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QUASI–CONVEX AND Q–CLASS FUNCTIONS

HAMID REZA MORADI, SHIGERU FURUICHI AND MOHAMMAD SABABHEH

(Communicated by J. Pečarić)

Abstract. Convex functions and their variants have played a significant role in the literature.
In this article, we investigate two important related classes, namely quasi-convex and Q -class
functions. We will show that these two classes satisfy similar but different properties as those
fulfilled by convex functions. Our discussion will include refinements of known inequalities,
super-additivity behavior, Jensen-Mercer inequality, and other related results. Among many
other results, we show that an increasing quasi-convex function f : [0,∞) → R satisfies the
inequality

f (a)+ f (b)
2

� f

(
a+b

2

)
+

1
2

f (a+b), (a,b > 0),

while a Q -class function with f (0) � 0 satisfies the super-additive inequality

f (a)+ f (b) � (a+b)2

ab
f (a+b) , (a,b > 0)

similar to convex functions.

1. Introduction

Let J be a real interval. More than a century ago, Jensen [7] introduced the notion
of convex functions as those functions f : J ⊆ R → R such that

f ((1− t)a+ tb) � (1− t) f (a)+ t f (b) (1.1)

for all a,b ∈ J and all 0 � t � 1. A convex function defined on a closed interval is
bounded above by the maximum of its values at the endpoints, but the converse needs
not to be true. That is, a function bounded by the maximum of its values at the endpoints
need not be convex. This fact motivates researchers to define quasi-convex functions
(see, for example, [13]) as those functions f : J ⊆ R → R satisfying

f ((1− t)a+ tb) � max{ f (a) , f (b)} , (1.2)

for all a,b ∈ J and 0 � t � 1. Clearly, any convex function is a quasi-convex func-
tion. On the other hand, there exist quasi-convex functions which are not convex. For
example, the function f (x) = lnx for x ∈ (0,∞) is not convex, yet it is quasi-convex.
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It is obvious that a monotone function (increasing or decreasing) is necessarily quasi-
convex.

Many properties of convex functions have equivalent properties for quasi-convex
functions. We refer the reader to the excellent review on quasi-convex functions in [5],
where an informative list is provided.

Notice that quasi-convex functions belong to another class of functions called Q-
class. A function f : J → R is said to be Q-class if for any 0 < t < 1

f ((1− t)a+ tb) � 1
1− t

f (a)+
1
t

f (b) (1.3)

for all a,b ∈ J . Godunova and Levin introduced this concept in [4].
Let S be a subset of R with at least three elements. A function f : S → R is

called a Schur function if

f (t)(t − s)(t−u)+ f (s) (s− t)(s−u)+ f (u)(u− t)(u− s) � 0 (1.4)

for all s, t,u ∈ S . For f (x) = xr , (x ∈ [0,∞) ,r > 0) , (1.4) is just the well-known
inequality due to Schur [18]. In [4], Godunova and Levin demonstrated that the class
of Schur functions and the Q-class functions overlap. Several properties of classical
Q-class functions can be found in [12].

It is uncomplicated to notice that every non-negative monotone function or convex
function is of Q-class. Thus functions of class Q emerge as an extension of these two
important classes of function.

One of the most celebrated inequalities for convex functions is Jensen-Mercer’s
inequality [8]. This inequality is expressed as follows: Let f : [m,M] → R be a convex
function and let w1,w2, . . . ,wn � 0 with ∑n

i=1 wi = 1. Then

f

(
M +m−

n

∑
i=1

witi

)
� f (M)+ f (m)−

n

∑
i=1

wi f (ti); m � ti � M, i = 1,2, . . . ,n.

Finding further inequalities for convex functions with possible applications has
been an emerging trend in mathematical inequalities. See [3] for example.

This article presents several new inequalities for quasi-convex and Q-class func-
tions. These new inequalities will match the corresponding known inequalities for con-
vex functions.

2. Quasi-convex functions

We begin with the following refinement of (1.2).

