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QUASI-CONVEX AND Q-CLASS FUNCTIONS

HAMID REZA MORADI, SHIGERU FURUICHI AND MOHAMMAD SABABHEH

(Communicated by J. Pecari¢)

Abstract. Convex functions and their variants have played a significant role in the literature.
In this article, we investigate two important related classes, namely quasi-convex and Q-class
functions. We will show that these two classes satisfy similar but different properties as those
fulfilled by convex functions. Our discussion will include refinements of known inequalities,
super-additivity behavior, Jensen-Mercer inequality, and other related results. Among many
other results, we show that an increasing quasi-convex function f :[0,e) — R satisfies the
inequality

fla)+ f(D) (a+b
TISCRE

while a Q-class function with f(0) < 0 satisfies the super-additive inequality

) + %f(a-&-b), (a,b>0),

(a+b)?

f@+fb) < 4

fla+b), (ab>0)

similar to convex functions.

1. Introduction

Let J be a real interval. More than a century ago, Jensen [7] introduced the notion
of convex functions as those functions f : J C R — R such that

f((A=t)at+ib) <(1—1)f(a)+1f (D) (L.1)

for all a,b € J and all 0 <7 < 1. A convex function defined on a closed interval is
bounded above by the maximum of its values at the endpoints, but the converse needs
not to be true. That is, a function bounded by the maximum of its values at the endpoints
need not be convex. This fact motivates researchers to define quasi-convex functions
(see, for example, [13]) as those functions f:J C R — R satisfying

f((1=t)a+1b) <max{f(a),f (D)}, (1.2)

for all a,b € J and 0 <t < 1. Clearly, any convex function is a quasi-convex func-
tion. On the other hand, there exist quasi-convex functions which are not convex. For
example, the function f(x) = Inx for x € (0,e0) is not convex, yet it is quasi-convex.
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It is obvious that a monotone function (increasing or decreasing) is necessarily quasi-
convex.

Many properties of convex functions have equivalent properties for quasi-convex
functions. We refer the reader to the excellent review on quasi-convex functions in [5],
where an informative list is provided.

Notice that quasi-convex functions belong to another class of functions called Q-
class. A function f:J — R is said to be Q-class if forany 0 < < 1

F((1=0)a+ib) < T f @+ 1 () (13

for all a,b € J. Godunova and Levin introduced this concept in [4].
Let . be a subset of R with at least three elements. A function f:.” — R is
called a Schur function if

[t =s)(t=u)+ f(s)(s=0) (s —u) + f(u) (u=1) (u=5) =20 (14)

for all s,r,u € .. For f(x) =x", (x€[0,00),r>0), (1.4) is just the well-known
inequality due to Schur [18]. In [4], Godunova and Levin demonstrated that the class
of Schur functions and the Q-class functions overlap. Several properties of classical
Q-class functions can be found in [12].

It is uncomplicated to notice that every non-negative monotone function or convex
function is of Q-class. Thus functions of class O emerge as an extension of these two
important classes of function.

One of the most celebrated inequalities for convex functions is Jensen-Mercer’s
inequality [8]. This inequality is expressed as follows: Let f: [m,M] — R be a convex
function and let wy,wy,...,w, >0 with ¥' ;, w; = 1. Then

f(M—i—m—iwit,-) Sf(M)—l—f(m)—iw,-f(t,-); m<t<M, i=1,2,...,n.
i=1 i=1

Finding further inequalities for convex functions with possible applications has
been an emerging trend in mathematical inequalities. See [3] for example.

This article presents several new inequalities for quasi-convex and Q-class func-
tions. These new inequalities will match the corresponding known inequalities for con-
vex functions.

2. Quasi-convex functions
We begin with the following refinement of (1.2).

LEMMA 2.1. Let f:J — R be a quasi-convex function. Then for all a,b € J and

0<r<1,
max{ @ (52) b o<i<y
F(1=Da+b) < s 1 .
maX{f(b%f( ! )} Lere
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Proof. We consider the case 0 <7 < 1/2 . In this case, we have

F((1—t)a+1b) :f((l—Zr)a+2z"2ib) <max{f(a),f<“;’b)},

where we have used (1.2) to obtain the inequality, noting that 0 < 27 < 1.
For the case 1/2 <t < 1, we can write

Fa=narm) = (@-1o+ =203 ) <max{r0).(“57) }.

