q−1 f (s)ds,

where f ∈ L1(J,X) and 0 � T < ∞.

DEFINITION 3. The Caputo fractional derivative is defined by

cDq
t f (t) =

1
Γ(n−q)

∫ t

0
(t− s)n−q−1 f n(s)ds, n−1 < q < n,

where f ∈Cn−1((0,T ),X)
⋂

L1(J,X).

DEFINITION 4. Let A : D(A) ⊂ X → X be a closed linear operator. The operator
A is said to be a sectorial operator of type (M,θ ,α,ω) if there exist constants ω ∈ R ,
0 < θ < π

2 , M > 0 such that
(i) The α− resolvent of A exists outside the sector ω + Sθ = {ω + λ α : λ ∈ C ,

|Arg(−λ α)| < θ};
(ii) ‖R(λ α ,A)‖ = ‖(λ α −A)−1‖ � M

|λ α−ω | , λ /∈ ω +Sθ .

In addition, if A is a sectorial operator of type (M,θ ,α,ω) , then it is obvious to
know A generates an α -resolvent family {Rα(t) : t � 0} in a Banach space, where
Rα(t) = 1

2π i

∫
C eλ tR(λ q,A)dλ . For more details, we refer readers to see [13].

DEFINITION 5. ( [13]) An X -valued stochastic process {x(t),t � 0} is called a
mild solution of (1.1) if

(1) x(t) is an Ft (t � 0) adapted process;
(2) x(t) ∈ X has a càdlàg path on t ∈ [0,+∞) almost surely;
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(3) for each t ∈ [0,+∞), we have

x(t) = Iq(t)ϕ(0)+Kq(t)y1 +
∫ t

0
Kq(t − s) f1(s,x(s− δ1(s)))ds

+
∫ t

0
Iq(t− s) f2(s,x(s− δ2(s)))dW (s)

+
∫ t

0

∫
Z
Iq(t− s) f3(s,x(s− δ3(s)),y)Ñ(ds,dy)

+ ∑
0<tk<t

Iq(t− tk)Ik(x(tk))

+ ∑
0<tk<t

Kq(t− tk)Jk(x(tk)), t � 0,

and x(t) = ϕ(t) for t ∈ [−r,0]. Where the operators Iq(t) and Kq(t) are defined as

Iq(t) =
1

2π i

∫
C

eλ tλ q−1R(λ q,A)dλ

and

Kq(t) =
1

2π i

∫
C

eλ tλ q−2R(λ q,A)dλ ,

where C is a suitable path such that λ q /∈ ω +Sθ , λ ∈ C.

LEMMA 1. ( [2]) For any p � 2 and for an arbitrary L0
2(Y,X)-valued predictable

process ψ(s) such that

sup
s∈[0,t]

E
∥∥∥∫ s

0
ψ(u)dω(u)

∥∥∥p
� Cp

(∫ t

0
(E‖ψ(s)‖p

L0
2
)

2
p ds

) p
2
, t ∈ [0,+∞), (2.1)

where Cp = ( p(p−1)
2 )

p
2 .

LEMMA 2. ( [2]) For any p � 2 and there exists Cp > 0 such that

sup
τ∈[0,t]

E
[∥∥∥∫ t

0

∫
Z
H(s,x)Ñ(dτ,dx)

∥∥∥]p
� Cp

{
E

[(∫ t

0

∫
Z
|H(s,x)|2λdxds

) p
2
]

+E
[∫ t

0

∫
Z
|H(s,x)|pλdxds

]}
. (2.2)

DEFINITION 6. The mild solution of the system (1.1) is said to be exponentially
stable in the p th moment if there exist a pair of positive constants γ > 0 and M0 > 0,
for any initial value ϕ ∈ PC , a.s., such that

E‖x(t)‖p � M0e
−γt , t � 0, p � 2. (2.3)
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3. Existence and uniqueness

Moreover, to obtain our main results, we give the following assumptions:
(H1) The operator families Iq , Kq , t � 0 generated by A are compact in D(A)

and there exist positive constants γ1 , γ2 such that

sup
t�0

‖Iq(t)‖ � M∗e−γ1t , sup
t�0

‖Kq(t)‖ � M∗e−γ2t , (3.1)

where constant M∗ � 1.
(H2) There exist positive constants β1 , β2 , β3 and β3 > 0 such that

E‖ f1(t,x1)− f1(t,x2)‖ � β1E‖x1− x2‖, f1(t,0) = 0, (3.2)