LEMMA 2.1. Let f : J → R be a quasi-convex function. Then for all a,b∈ J and
0 � t � 1 ,

f ((1− t)a+ tb) �

⎧⎪⎪⎨
⎪⎪⎩

max

{
f (a) , f

(
a+b

2

)}
; 0 � t � 1

2

max

{
f (b) , f

(
a+b

2

)}
;

1
2

� t � 1

.
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Proof. We consider the case 0 � t � 1/2 . In this case, we have

f ((1− t)a+ tb) = f

(
(1−2t)a+2t

a+b
2

)
� max

{
f (a) , f

(
a+b

2

)}
,

where we have used (1.2) to obtain the inequality, noting that 0 � 2t � 1.
For the case 1/2 � t � 1, we can write

f ((1− t)a+ tb) = f

(
(2t−1)b+(2−2t)

a+b
2

)
� max

{
f (b) , f

(
a+b

2

)}
.

This completes the proof. �

REMARK 2.1. Since f is quasi-convex on [a,b] in Lemma 2.1, we have f
(

a+b
2

)
� max{ f (a), f (b)} . Therefore the inequality in Lemma 2.1 gives an improvement of
the definition of the quasi-convex function on [a,b] in (1.2).

At this point, we should remark that Lemma 2.1 is the quasi-version of the in-
equality

f ((1− t)a+ tb) � (1− t) f (a)+ t f (b)−2r

(
f (a)+ f (b)

2
− f

(
a+b

2

))
, (2.1)

valid for the convex function f : J → R , where a,b ∈ J , 0 � t � 1 and r = min{t,1−
t}. This inequality was proved in [2]. Later, in [10], further discussion was made
on the general case. In [14, 15], a more elaborated discussion with some geometric
comprehension was made.

Now we use Lemma 2.1 to present the following upper bounds for quasi-convex
functions.

COROLLARY 2.1. Let f : J → R be a quasi-convex function and let a,b ∈ J .

(i) If 0 � t � 1/2 , then

f ((1− t)a+ tb) � 3
4

f (a)+
1
4

f (b)+
1
2

(∣∣∣∣ f (a)− f

(
a+b

2

)∣∣∣∣+ 1
2
| f (a)− f (b)|

)
.

(ii) If 1/2 � t � 1 ,

f ((1− t)a+ tb) � 3
4

f (b)+
1
4

f (a)+
1
2

(∣∣∣∣ f (b)− f

(
a+b

2

)∣∣∣∣+ 1
2
| f (a)− f (b)|

)
.

Proof. First of all, notice that

max{x,y} =
x+ y+ |x− y|

2
; x,y ∈ R.
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If 0 � t � 1/2 , Lemma 2.1 implies

f ((1− t)a+ tb) � max

{
f (a) , f

(
a+b

2

)}

=
1
2

(
f (a)+ f

(
a+b

2

)
+
∣∣∣∣ f (a)− f

(
a+b

2

)∣∣∣∣
)

� 1
2

(
f (a)+max{ f (a) , f (b)}+

∣∣∣∣ f (a)− f

(
a+b

2

)∣∣∣∣
)

=
3
4

f (a)+
1
4

f (b)+
1
2

(∣∣∣∣ f (a)− f

(
a+b

2

)∣∣∣∣+ 1
2
| f (a)− f (b)|

)
,

where the first inequality follows from Lemma 2.1 and the second inequality is obtained
from (1.2) by setting t = 1/2 . Therefore,

f ((1− t)a+ tb) � 3
4

f (a)+
1
4

f (b)+
1
2

(∣∣∣∣ f (a)− f

(
a+b

2

)∣∣∣∣+ 1
2
| f (a)− f (b)|

)
.

This proves (i). If 1/2 � t � 1, then

f ((1− t)a+ tb) � max

{
f (b) , f

(
a+b

2

)}

=
1
2

(
f (b)+ f

(
a+b

2

)
+
∣∣∣∣ f (b)− f

(
a+b

2

)∣∣∣∣
)

� 1
2

(
f (b)+max{ f (a) , f (b)}+

∣∣∣∣ f (b)− f

(
a+b

2

)∣∣∣∣
)

=
3
4

f (b)+
1
4

f (a)+
1
2

(∣∣∣∣ f (b)− f

(
a+b

2

)∣∣∣∣+ 1
2
| f (a)− f (b)|

)
.