This completes the proof. [

REMARK 2.1. Since f is quasi-convex on [a,b] in Lemma 2.1, we have f (%52)
< max{f(a),f(b)}. Therefore the inequality in Lemma 2.1 gives an improvement of
the definition of the quasi-convex function on [a,b] in (1.2).

At this point, we should remark that Lemma 2.1 is the quasi-version of the in-
equality

f((l—t)a+tb)<(1—t)f(a)+tf(b)—2r<w—f(a;b», @)

valid for the convex function f:J — R, where a,b€J, 0 <t <1 and r = min{z,1 —
t}. This inequality was proved in [2]. Later, in [10], further discussion was made
on the general case. In [14, 15], a more elaborated discussion with some geometric
comprehension was made.

Now we use Lemma 2.1 to present the following upper bounds for quasi-convex
functions.

COROLLARY 2.1. Let f:J — R be a quasi-convex function and let a,b € J.

(i) IFO<t<1/2, then

ra=na+my<3r@+ 30+ (|r@-r(42) 4+ 50 @-re1).

(ii) If1/2 <1 <1,

ra-na+m<3re e gr@+3 (1o - (G2) [+ 50 @-ren).

Proof. First of all, notice that

x+y+ -yl

. xyeR.
2 %Y

max {x,y} =
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If 0<r<1/2,Lemma2.1 implies

f((1—=t)a+1tb) gmax{f(a)7f<a42—b)}

r@+r(450) +fra-r (52)])
f(a)+maX{f(a)7f(b)}+‘f(@—f(a;rb)')
r@+ 30+ (|r@-r(52)|+50@-re),

where the first inequality follows from Lemma 2.1 and the second inequality is obtained
from (1.2) by setting t = 1/2 . Therefore,

-lklw N = N~

N

N N

ra-na+my<3r@+ 30+ ([r@-r(S2) [+ s @-ren).
This proves (i). If 1/2 << 1, then
r(a=na+m <mxf o). (52) ]

(r+s (52) +|re-r(452)
(f(b)+max{f(a)7f(b)}+‘f(b)—f<a;b>'>

s+ 3r@+ 5 ([ro)-r (52) |+ 50 @-r01).

4;|w N = N =

N

Consequently,

ra-nariv <30+ @+ ([rer-r(52) |+ sr@-ron).

which completes the proof. [

We notice that a convex function f :J — R satisfies the mid-convexity condition
f (“%”) < M It is interesting that quasi-convex functions satisfy the following.

THEOREM 2.1. Let f:[0,00) — R be a quasi-convex function and let a,b > 0.
Then

o) 2o eon-o(252) - (22))
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Proof. Noting that rx = (1 —) x 0 +tx, Lemma 2.1 implies

max {£(0),7(5)}: 0<i<3

X

max{r0.r (3} Serer

First assume that a < b (i.e., a/(a+b) <1/2 and 1/2 < b/(a+b) ). Then (2.2)

implies
r@=1 (55 @) <max{r0.1(452) }.

£(b) :f<abj-(a+b)) <max{f(a+b)7f<a;b)}.

f(tx) < (2.2)

and

In summary,

r@ <mac{r0).7(“57)}

2
£ ) <maX{f(a+b)7f<a;rb)} |

a<b =

Thus,
fla)+f(b)

SmaX{f(O),f<a;b>}+maX{f(a+b),f<aJ2rb)}
—1(452) +5 (st er o+ r@in s (40)] +|ro-r (432))).

which is equivalent to the desired inequality for the case a < b.
If b < a, interchanging a and b in the first case completes the proof. [J

We notice that a concave function f : [0,00) — R satisfies the inequality M <

f (“%”) . It is interesting that a monotone quasi-convex function follows a similar be-

havior, as we state in the following remark.

REMARK 2.2. From Theorem 2.1, we find the following.

(i) If a quasi-convex function f : [0,00) — R is increasing, then we have

f(@)+ f(b) <f<“+b> +%f(a+b), (a,b > 0).

2 2

(ii) If a quasi-convex function f : [0,00) — R is decreasing, then we have

fla)+ f(b)
2

<f<a;b>+f(0)—%f(a+b)7 (ab>0).
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For a convex function f:J — R, itis well known thatif # > 0 or < —1, then
f((A+1)a—1tb) = (1+1)f(a) —tf(b),a,be J,

provided that (1+7)a—tb € J. This inequality received some attention in the literature
due to its applications in other fields, like operator theory. The reader is referred to
[6, 11] for further related readings. In the following result, we present the quasi-version
of this inequality.