E‖ f2(t,x1)− f2(t,x2)‖ � β2E‖x1− x2‖, f2(t,0) = 0, (3.3)∫
Z
E‖ f3(t,x1,y)− f3(t,x2,y)‖2θ (dy) � β3‖x1− x2‖2, f3(t,0,y) = 0, (3.4)

and ∫
Z
E‖ f3(t,x1,y)− f3(t,x2,y)‖pθ (dy) � β3‖x1− x2‖p, (3.5)

where x1 , x2 ∈ X , y ∈ Z , t � 0.
(H3) There exist positive constants ck, dk, k = 1,2, · · · , such that

E‖Ik(x1)− Ik(x2)‖ � ck‖x1− x2‖, ‖Ik(0)‖ = 0, (3.6)

E‖Jk(x1)− Jk(x2)‖ � dk‖x1− x2‖, ‖Jk(0)‖ = 0, (3.7)

where x1 , x2 ∈ X , ∑+∞
k=1 ck < +∞ and ∑+∞

k=1 dk < +∞.

THEOREM 1. Assume that conditions (H1)–(H3) hold, then the system (1.1) has
a unique mild solution on [−r,T ] , 0 < T < ∞ provided that

5p−1M∗p
[
β p

1 T 2 +Cp(β p
2 T

p
2 + β

p
2

3 T
p
2 + β3T )+

(
(

∞

∑
k=1

ck)p +(
∞

∑
k=1

dk)p
)]

< 1. (3.8)

Proof. Let PCT be the space of all F-adapted processes x(t,ω) : [−r,T ]×Ω→ X
which is almost surely continuous in t �= tk (k = 1,2, · · · ,) for fixed ω ∈Ω . limt→t−k

x(t)

and limt→t+k
x(t) all exist and x(t−k ) = x(t+k ). When we define the norm as ‖x‖p

PCT
=

sups∈[−r,T ] E‖x(s)‖p , then PCT is a Banach space with the norm ‖ · ‖PCT . Therefore,

we call the PCT be the closed subset of PCT defined as PCT = {x ∈ PCT : x(t) =
ϕ(t) f or t ∈ [−r,0]} with norm ‖ · ‖PCT . Next, we transform the system (1.1) into a
fixed point problem. Consider the operator Ψ : PCT → PCT defined as

(Ψx)(t) = Iq(t)ϕ(0)+Kq(t)y1 +
∫ t

0
Kq(t− s) f1(s,x(s− δ1(s)))ds

+
∫ t

0
Iq(t − s) f2(s,x(s− δ2(s)))dW (s)
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+
∫ t

0

∫
Z
Iq(t − s) f3(s,x(s− δ3(s)),y)Ñ(ds,dy)

+ ∑
0<tk<t

Iq(t − tk)Ik(x(tk))+ ∑
0<tk<t

Kq(t− tk)Jk(x(tk)), t ∈ [0,T ],

and (Ψx)(t) = ϕ(t) , t ∈ [−r,0]. Then, we prove that the operator Ψ has a fixed point
which is exactly the mild solution of the system (1.1). Firstly, we verify that t →
(Ψx)(t) is continuous on [0,T ]. Let x ∈ PCT , t ∈ (0,T ) and |ε| be sufficiently small,
we obtain

E‖(Ψx)(t + ε)− (Ψx)(t)‖p � 7p−1
7

∑
i=1

E‖Ni(t + ε)−Ni(t)‖p. (3.9)

In view of (H1) and the strong continuity of operator Iq(t) , we obtain

E‖N1(t + ε)−N1(t)‖p = ‖[Iq(t + ε)−Iq(t)]ϕ(0)‖p

= ‖[Iq(t + ε)−Iq(t)]‖p‖ϕ(0)‖p

→ 0 as ε → 0.

Also, by the strong continuity of operator Kq(t) and (H1), we have

E‖N2(t + ε)−N2(t)‖p = ‖[Kq(t + ε)−Kq(t)]y1‖p

= ‖[Kq(t + ε)−Kq(t)]‖p‖y1‖p

→ 0 as ε → 0.