Consequently,

f ((1− t)a+ tb) � 3
4

f (b)+
1
4

f (a)+
1
2

(∣∣∣∣ f (b)− f

(
a+b

2

)∣∣∣∣+ 1
2
| f (a)− f (b)|

)
,

which completes the proof. �
We notice that a convex function f : J → R satisfies the mid-convexity condition

f
(

a+b
2

)
� f (a)+ f (b)

2 . It is interesting that quasi-convex functions satisfy the following.

THEOREM 2.1. Let f : [0,∞) → R be a quasi-convex function and let a,b > 0 .
Then

f (a)+ f (b)
2

� f

(
a+b

2

)
+

1
2

(
f (0)+

∣∣∣∣ f (a+b)− f

(
a+b

2

)∣∣∣∣+
∣∣∣∣ f (0)− f

(
a+b

2

)∣∣∣∣
)

.
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Proof. Noting that tx = (1− t)×0+ tx, Lemma 2.1 implies

f (tx) �

⎧⎪⎨
⎪⎩

max
{

f (0) , f
( x

2

)}
; 0 � t � 1

2

max
{

f (x) , f
( x

2

)}
;

1
2

� t � 1
. (2.2)

First assume that a � b (i.e., a/(a+b) � 1/2 and 1/2 � b/(a+b) ). Then (2.2)
implies

f (a) = f

(
a

a+b
· (a+b)

)
� max

{
f (0) , f

(
a+b

2

)}
,

and

f (b) = f

(
b

a+b
· (a+b)

)
� max

{
f (a+b), f

(
a+b

2

)}
.

In summary,

a � b ⇒

⎧⎪⎪⎨
⎪⎪⎩

f (a) � max

{
f (0) , f

(
a+b

2

)}

f (b) � max

{
f (a+b), f

(
a+b

2

)} .

Thus,

f (a)+ f (b)

� max

{
f (0) , f

(
a+b

2

)}
+max

{
f (a+b), f

(
a+b

2

)}

= f

(
a+b
2

)
+

1
2

(
f (a+b)+ f (0)+

∣∣∣∣ f (a+b)− f

(
a+b
2

)∣∣∣∣+
∣∣∣∣ f (0)− f

(
a+b
2

)∣∣∣∣
)

,

which is equivalent to the desired inequality for the case a � b.
If b � a , interchanging a and b in the first case completes the proof. �

We notice that a concave function f : [0,∞)→R satisfies the inequality f (a)+ f (b)
2 �

f
(

a+b
2

)
. It is interesting that a monotone quasi-convex function follows a similar be-

havior, as we state in the following remark.

REMARK 2.2. From Theorem 2.1, we find the following.

(i) If a quasi-convex function f : [0,∞) → R is increasing, then we have

f (a)+ f (b)
2

� f

(
a+b

2

)
+

1
2

f (a+b), (a,b > 0).

(ii) If a quasi-convex function f : [0,∞) → R is decreasing, then we have

f (a)+ f (b)
2

� f

(
a+b

2

)
+ f (0)− 1

2
f (a+b), (a,b > 0).
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For a convex function f : J → R , it is well known that if t � 0 or t � −1, then

f ((1+ t)a− tb) � (1+ t) f (a)− t f (b),a,b∈ J,

provided that (1+ t)a− tb∈ J. This inequality received some attention in the literature
due to its applications in other fields, like operator theory. The reader is referred to
[6, 11] for further related readings. In the following result, we present the quasi-version
of this inequality.

THEOREM 2.2. Let f : J → R be a quasi-convex function. Then for all a,b ∈ J ,

min{ f (a) , f (b)} �
{

max{ f ((1+ t)a− tb), f (b)} ; t � 0

max{ f ((1+ t)a− tb), f (a)} ; t � −1
,

provided that (1+ t)a− tb∈ J.

Proof. Notice that

min{x,y} =
x+ y−|x− y|

2
; x,y ∈ R.

If t � 0, we have

min{ f (a) , f (b)} � f (a)

= f

(
1

1+ t
((1+ t)a− tb)+

t
1+ t

b

)
� max{ f ((1+ t)a− tb), f (b)}

where the second inequality is obtained from (1.2). If t � −1, we get

min{ f (a) , f (b)} � f (b)

= f

(
−1

t
((1+ t)a− tb)+

1+ t
t

a

)
� max{ f ((1+ t)a− tb), f (a)} ,

which completes the proof. �

REMARK 2.3. A quasi-concave function is a function whose negative is quasi-
convex. Equivalently a function f is quasi-concave if

f ((1− t)a+ tb) � min{ f (a) , f (b)} .