THEOREM 2.2. Let f:J — R be a quasi-convex function. Then for all a,b € J,

max {f ((1+t)a—1b),f(b)};
max {f ((14+1)a—1b),f(a)};

>0
<-1

b

min {f (a)..f (b)} < {

t
t
provided that (1+t)a—tb e J.

Proof. Notice that

x+y—|x—y|

. x,y€R.
2 b4

min{x,y} =
If > 0, we have
min{f(a),f(b)} < f(a)
:f<$((1+t)a—tb)+%+tb>
<max{f ((1+1)a—1b),f(b)}

where the second inequality is obtained from (1.2). If t < —1, we get
min{f (a),f (b)} < f(b)
1 L+1
=f (—7 (1+t)a—1b)+ Ta)

<max{f((1+1)a—1b),f(a)},
which completes the proof. [

REMARK 2.3. A quasi-concave function is a function whose negative is quasi-
convex. Equivalently a function f is quasi-concave if

(1 =t)a+1b) = min{f(a),f(b)}.

Applying the same method as in the proof of Lemma 2.1, we get that

min{ 7@ (52) b 0<i<g

min{f(b),f<a;rb)}; %<z<1’

f((L—=t)a+1b) >
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which can be reduced to

oo min{£(0).7(3)}: ?stsé
min{f(}é%f(%)}; ssi<l

Now, utilizing the same strategy used in the proof of Theorem 2.1, we infer that

f(a)>min{f(0)7f<a;b>}

ol ()

and
mm{f (a+b), (a—;b)}
b<a = b .
®zmin{r04(457)
Accordingly,
f(a)+f(b)

>1(452) +5 (r@r 04 0= |rarn—r (52| ro-r (432)]).

We end this section by presenting Jensen-Mercer’s inequality for quasi-convex
functions.

THEOREM 2.3. Let f: [m,M] — R be a quasi-convex function, let t; € [m,M)|
(i=1,2,...,n) and let wi,wa,...,wy be positive scalars such that ¥}, w; = 1. Then

f(M—l—m—iw,-t,-) 2max{f (m),f (M)} — Ew,ft,

i=1
Proof. The inequality (1.2) is equivalent to
1
f(I=na+1b) < S (fla)+f ) +]f(a) = fB)]), (2.3)

where a,b € [m,M] and 0 <7< 1. If weput 1 -1 = == ¢ = M:qu, a=M, and
b=m,in (2.3), we get

S

[ (@) <5 (f (M) +f (m) +|f (M) = £ (m)]) 2.4)

forany m<#; <M (i=1,2,...,n). Multiplying inequality (2.4) by w; (i=1,2,...,n)
and adding, we get

Ewtf tt <

| =

(f (M) +f (m)+[f (M) = f (m)]). (2.5)

NI'—‘
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On the other hand, m <#; <M implies m < M+m—t; <M. Thus, m < M +m—
Siywiti <M for i=1,2,...,n. From (2.4), we conclude that

f (M-i—m—iwiti) <
i—1

=

(f (M) +f (m) +|f (M) = f (m)]). (2.6)

N =

Adding (2.5) and (2.6) implies

f(M—Fm—iWifi) +

i=1

wif (6:) < f (M) + f (m) +|f (M) = f (m)],

n
i=1

which completes the proof. [

REMARK 2.4. It follows from (2.5) and (2.6)

max{iwif(fi)»f <M+m—iwifi> } < 5 (F M)+ f(m)+[f (M) = f(m)]).
i=1

N =

i=1

This implies

% (iwif(ti)+f (M“‘m_iw"t") +
=1 =l
< max{f(m), f(M)},

i=1

iwif(ti) —f <M+m— iwﬂ,) D
=1 j

where we have used the formula max{x,y} = W

above inequality. This shows that

f(M-l—m—iwiti) +

i=1

, when x,y € R, to obtain the

iwif(ti) —f (M-f'm_ iwitz) ‘
i=1

i=1
n
< 2max{f(m), f(M)} = > wif (1).
i=1
This provides a refinement of the result in Theorem 2.3.

3. Further properties on Q-class functions

We start this section by showing the supplemental inequality to (1.3). This simu-
lates Theorem 2.2, which we proved for quasi-convex functions.

THEOREM 3.1. Let f:J — R be a Q-class function andlet t <0 ort > 1. Then
1 1
f((l—t)a+tb)>:f(a)+;f(b) (3.1)

provided that (1 —t)a+1tb e J.
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1 —t
Proof. In the case when ¢ < 0, we notice that 0 < T—; <1land 0< T—; <1.