Then, from conditions (H1)–(H3), Lemma 2.1 and Lemma 2.2, we get

E‖N3(t + ε)−N3(t)‖p

= E
∥∥∥∫ t+ε

0
Kq(t + ε − s) f1(s,x(s− δ1(s)))ds−

∫ t

0
Kq(t− s) f1(s,x(s− δ1(s)))ds

∥∥∥p

� 2p−1E
∥∥∥∫ t

0
[Kq(t + ε − s)−Kq(t − s)] f1(s,x(s− δ1(s)))ds

∥∥∥p

+2p−1E
∥∥∥∫ t+ε

t
Kq(t + ε − s) f1(s,x(s− δ1(s)))ds

∥∥∥p

� 2p−1E
[∫ t

0

∥∥∥[Kq(t + ε − s)−Kq(t− s)] f1(s,x(s− δ1(s)))
∥∥∥

X
ds

]p

+2p−1E
[∫ t+ε

t

∥∥∥Kq(t + ε − s) f1(s,x(s− δ1(s)))
∥∥∥

X
ds

]p

� 2p−1
[∫ t

0

∥∥∥Kq(t + ε − s)−Kq(t− s)
∥∥∥ p

p−1

L(X)
ds

]p−1×
∫ t

0
E

∥∥∥ f1(s,x(s− δ1(s)))
∥∥∥p

X
ds

+2p−1
[∫ t+ε

t

∥∥∥Kq(t + ε − s)
∥∥∥ p

p−1

L(X)
ds

]p−1×
∫ t+ε

t
E

∥∥∥ f1(s,x(s− δ1(s)))
∥∥∥p

X
ds

→ 0 as ε → 0;
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E‖N4(t + ε)−N4(t)‖p

= E
∥∥∥∫ t+ε

0
Iq(t + ε − s) f2(s,x(s− δ2(s)))dW (s)

−
∫ t

0
Iq(t− s) f2(s,x(s− δ2(s)))dW (s)

∥∥∥p

� 2p−1E
∥∥∥∫ t

0
[Iq(t + ε − s)−Iq(t− s)] f2(s,x(s− δ2(s)))dW (s)

∥∥∥p

+2p−1E
∥∥∥∫ t+ε

t
Iq(t + ε − s) f2(s,x(s− δ2(s)))dW (s)

∥∥∥p

� 2p−1Cp

[∫ t

0

[
E

∥∥∥[Iq(t + ε − s)−Iq(t − s)] f2(s,x(s− δ2(s)))
∥∥∥p

L0
2

] 2
p
ds

] p
2

+2p−1Cp

[∫ t+ε

t

(
E

∥∥∥Iq(t + ε − s) f2(s,x(s− δ2(s)))
∥∥∥p

L0
2

) 2
p
ds

] p
2

→ 0 as ε → 0;

E‖N5(t + ε)−N5(t)‖p

= E
∥∥∥∫ t+ε

0

∫
Z
Iq(t − s) f3(s,x(s− δ3(s)),y)Ñ(ds,dy)

−
∫ t

0

∫
Z
Iq(t− s) f3(s,x(s− δ3(s)),y)Ñ(ds,dy)

∥∥∥p

� 2p−1E
∥∥∥∫ t

0

∫
Z
[Iq(t + ε − s)−Iq(t− s)] f3(s,x(s− r),y)Ñ(ds,dy)

∥∥∥p

+2p−1E
∥∥∥∫ t+ε

t

∫
Z
Iq(t + ε − s) f3(s,x(s− r),y)Ñ(ds,dy)

∥∥∥p

� 2p−1CpE
[∫ t

0

∫
Z
‖[Iq(t + ε − s)−Iq(t − s)] f3(s,x(s− r),y)‖2dsλdy

] p
2

+2p−1Cp

∫ t

0

∫
Z
E‖[Iq(t + ε − s)−Iq(t− s)] f3(s,x(s− r),y)‖pdsλdy

+2p−1CpE
[∫ t+ε

t

∫
Z
‖Iq(t + ε − s) f3(s,x(s− r),y)‖2dsλdy

] p
2

+2p−1Cp

∫ t+ε

t

∫
Z
E‖Iq(t + ε − s) f3(s,x(s− r),y)‖pdsλdy

� 2p−1CpE
[∫ t

0
‖[Iq(t + ε − s)−Iq(t − s)]‖2

∫
Z
‖ f3(s,x(s− r),y)‖2λ (dy)ds

] p
2

+2p−1Cp

∫ t

0
‖[Iq(t + ε − s)−Iq(t− s)]‖p

∫
Z
E‖ f3(s,x(s− r),y)‖pλ (dy)ds

+2p−1Cp

[∫ t+ε

t
‖Iq(t + ε − s)‖2

∫
Z
E‖ f3(s,x(s− r),y)‖2λ (dy)ds

] p
2

+2p−1Cp

∫ t+ε

t
‖Iq(t + ε − s)‖p

∫
Z
E‖ f3(s,x(s− r),y)‖pλ (dy)ds

→ 0 as ε → 0;
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E‖N6(t + ε)−N6(t)‖p

= E
∥∥∥[ ∑

0<tk<t+ε
Iq(t + ε − tk)Ik(x(tk))− ∑

0<tk<t

Iq(t− tk)Ik(x(tk))]
∥∥∥p

� 2p−1E
∥∥∥ ∑

0<tk<t

[Iq(t + ε − tk)−Iq(t − tk)]Ik(x(tk))
∥∥∥p

+2p−1E
∥∥∥ ∑

t<tk<t+ε
Iq(t + ε − tk)Ik(x(tk))

∥∥∥p

→ 0 as ε → 0;

E‖N7(t + ε)−N7(t)‖p

= E
∥∥∥[ ∑

0<tk<t+ε
Kq(t + ε − tk)Jk(x(tk))− ∑

0<tk<t

Kq(t − tk)Jk(x(tk))]
∥∥∥p

� 2p−1E
∥∥∥ ∑

0<tk<t

[Kq(t + ε − tk)−Kq(t− tk)]Jk(x(tk))
∥∥∥p

+2p−1E
∥∥∥ ∑

t<tk<t+ε
Kq(t + ε − tk)Jk(x(tk))

∥∥∥p

→ 0 as ε → 0.