Applying the same method as in the proof of Lemma 2.1, we get that

f ((1− t)a+ tb) �

⎧⎪⎪⎨
⎪⎪⎩

min

{
f (a) , f

(
a+b

2

)}
; 0 � t � 1

2

min

{
f (b) , f

(
a+b

2

)}
;

1
2

� t � 1

,
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which can be reduced to

f (tx) �

⎧⎪⎨
⎪⎩

min
{

f (0) , f
( x

2

)}
; 0 � t � 1

2

min
{

f (x) , f
( x

2

)}
;

1
2

� t � 1
.

Now, utilizing the same strategy used in the proof of Theorem 2.1, we infer that

a � b ⇒

⎧⎪⎪⎨
⎪⎪⎩

f (a) � min

{
f (0) , f

(
a+b

2

)}

f (b) � min

{
f (a+b), f

(
a+b

2

)}

and

b � a ⇒

⎧⎪⎪⎨
⎪⎪⎩

f (a) � min

{
f (a+b), f

(
a+b

2

)}

f (b) � min

{
f (0) , f

(
a+b

2

)} .

Accordingly,

f (a)+ f (b)

� f

(
a+b
2

)
+

1
2

(
f (a+b)+ f (0)−

∣∣∣∣ f (a+b)− f

(
a+b
2

)∣∣∣∣−
∣∣∣∣ f (0)− f

(
a+b
2

)∣∣∣∣
)

.

We end this section by presenting Jensen-Mercer’s inequality for quasi-convex
functions.

THEOREM 2.3. Let f : [m,M] → R be a quasi-convex function, let ti ∈ [m,M]
(i = 1,2, . . . ,n) and let w1,w2, . . . ,wn be positive scalars such that ∑n

i=1 wi = 1 . Then

f

(
M +m−

n

∑
i=1

witi

)
� 2max{ f (m) , f (M)}−

n

∑
i=1

wi f (ti).

Proof. The inequality (1.2) is equivalent to

f ((1− t)a+ tb) � 1
2

( f (a)+ f (b)+ | f (a)− f (b)|) , (2.3)

where a,b ∈ [m,M] and 0 � t � 1. If we put 1− t = ti−m
M−m , t = M−ti

M−m , a = M , and
b = m , in (2.3), we get

f (ti) � 1
2

( f (M)+ f (m)+ | f (M)− f (m)|) (2.4)

for any m � ti � M (i = 1,2, . . . ,n) . Multiplying inequality (2.4) by wi (i = 1,2, . . . ,n)
and adding, we get

n

∑
i=1

wi f (ti) � 1
2

( f (M)+ f (m)+ | f (M)− f (m)|) . (2.5)
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On the other hand, m � ti � M implies m � M + m− ti � M . Thus, m � M +m−
∑n

i=1 witi � M for i = 1,2, . . . ,n . From (2.4), we conclude that

f

(
M +m−

n

∑
i=1

witi

)
� 1

2
( f (M)+ f (m)+ | f (M)− f (m)|) . (2.6)

Adding (2.5) and (2.6) implies

f

(
M +m−

n

∑
i=1

witi

)
+

n

∑
i=1

wi f (ti) � f (M)+ f (m)+ | f (M)− f (m)| ,

which completes the proof. �

REMARK 2.4. It follows from (2.5) and (2.6)

max

{
n

∑
i=1

wi f (ti), f

(
M +m−

n

∑
i=1

witi

)}
� 1

2
( f (M)+ f (m)+ | f (M)− f (m)|) .

This implies

1
2

(
n

∑
i=1

wi f (ti)+ f

(
M +m−

n

∑
i=1

witi

)
+

∣∣∣∣∣
n

∑
i=1

wi f (ti)− f

(
M +m−

n

∑
i=1

witi

)∣∣∣∣∣
)

� max{ f (m), f (M)},

where we have used the formula max{x,y} = x+y+|x−y|
2 , when x,y ∈ R, to obtain the

above inequality. This shows that

f

(
M +m−

n

∑
i=1

witi

)
+

∣∣∣∣∣
n

∑
i=1

wi f (ti)− f

(
M +m−

n

∑
i=1

witi

)∣∣∣∣∣
� 2max{ f (m), f (M)}−

n

∑
i=1

wi f (ti).