Now (1.3) implies
1 _
@) =1 (5 (@ =nasm)+
which yields (3.1).
1 r—1
In the case when ¢ > 1, we notice that 0 < " <land 0< - < 1. Again, using
(1.3), we infer that

4 )b) <(I=1)f((1=t)a+1tb)+ l_—_ttf(b)

1—1t¢

t—1

10) =1 (1 =0asm)+ a) <or(@-nasim) - )

which completes the proof. [

We have seen how (2.1) refines (1.1) for convex functions and how Corollary 2.1
refines (1.2) for quasi-convex functions. We present a similar approach for Q-class
functions in the following result.

PROPOSITION 3.1. Let f:J — R bea Q-class function, a,b € J andlet 0 <t <

(i) If 0 <t < 1/2, then

1—2t
1—1t¢

F((=20)at(1-0p)+ 1 <f(a)+f(b)_%f (a—;b>)

1 1
< I——If(a) + ;f(b)

(ii) If 1/2 <t < 1, then
2t —1

fta+ (2t — 1)b)+; (f(a)—i—f(b)—%f(a;b))

< —f@)+ £ (D).

1—t¢ t

Proof. We compute

@ ) - 1 (o= 30 (452))

— 2 (o s (7))

> ll_j’f((l “2)a+(1-1)b) (by (1.3))

which implies (i). The second desired inequality can be shown similarly. [J

The following theorem shows the Jensen-Mercer inequality for Q-class functions.
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THEOREM 3.2. Let f:J — R be a Q-class function, let m < t; <M for i =
1,2,...,n, and let wy,wa,...,wy >0 with ¥, w; = 1. Then

f<M+m—iwit"> S ( () (7 40) + 1 (m) - /()

M+m)SL ti/wi —Mm—3i 2w

S owi
Proof. Notice that if m <t < M, then 0 < Alf[/[__m,ﬂt,[__’:'n <l1.Putl—t= Aﬁl__’fn,
t=2-L g=M,and b=m,in (1.3). Then
t—m M—t
t)= M
£ f(M_m +M_mm)
1 1
< = S (M) + 5= 1 (m) (3.2)
M—m M—m
M—m M —

M)+ S (m).

Since m <t <M, then m < M +m—t < M. Thus, we can substitute t by M +m —¢
in (3.2). This yields

M—m M—m
M —1) < M . 33
M=) < TR )+ S f ) (33)
Adding the two inequalities (3.2) and (3.3), we get

f(M+m—t)<%(NM)JJ(’"))—J‘(I)-

Hence,

PO+ 1) < e (7 (0) 47 ) = 0.

provided that m <#; <M for i=1,2
Multiplying this inequality with Wi and adding, we have

if(M—Fm—t,‘)

-1 wi

L1 (M=—m)*(f (M) +f(m)) ,
Z{E( (M+m)t; — Mm—1? _f(tl)> (3-4)
_ (M —m)* (f (M) + £ (m)) <
(M+m)Si ti/wi —Mm =3 7 /wi 5

On the other hand, we know that [9]

f)

wi

, 3.5)
i—1 Wi
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which implies

i=1 =1
I f(M+ m— li)

<Y .

=

f (M—I—m— iwm) =f (iwi (M—i—m—t,-))
(3.6)

Noting the two inequalities (3.4) and (3.6), we get

>< M=mP(fF M) +F0m) & f(0)
1

)

fIM+m— wit; - m
2 MA+m) ti/wi —Mm =372 /w; & wi

i=1

as desired. [

We provide a reverse for the inequality (3.5) in the following result.

PROPOSITION 3.2. Let f:J — R be a Q-class function, let m < t; <M for
i=1,2,...,n, andlet wy,wa,...,w, >0 with Y, w; = 1. Then for any o >0,

f(ti) < ﬁ +(Xf (iwm)
i=1

1 Wi

-

1

where p= max {{ZRf (M) + 52 (m) = of (x)}.