In view of above estimations, we obtain

lim
ε→0

E‖(Ψx)(t + ε)− (Ψx)(t)‖p = 0,

which implies that the function t → (Ψx)(t) is continuous on [0,T ] .
Then, we will verify that Ψ is a contraction operator in PCT . For x1(t) , x2(t) ∈

PCT and t ∈ [0,T ], together with conditions (H1)–(H3), we have

E‖(Ψx1)(t)− (Ψx2)(t)‖p

� 5p−1E
∥∥∥∫ t

0
Kq(t− s)[ f1(s,x1(s− δ1(s)))− f1(s,x2(s− δ1(s)))]ds

∥∥∥p

+5p−1E
∥∥∥∫ t

0
Iq(t− s)[ f2(s,x1(s− δ2(s)))− f2(s,x2(s− δ2(s)))]dW (s)

∥∥∥p

+5p−1E
∥∥∥∫ t

0

∫
Z
Iq(t− s)[ f3(s,x1(s− δ3(s)),y)− f3(s,x2(s− δ3(s)),y)]Ñ(ds,dy)

∥∥∥p

+5p−1E
∥∥∥ ∑

0<tk<t

Iq(t− tk)[Ik(x1(tk))− Ik(x2(tk))]
∥∥∥p

+5p−1E
∥∥∥ ∑

0<tk<t

Kq(t− tk)[Jk(x1(tk))− Jk(x2(tk))]
∥∥∥p

� 5p−1E
[∫ t

0

∥∥∥Kq(t − s)
∥∥∥ p

p−1

L(X)
ds

]p−1

×
∫ t

0
E

∥∥∥[ f1(s,x1(s− δ1(s)))− f1(s,x2(s− δ1(s)))]ds
∥∥∥p

X
ds
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+5p−1Cp

[∫ t

0

[
E

∥∥∥[Iq(t− s)][ f2(s,x1(s− δ2(s)))− f2(s,x2(s− δ2(s)))]
∥∥∥p

L0
2

] 2
p
ds

] p
2

� 5p−1CpE
[∫ t

0
‖Iq(t− s)‖2

×
∫

Z
‖[ f3(s,x1(s− δ3(s)),y)− f3(s,x2(s− δ3(s)),y)]‖2λ (dy)ds

] p
2

+5p−1Cp

∫ t

0
‖Iq(t − s)‖p

×
∫

Z
E‖[ f3(s,x1(s− δ3(s)),y)− f3(s,x2(s− δ3(s)),y)]‖pλ (dy)ds

+5p−1E
∥∥∥ ∑

0<tk<t

Iq(t− tk)[Ik(x1(tk))− Ik(x2(tk))]
∥∥∥p

+5p−1E
∥∥∥ ∑

0<tk<t

Kq(t− tk)[Jk(x1(tk))− Jk(x2(tk))]
∥∥∥p

� 5p−1M∗p
[
β p

1 T 2 +Cp(β p
2 T

p
2 + β

p
2

3 T
p
2 + β3T )+

(
(

∞

∑
k=1

ck)p +(
∞

∑
k=1

dk)p
)]

× sup
θ∈[−r,0]

‖x1(t + θ )− x2(t + θ )‖p,

which implies that

sup
s∈[−r,t]

E‖(Ψx1)(t)− (Ψx2)(t)‖p < Ω sup
s∈[−r,t]

‖x1(t + θ )− x2(t + θ )‖p. (3.10)

Since Ω < 1 from inequality (3.8), we obtain that Ψ is a contraction map. Therefore,
Ψ has a unique fixed point x(t) in PCT which is the solution of the system (1.1) by the
Banach fixed point theorem. �

4. Exponential stability in the p th moment

To obtain the exponential stability in the p th moment of mild solutions of (1.1),
we need to establish an improved impulsive-integral inequality as follows firstly.