This provides a refinement of the result in Theorem 2.3.

3. Further properties on Q-class functions

We start this section by showing the supplemental inequality to (1.3). This simu-
lates Theorem 2.2, which we proved for quasi-convex functions.

THEOREM 3.1. Let f : J →R be a Q-class function and let t < 0 or t > 1 . Then

f ((1− t)a+ tb)� 1
1− t

f (a)+
1
t

f (b) (3.1)

provided that (1− t)a+ tb∈ J.
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Proof. In the case when t < 0, we notice that 0 <
1

1− t
< 1 and 0 <

−t
1− t

< 1.

Now (1.3) implies

f (a) = f

(
1

1− t
((1− t)a+ tb)+

( −t
1− t

)
b

)
� (1− t) f ((1− t)a+ tb)+

1− t
−t

f (b)

which yields (3.1).

In the case when t > 1, we notice that 0 <
1
t

< 1 and 0 <
t −1

t
< 1. Again, using

(1.3), we infer that

f (b) = f

(
1
t

((1− t)a+ tb)+
t−1

t
a

)
� t f ((1− t)a+ tb)+

t
t−1

f (a),

which completes the proof. �
We have seen how (2.1) refines (1.1) for convex functions and how Corollary 2.1

refines (1.2) for quasi-convex functions. We present a similar approach for Q-class
functions in the following result.

PROPOSITION 3.1. Let f : J → R be a Q-class function, a,b∈ J and let 0 < t <
1 .

(i) If 0 < t < 1/2 , then

1−2t
1− t

f ((1−2t)a+(1− t)b)+
1

1− t

(
f (a)+ f (b)− 1

2
f

(
a+b

2

))

� 1
1− t

f (a)+
1
t

f (b).

(ii) If 1/2 < t < 1 , then

2t−1
t

f (ta+(2t−1)b)+
1
t

(
f (a)+ f (b)− 1

2
f

(
a+b

2

))

� 1
1− t

f (a)+
1
t

f (b).

Proof. We compute

1
1− t

f (a)+
1
t

f (b)− 1
1− t

(
f (a)+ f (b)− 1

2
f

(
a+b

2

))

=
1−2t
1− t

(
1
t

f (b)+
1

2(1−2t)
f

(
a+b

2

))

� 1−2t
1− t

f ((1−2t)a+(1− t)b) (by (1.3))

which implies (i). The second desired inequality can be shown similarly. �
The following theorem shows the Jensen-Mercer inequality for Q-class functions.
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THEOREM 3.2. Let f : J → R be a Q-class function, let m < ti < M for i =
1,2, . . . ,n, and let w1,w2, . . . ,wn > 0 with ∑n

i=1 wi = 1 . Then

f

(
M +m−

n

∑
i=1

witi

)
� (M−m)2 ( f (M)+ f (m))

(M +m)∑n
i=1 ti/wi −Mm−∑n

i=1 t2i /wi
−

n

∑
i=1

f (ti)
wi

.

Proof. Notice that if m < t < M , then 0 < M−t
M−m , t−m

M−m < 1. Put 1− t = t−m
M−m ,

t = M−t
M−m , a = M , and b = m , in (1.3). Then

f (t) = f

(
t−m
M−m

M +
M− t
M−m

m

)

� 1
t−m
M−m

f (M)+
1

M−t
M−m

f (m)

=
M−m
t−m

f (M)+
M−m
M− t

f (m) .

(3.2)

Since m < t < M , then m < M +m− t < M . Thus, we can substitute t by M +m− t ,
in (3.2). This yields

f (M +m− t) � M−m
M− t

f (M)+
M−m
t−m

f (m) . (3.3)

Adding the two inequalities (3.2) and (3.3), we get

f (M +m− t) � (M−m)2

(t−m)(M− t)
( f (M)+ f (m))− f (t) .