Proof. Multiplying (3.4) by wi, (i=1,2,...,n), then adding over i from 1 to n,
we have
AU M—m M—m
2 f( l) S ( ) +—
-1 Wi S witi —m M=3" wit;

[ (m)

Therefore,

> Lo (2 wm)
t i=1

i=1
i=1

< n n
i witi—m M =3 witi
M—m M—m
< M)+ —— - .
\mglxa}M{x—mf( >+M—x (m) f(x)}

This completes the proof. [l

REMARK 3.1. Let the assumptions of Proposition 3.2 hold.
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e If we put B =0, then

i f @) < af( y Wﬂi)
i—1

1 Wi i

where oo = max {% (Af:,;ff(M)-F%iZ'f(m))}-

m<xs<m

o If we put o =1, then

-

f(ti) < ﬁ +f (iwm)
i=1

1 Wi

_ M—m M—m _
where § = ,nax {Mom (M) + M2 f (m) — £ (x) }
It is well known that if f :[0,e0) — R is a convex function such that f(0) <
0, then f(a)+ f(b) < f(a+b). Usually, this is referred to as the super-additivity of
convex functions. Interestingly, Q-class functions satisfy the following super-additive
behavior.

THEOREM 3.3. Let f:[0,00) — R be a Q-class function. If f(0) <0, then

(a+b)*
ab

fla)+f(b) < fla+D)

forany a,b > 0.

Proof. Tt follows from (1.3) that for any 0 <7 < 1 and x € [0, o),

1 1 1

fx) < :f(o) + ;f(x) < ;f(x) (3.7

where the second inequality follows from the hypothesis f(0) < 0. Utilizing (1.3) and
(3.7), we have

r@=r(;5

(a+b)) <$f(a+b).

Likewise,

Adding the two inequalities above implies

(a+b)*

@+ fb) <

fla+b),

which completes the proof. [

We show a Shur-Jensen-type inequality for Q-class functions in the following.
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THEOREM 3.4. Let f:J — R bea Q-class function, let s;,t; € J (i=1,2,...,n),
and let wi,wa,...,w, >0 with ¥ w;=1.If f(0) =0, then

(iwif Si >2w,t, Zw,f Si) iw,f (t:)t (iw,f(t,-)t,-) iwis,-.
i=1 i=1 i=1

Proof. 1If we set u =0 and use the assumption f(0) =0, we get from (1.4),
f(s) (sti— s2) < f (1) (tl2 — st;) (3.8)

for i=1,2,...,n. Multiplying (3.8) by w; (i =1,2,...,n) and adding over i from 1
to n, we infer

s) (siw,-t,-—s) Ew,f 1)t sz, f (). (3.9)
i=1

If we apply (3.9) for the selection s =s; (i =1,2,...,n), we may write

(iwitz) S (si)si—[f(si)s7 < iwif(ti)tiz_ (iwif(fi)fz) i (3.10)
i=1 i=1 i=1

Multiplying (3.10) by w; (i = 1,2,...,n) and adding over i from 1 to n, we get

n

(iwif si) >2wt, Zw, f(si) zwlf 1)t (iwif(ti)ti> iWiSi
-1 =1 =1

as desired. [

In Theorem 3.4, letting z; = s; (i=1,2,...,n), we get the following.

COROLLARY 3.1. Let f:J — R bea Q-class function, let t; € J (i=1,2,...,n),
and let wi,wy,...,wp, >0 with 3!, w; =1.If f(0) =0, then

(i Wif(h‘)h’) iwiti < iwif (1)1}
i=1 i=1 i=1

For the rest of our results, we present some mean-type inequalities for Q-class
functions.

THEOREM 3.5. Let f:[a,b] — R be a continuous Q-class function. If f(0) =0,
then

b
a;b tf(t)dtg/tzf(t)dt.
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Proof. Since f is Q-class function and f(0) = 0, it fulfills the inequality
f(s) (st — 52) < f(@) (t2 — st)

for any s,7 € [a,b]. Upon integration, this implies

b2 a2 b b
( > )f(S)S—(b—a)f(S)s2</t2f(t)dt—s/zf(z)d;,

Integration, again, implies

(bzgaz) /btf(t)dt—(b—a)/btzf(t)dt

which yields

as desired. [

COROLLARY 3.2. Let f:[a,b] — R be a continuous Q-class function. If f(0) =
0, then

PROPOSITION 3.3. Let f: [a,b] — R be a continuous Q-class function. Then

b

b b 3_
%aﬂ—a%/}faﬁag(b—a)/ﬂf@yﬁ+b 3 (/f@ﬁh

a a

In particular,
1

1 1
2/tf(t)dt<3/t2f(t)dt+0/f(t)dt.

0 0
Proof. Setting s =t in (1.4), we infer that

f ) (u—1)?>0,
which is equivalent to
20f (w)u < f (u)u? + f (u) 1.
We get the desired result by applying the same procedure as in the proof of Theorem
35. O
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