LEMMA 3. For γ1 , γ2 > 0, and there exist positive constants: ξ , ω , ξ ∗ , ω∗ , ξk ,
ωk (k = 1,2, · · ·) and a function u : [−r,+∞) → [0,+∞). If the following inequality:

u(t) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ e−γ1t + ωe−γ2t + ξ ∗ ∫ t
0 e−γ1(t−s) supθ∈[−r,0] u(s+ θ )ds

+ω∗ ∫ t
0 e−γ2(t−s) supθ∈[−r,0] u(s+ θ )ds+ ∑tk<t ξke−γ1(t−tk)u(t−k )

+∑tk<t ωke−γ2(t−tk)u(t−k ), t � 0,

ξ e−γ1t + ωe−γ2t , t ∈ [−r,0]

holds. Then, we have u(t) � (ξ + ω)e−μt (t � −r), where μ is a positive constant
defined by μ = min{γ1, γ2}−(ξ ∗+ω∗)emin{γ1, γ2}r−ξ , where ξ satisfies ∏0<tk<t λk <

eξ t and ξ < min{γ1, γ2}− (ξ ∗+ ω∗)emin{γ1, γ2}r , λk = max{1+ ξk + ωk,1}.
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Proof. It is easy to see that u(t) � (ξ +ω)e−μt for t ∈ [−r,0] . Then for any t � 0,
we will also verify u(t) � (ξ + ω)e−μt .

Case 1. When γ1 � γ2 , multiplying eγ1t on both sides of the first inequality of the
lemma 4.1, we get

u(t)eγ1t � ξ + ωe−(γ2−γ1)t + ∑
tk<t

ξke
γ1tk u(t−k )+ ∑

tk<t
ωke

γ1t e−γ2(t−tk)u(t−k )

+ξ ∗
∫ t

0
eγ1s sup

θ∈[−r,0]
u(s+ θ )ds+ ω∗

∫ t

0
eγ1te−γ2(t−s) sup

θ∈[−r,0]
u(s+ θ )ds

� (ξ + ω)+ (ξ ∗+ ω∗)
∫ t

0
e−γ1θ eγ1(s+θ) sup

θ∈[−r,0]
u(s+ θ )ds+ ∑

tk<t
(ξk + ωk)eγ1tk u(t−k )

� (ξ + ω)+ (ξ ∗+ ω∗)eγ1r ·
∫ t

0
eγ1(s+θ) sup

θ∈[−r,0]
u(s+ θ )ds+ ∑

tk<t
(ξk + ωk)eγ1tk u(t−k ).

Let v(t) = u(t)eγ1t , the above inequality is changed as

v(t) � (ξ + ω)+ (ξ ∗+ ω∗)eγ1r ·
∫ t

0
sup

θ∈[−r,0]
v(s+ θ )ds+ ∑

tk<t
(ξk + ωk)v(tk).

Also, let

z(t) = (ξ + ω)+ (ξ ∗+ ω∗)eγ1r ·
∫ t

0
sup

θ∈[−r,0]
v(s+ θ )ds+ ∑

tk<t
(ξk + ωk)v(tk). (4.1)

Then, for t �= tk, we obtain

z′(t) = (ξ ∗ + ω∗)eγ1r sup
θ∈[−r,0]

v(t + θ ) � (ξ ∗ + ω∗)eγ1r sup
θ∈[−r,0]

z(t + θ ), (4.2)

and
z(t+k ) � λkz(tk), (4.3)

where λk = max{1+ ξk + ωk,1}.
Next, consider the following equation

z′(t) = (ξ ∗ + ω∗)eγ1r sup
θ∈[−r,0]

z(t + θ ), (4.4)

it is easy to find that the solution of (4.4) is z(t) = ζe[(ξ ∗+ω∗)eγ1r ]t , where ζ = ‖z0‖.
From the comparison principle, we know

v(t) � z(t) = ζe[(ξ ∗+ω∗)eγ1r ]t , t ∈ [−r,t1] (4.5)

and
z(t+k ) � ζλ1e

[(ξ ∗+ω∗)eγ1r ]t1 . (4.6)
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For t ∈ (t1, t2], from (4.5) and (4.6), we have

z(t) � ‖zt1‖e[(ξ ∗+ω∗)eγ1r ](t−t1) � ‖z0‖λ1e
[(ξ ∗+ω∗)eγ1r ]t . (4.7)

By the mathematical induction, for t ∈ (tk,tk+1], we have

z(t) � ‖z0‖∏
tk<t

λke
[(ξ ∗+ω∗)eγ1r ]t . (4.8)

Thus, we have

u(t) � ‖z0‖∏
tk<t

λke
−[γ1−(ξ ∗+ω∗)eγ1r ]t = (ξ +ω) ∏

tk<t
λke

−[γ1−(ξ ∗+ω∗)eγ1r ]t = (ξ +ω)e−μ1t ,

(4.9)
where μ1 = γ1 − (ξ ∗ + ω∗)eγ1r − ξ , ξ satisfies ∏tk<t λk < eξ t and ξ < γ1 − (ξ ∗ +
ω∗)eγ1r .