Hence,

f (M +m− ti) � (M−m)2

(M +m)ti−Mm− t2i
( f (M)+ f (m))− f (ti) ,

provided that m < ti < M for i = 1,2, . . . ,n .
Multiplying this inequality with 1

wi
and adding, we have

n

∑
i=1

f (M +m− ti)
wi

�
n

∑
i=1

1
wi

(
(M−m)2 ( f (M)+ f (m))

(M +m)ti −Mm− t2i
− f (ti)

)

=
(M−m)2 ( f (M)+ f (m))

(M +m)∑n
i=1 ti/wi −Mm−∑n

i=1 t2i /wi
−

n

∑
i=1

f (ti)
wi

.

(3.4)

On the other hand, we know that [9]

f

(
n

∑
i=1

witi

)
�

n

∑
i=1

f (ti)
wi

, (3.5)
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which implies

f

(
M +m−

n

∑
i=1

witi

)
= f

(
n

∑
i=1

wi (M +m− ti)

)

�
n

∑
i=1

f (M +m− ti)
wi

.

(3.6)

Noting the two inequalities (3.4) and (3.6), we get

f

(
M +m−

n

∑
i=1

witi

)
� (M−m)2 ( f (M)+ f (m))

(M +m)∑n
i=1 ti/wi −Mm−∑n

i=1 t2i /wi
−

n

∑
i=1

f (ti)
wi

,

as desired. �

We provide a reverse for the inequality (3.5) in the following result.

PROPOSITION 3.2. Let f : J → R be a Q-class function, let m < ti < M for
i = 1,2, . . . ,n, and let w1,w2, . . . ,wn > 0 with ∑n

i=1 wi = 1 . Then for any α � 0 ,

n

∑
i=1

f (ti)
wi

� β + α f

(
n

∑
i=1

witi

)

where β = max
m<x<M

{
M−m
x−m f (M)+ M−m

M−x f (m)−α f (x)
}

.

Proof. Multiplying (3.4) by 1
wi

(i = 1,2, . . . ,n) , then adding over i from 1 to n ,
we have

n

∑
i=1

f (ti)
wi

� M−m

∑n
i=1 witi −m

f (M)+
M−m

M−∑n
i=1 witi

f (m) .

Therefore,

n

∑
i=1

f (ti)
wi

−α f

(
n

∑
i=1

witi

)

� M−m

∑n
i=1 witi−m

f (M)+
M−m

M−∑n
i=1 witi

f (m)−α f

(
n

∑
i=1

witi

)

� max
m<x<M

{
M−m
x−m

f (M)+
M−m
M− x

f (m)−α f (x)
}

.

This completes the proof. �

REMARK 3.1. Let the assumptions of Proposition 3.2 hold.
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• If we put β = 0, then
n

∑
i=1

f (ti)
wi

� α f

(
n

∑
i=1

witi

)

where α = max
m�x�M

{
1

f (x)

(
M−m
x−m f (M)+ M−m

M−x f (m)
)}

.

• If we put α = 1, then

n

∑
i=1

f (ti)
wi

� β + f

(
n

∑
i=1

witi

)

where β = max
m�x�M

{
M−m
x−m f (M)+ M−m

M−x f (m)− f (x)
}

.

It is well known that if f : [0,∞) → R is a convex function such that f (0) �
0, then f (a)+ f (b) � f (a + b). Usually, this is referred to as the super-additivity of
convex functions. Interestingly, Q-class functions satisfy the following super-additive
behavior.

THEOREM 3.3. Let f : [0,∞) → R be a Q-class function. If f (0) � 0 , then

f (a)+ f (b) � (a+b)2

ab
f (a+b)

for any a,b > 0 .

Proof. It follows from (1.3) that for any 0 < t < 1 and x ∈ [0,∞) ,

f (tx) � 1
1− t

f (0)+
1
t

f (x) � 1
t

f (x) (3.7)

where the second inequality follows from the hypothesis f (0) � 0. Utilizing (1.3) and
(3.7), we have

f (a) = f

(
a

a+b
(a+b)

)
� a+b

a
f (a+b).

Likewise,

f (b) � a+b
b

f (a+b).