Case 2. When γ2 � γ1 , by the similar methods, we obtain

u(t) � (ξ + ω)e−μ2t , (4.10)

where μ2 = γ2 − (ξ ∗ + ω∗)eγ2r − ξ , ξ satisfies ∏tk<t λk < eξ t and ξ < γ2 − (ξ ∗ +
ω∗)eγ2r .

Therefore, we can always obtain that

u(t) � (ξ + ω)e−μt, (4.11)

where μ = min{γ1, γ2}− (ξ ∗ + ω∗)emin{γ1, γ2}r − ξ , ξ satisfies ∏tk<t λk < eξ t and

ξ < min{γ1, γ2}− (ξ ∗+ ω∗)emin{γ1, γ2}r . �

REMARK 1. Compared with previous results [3], it is easy to see that the ξk and
ωk in our results is more simple than that in [3], which is required to satisfy ξ ∗

γ1
+ ω∗

γ2
+

∑+∞
k=1 ξk +∑+∞

k=1 ωk < 1. If ∑+∞
k=1 ξk � 1 or ∑+∞

k=1 ωk � 1, the correspondingLemma in [3]
will not hold. But in our result, ξk and ωk can be greater than or equal to 1. When
ω = ω∗ = ωk = 0, our results can also improve the previous results [4, 17, 5, 6].

THEOREM 2. Assume that conditions (H1)–(H3) hold, then the mild solution of
the system (1.1) is exponentially stable in the pth moment.

Proof. Taking the mathematical expectation for the mild solution of (1.1), we have

E‖x(t)‖p = E
∥∥∥Iq(t)ϕ(0)+Kq(t)y1 +

∫ t

0
Kq(t− s) f1(s,x(s− δ1(s)))ds

+
∫ t

0
Iq(t− s) f2(s,x(s− δ2(s)))dW (s)

+
∫ t

0

∫
Z
Iq(t− s) f3(s,x(s− δ3(s)),y)Ñ(ds,dy)

+ ∑
0<tk<t

Iq(t− tk)Ik(x(tk))+ ∑
0<tk<t

Kq(t − tk)Jk(x(tk))
∥∥∥p
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� 5p−1E
∥∥∥Iq(t)ϕ(0)+Kq(t)y1

∥∥∥p

+5p−1E
∥∥∥∫ t

0
Kq(t− s) f1(s,x(s− δ1(s)))ds

∥∥∥p

+5p−1E
∥∥∥∫ t

0
Iq(t− s) f2(s,x(s− δ2(s)))dW (s)

∥∥∥p

+5p−1E
∥∥∥∫ t

0

∫
Z
Iq(t− s) f3(s,x(s− δ3(s)),y)Ñ(ds,dy)

∥∥∥p

+5p−1E
∥∥∥ ∑

0<tk<t

Iq(t− tk)Ik(x(tk))+ ∑
0<tk<t

Kq(t− tk)Jk(x(tk))‖p

= 5p−1
5

∑
i=1

Φi.

From the assumption (H1) and Hölder inequality, we get

Φ1 = E
∥∥∥Iq(t)ϕ(0)+Kq(t)y1

∥∥∥p

� 2p−1M∗pE‖ϕ‖p
0e

−γ1t +2p−1M∗pE‖y1‖pe−γ2t .

Then, from the assumption (H1), (H2) and Hölder inequality, we have

Φ2 = E
∥∥∥∫ t

0
Kq(t − s) f1(s,x(s− δ1(s)))ds

∥∥∥p

� E
(∫ t

0
‖Kq(t − s)‖‖ f1(s,x(s− δ1(s)))‖ds

)p

� M∗pE
(∫ t

0
e−[ γ2(p−1)

p ](t−s)e−( γ2
p )(t−s)‖ f1(s,x(s− δ1(s)))‖ds

)p

� M∗pβ p
1

(∫ t

0
e−γ2(t−s)ds

)p−1 ∫ t

0
e−γ2(t−s)E‖x(s− δ (s))‖pds

� M∗pβ p
1 γ1−p

2

∫ t

0
e−γ2(t−s) sup

θ∈[−r,0]
E‖x(s+ θ )‖pds.

Furthermore, by the assumption (H1), (H2), Hölder inequality, Lemma 2.1 and Lemma
2.2, we obtain

Φ3 = E
∥∥∥∫ t

0
Iq(t− s) f2(s,x(s− δ2(s)))dW (s)

∥∥∥p

� CpM
∗p

(∫ t

0
[e−γ1 p(t−s)E‖ f2(s,x(s− δ2(s)))ds‖p

L0
2
]

2
p ds

) p
2

� CpM
∗pβ p

2

(∫ t

0
[e−γ1(p−1)(t−s)e−γ1(t−s)E‖x(s− δ2(s))‖p]

2
p ds

) p
2

� CpM
∗pβ p

2

(∫ t

0
e−[ 2(p−1)

p−2 ]γ1(t−s)ds
)p−1 ∫ t

0
e−γ1(t−s)E‖x(s− δ2(s))‖pds

� CpM
∗pβ p

2

(2γ1(p−1)
p−2

)1− p
2

∫ t

0
e−γ1(t−s) sup

θ∈[−r,0]
E‖x(s+ θ )‖pds
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and

Φ4 = E
∥∥∥∫ t

0

∫
Z
Iq(t − s) f3(s,x(s− δ3(s)),y)Ñ(ds,dy)

∥∥∥p

� Cp

{
E

(∫ t

0

∫
Z

∥∥∥Iq(t− s) f3(s,x(s− δ3(s)),y)
∥∥∥2

dsλdy
) p

2

+
∫ t

0

∫
Z

∥∥∥Iq(t− s) f3(s,x(s− δ3(s)),y)
∥∥∥p

dsλdy
}

� CpM
∗p

{(∫ t

0
e−2γ1(t−s)

∫
Z
E

∥∥∥ f3(s,x(s− δ3(s)),y)
∥∥∥2

λdsdy
) p

2

+
∫ t

0
e−pγ1(t−s)

∫
Z
E

∥∥∥ f3(s,x(s− δ3(s)),y)
∥∥∥p

λdsdy

� CpM
∗pβ

p
2

3

(∫ t

0
e−

2(p−1)
p γ1(t−s)e−

2
p γ1(t−s)E‖x(s− δ3(s))‖2ds

) p
2

+CpM
∗pβ3

∫ t

0
e−pγ1(t−s) sup

θ∈[−r,0]
E‖x(s+ θ )‖pds

� CpM
∗pβ

p
2

3

(∫ t

0
e−

2(p−1)
p · p

p−2 γ1(t−s)ds
) p−2

2
∫ t

0
e−γ1(t−s)E‖x(s− δ3(s))‖pds

+CpM
∗pβ3

∫ t

0
e−pγ1(t−s) sup

θ∈[−r,0]
E‖x(s+ θ )‖pds

� CpM
∗p(β

p
2

3 + β3)
( p−2

2(p−1)γ1

) p−2
2

∫ t

0
e−γ1(t−s) sup

θ∈[−r,0]
E‖x(s+ θ )‖pds.

Next, for p � 2 and 1 < m � 2 with 1
p + 1

m = 1 and the assumption (H3), we obtain

Φ5 = E
∥∥∥ ∑

0<tk<t

Iq(t− tk)Ik(x(tk))+ ∑
0<tk<t

Kq(t − tk)Jk(x(tk))
∥∥∥p

� 2p−1
[
E

∥∥∥ ∑
0<tk<t

Iq(t − tk)Ik(x(tk))
∥∥∥p

+E
∥∥∥ ∑

0<tk<t

Kq(t− tk)Jk(x(tk))
∥∥∥p]

� 2p−1M∗pE
[∥∥∥ ∑

0<tk<t

cke
−γ1(t−tk)‖x(tk)

∥∥∥p
+

∥∥∥ ∑
0<tk<t

dke
−γ2(t−tk)‖x(tk)

∥∥∥p]

� 2p−1M∗p
[
(

∞

∑
k=1

ck)
p
m ∑

0<tk<t

cke
−γ1(t−tk) + (

∞

∑
k=1

dk)
p
m ∑

0<tk<t

dke
−γ2(t−tk)

]∥∥∥x(tk)
∥∥∥p

.

Finally, combining with the estimations of Φ1 −Φ5 for t � 0, we have

E‖x(t)‖p

� 10p−1M∗pE‖ϕ‖pe−γ1t +10p−1M∗pE‖y1‖pe−γ2t

+5p−1M∗pβ p
1 γ1−p

2

∫ t

0
e−γ2(t−s) sup

θ∈[−r,0]
E‖x(s+ θ )‖pds

+5p−1CpM
∗pβ p

2

(2γ1(p−1)
p−2

)1− p
2

∫ t

0
e−γ1(t−s) sup

θ∈[−r,0]
E‖x(s+ θ )‖pds
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+5p−1CpM
∗p(β

p
2

3 + β3)
( p−2

2(p−1)γ1

) p−2
2

∫ t

0
e−γ1(t−s) sup

θ∈[−r,0]
E‖x(s+ θ )‖pds

+10p−1M∗p
[
(

∞

∑
k=1

ck)
p
m ∑

0<tk<t

cke
−γ1(t−tk) + (

∞

∑
k=1

dk)
p
m ∑

0<tk<t

dke
−γ2(t−tk)