Adding the two inequalities above implies

f (a)+ f (b) � (a+b)2

ab
f (a+b),

which completes the proof. �

We show a Shur-Jensen-type inequality for Q-class functions in the following.
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THEOREM 3.4. Let f : J →R be a Q-class function, let si,ti ∈ J (i = 1,2, . . . ,n) ,
and let w1,w2, . . . ,wn > 0 with ∑n

i=1 wi = 1 . If f (0) = 0 , then(
n

∑
i=1

wi f (si) si

)
n

∑
i=1

witi −
n

∑
i=1

wi f (si) s2
i �

n

∑
i=1

wi f (ti)t2i −
(

n

∑
i=1

wi f (ti)ti

)
n

∑
i=1

wisi.

Proof. If we set u = 0 and use the assumption f (0) = 0, we get from (1.4),

f (s)
(
sti − s2)� f (ti)

(
t2i − sti

)
(3.8)

for i = 1,2, . . . ,n . Multiplying (3.8) by wi (i = 1,2, . . . ,n) and adding over i from 1
to n , we infer

f (s)

(
s

n

∑
i=1

witi − s2

)
�

n

∑
i=1

wi f (ti) t2i − s
n

∑
i=1

wi f (ti)ti. (3.9)

If we apply (3.9) for the selection s = si (i = 1,2, . . . ,n) , we may write(
n

∑
i=1

witi

)
f (si)si − f (si)s2

i �
n

∑
i=1

wi f (ti)t2i −
(

n

∑
i=1

wi f (ti) ti

)
si. (3.10)

Multiplying (3.10) by wi (i = 1,2, . . . ,n) and adding over i from 1 to n , we get(
n

∑
i=1

wi f (si)si

)
n

∑
i=1

witi −
n

∑
i=1

wi f (si)s2
i �

n

∑
i=1

wi f (ti) t2i −
(

n

∑
i=1

wi f (ti) ti

)
n

∑
i=1

wisi

as desired. �

In Theorem 3.4, letting ti = si (i = 1,2, . . . ,n) , we get the following.

COROLLARY 3.1. Let f : J →R be a Q-class function, let ti ∈ J (i = 1,2, . . . ,n) ,
and let w1,w2, . . . ,wn > 0 with ∑n

i=1 wi = 1 . If f (0) = 0 , then(
n

∑
i=1

wi f (ti)ti

)
n

∑
i=1

witi �
n

∑
i=1

wi f (ti) t2i .

For the rest of our results, we present some mean-type inequalities for Q-class
functions.

THEOREM 3.5. Let f : [a,b]→R be a continuous Q-class function. If f (0) = 0 ,
then

a+b
2

b∫
a

t f (t)dt �
b∫

a

t2 f (t)dt.
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Proof. Since f is Q-class function and f (0) = 0, it fulfills the inequality

f (s)
(
st − s2)� f (t)

(
t2 − st

)
for any s, t ∈ [a,b] . Upon integration, this implies

(
b2−a2

2

)
f (s) s− (b−a) f (s) s2 �

b∫
a

t2 f (t)dt− s

b∫
a

t f (t)dt.

Integration, again, implies

(
b2−a2

2

) b∫
a

t f (t)dt− (b−a)
b∫

a

t2 f (t)dt

� (b−a)
b∫

a

t2 f (t)dt−
(

b2−a2

2

) b∫
a

t f (t)dt,

which yields

b2−a2

2(b−a)

b∫
a

t f (t)dt �
b∫

a

t2 f (t)dt

as desired. �

COROLLARY 3.2. Let f : [a,b]→R be a continuous Q-class function. If f (0) =
0 , then

1∫
0

t f (t)dt � 2

1∫
0

t2 f (t)dt.

PROPOSITION 3.3. Let f : [a,b] → R be a continuous Q-class function. Then

2
3

(
b2−a2) b∫

a

t f (t)dt � (b−a)
b∫

a

t2 f (t)dt +
b3−a3

3

b∫
a

f (t)dt.

In particular,

2

1∫
0

t f (t)dt � 3

1∫
0

t2 f (t)dt +
1∫

0

f (t)dt.

Proof. Setting s = t in (1.4), we infer that

f (u)(u− t)2 � 0,

which is equivalent to
2t f (u)u � f (u)u2 + f (u)t2.

We get the desired result by applying the same procedure as in the proof of Theorem
3.5. �
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