]∥∥∥x(tk)
∥∥∥p

= 10p−1M∗pE‖ϕ‖pe−γ1t +10p−1M∗pE‖y1‖pe−γ2t

+5p−1M∗pβ p
1 γ1−p

2

∫ t

0
e−γ2(t−s) sup

θ∈[−r,0]
E‖x(s+ θ )‖pds

+5p−1CpM
∗pΓ

∫ t

0
e−γ1(t−s) sup

θ∈[−r,0]
E‖x(s+ θ )‖pds

+10p−1M∗p
[
(

∞

∑
k=1

ck)
p
m ∑

0<tk<t

cke
−γ1(t−tk) + (

∞

∑
k=1

dk)
p
m ∑

0<tk<t

dke
−γ2(t−tk)

]∥∥∥x(tk)
∥∥∥p

,

where

Γ =
(

β p
2 + β

p
2

3 + β3

)(2γ1(p−1)
p−2

)1− p
2
.

And it is obvious to see that for t ∈ [−r,0] , we have

E‖x(t)‖p � M0e
−γt ,

where M0 = max
{

10p−1M∗p[E‖ϕ‖p
0 + E‖y1‖p], E‖ϕ‖p

0

}
. Then, by lemma 4.1, for

all t � −r, we have
E‖x(t)‖p � M0E‖ϕ‖0e

−γt ,

where γ = min{γ1, γ2}−θ −ξ , θ = 5p−1M∗p(β p
1 γ1−p

2 +CpM∗pΓ)emin{γ1, γ2}r, ξ satis-

fies ∏tk<t λk < eξ t , λk = 1+10p−1M∗p
[
(∑∞

k=1 ck)
p
m ∑0<tk<t ck +(∑∞

k=1 dk)
p
m ∑0<tk<t dk

]
and ξ < min{γ1, γ2}− 5p−1M∗p(β p

1 γ1−p
2 +CpM∗pΓ)emin{γ1, γ2}r . So, we can obtain

that the mild solutions of the system (1.1) is exponentially stable in the p th moment. �

5. An example

In this section, an example is given to illustrate the effectiveness and feasibility of
the theoretical results in our paper.

EXAMPLE 5.1. Consider the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cD0.5
t u(t,x) = ∂ 2

∂x2 u(t,x)+J1.5
t

(
β1 sinu( t

4 ,x))
)

+J1.5
t

(
β2 sinu( t

3 ,x)) dW (t)
dt

+
∫
Z β3 sinu( t

2 ,x),y)Ñ(dt,dy)
)
, t ∈ [0,π ], t �= tk, x ∈ [0,π ],

u(t,0) = u(t,π) = 0, t ∈ [0,π ],

Δu(tk,x) = cku(tk,x), Δx′(tk) = dku(tk,x), t = tk, k = 1,2, · · · ,
u(t,x) = ϕ(t,x), t ∈ (−r,0], x ∈ [0,π ],

(5.1)
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where W (t) is a standard cylindrical Wiener process in X , A : D(A)⊂ X →X , which is
defined by Ay = z′′ with the domain D(A)= {y∈X , y, y′ are absolutely continuous y′′ ∈
X , y(0) = y(π) = 0} then

Ay =
∞

∑
n=1

n2(y,yn)yn, y ∈ D(A),

where yn(x) =
√

2
π sin(nx), n ∈ N is the orthonormal set of eigenvectors of A . Also,

A is the infinitesimal generator of an analytic semigroup (S(t))t�0 in X and ‖S(t)‖ �
e−π2t .

Then, (5.1) can be transformed in the abstract form of (1.1), where f1(t,x) =
β1 sinx , f2(t,x) = β2 sinx , f3(t,x,y) = β3ysinx , the delay functions are δ1(t) = t

4 ,
δ2(t) = t

3 , δ3(t) = t
2 , the impulsive functions are Ik(x) = ckx , Jk(x) = dkx , k ∈ N .

Thus, it is easy to verify the conditions (H1)–(H3) of Theorem 1 all hold, so the system
(5.1) has at least a mild solution on [0,π ] .

Next, we will prove that the mild solution of (5.1) is exponentially stable in the 4th
moment (p = 4) . In fact, we know M∗ = 1, γ1 = γ2 = π2. Let β1 = β2 = β3 = 0.1,
β3 = 0.001, r = π−2 , c1 = c2 = d1 = d2 = 0.1, k = 2, by simple calculation, we have
θ ≈ 1.5366, λ1 = 1.2, λ2 = 4.2, then let ξ = 6, so γ = min{γ1,γ2}−θ−ξ ≈ 2.3230>
0. Thus, the conditions of Theorem 2 all hold, so the mild solution of the system (5.1)
is exponentially stable in the 4th moment.
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