QUASI-CONVEX AND Q-CLASS FUNCTIONS

Hamid ReZa Moradi, Shigeru Furuichi and Mohammad Sababheh

(Communicated by J. Pečarić)

Abstract

Convex functions and their variants have played a significant role in the literature. In this article, we investigate two important related classes, namely quasi-convex and Q-class functions. We will show that these two classes satisfy similar but different properties as those fulfilled by convex functions. Our discussion will include refinements of known inequalities, super-additivity behavior, Jensen-Mercer inequality, and other related results. Among many other results, we show that an increasing quasi-convex function $f:[0, \infty) \rightarrow \mathbb{R}$ satisfies the inequality

$$
\frac{f(a)+f(b)}{2} \leqslant f\left(\frac{a+b}{2}\right)+\frac{1}{2} f(a+b), \quad(a, b>0),
$$

while a Q-class function with $f(0) \leqslant 0$ satisfies the super-additive inequality

$$
f(a)+f(b) \leqslant \frac{(a+b)^{2}}{a b} f(a+b), \quad(a, b>0)
$$

similar to convex functions.

1. Introduction

Let J be a real interval. More than a century ago, Jensen [7] introduced the notion of convex functions as those functions $f: J \subseteq \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
f((1-t) a+t b) \leqslant(1-t) f(a)+t f(b) \tag{1.1}
\end{equation*}
$$

for all $a, b \in J$ and all $0 \leqslant t \leqslant 1$. A convex function defined on a closed interval is bounded above by the maximum of its values at the endpoints, but the converse needs not to be true. That is, a function bounded by the maximum of its values at the endpoints need not be convex. This fact motivates researchers to define quasi-convex functions (see, for example, [13]) as those functions $f: J \subseteq \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
\begin{equation*}
f((1-t) a+t b) \leqslant \max \{f(a), f(b)\} \tag{1.2}
\end{equation*}
$$

for all $a, b \in J$ and $0 \leqslant t \leqslant 1$. Clearly, any convex function is a quasi-convex function. On the other hand, there exist quasi-convex functions which are not convex. For example, the function $f(x)=\ln x$ for $x \in(0, \infty)$ is not convex, yet it is quasi-convex.

[^0]It is obvious that a monotone function (increasing or decreasing) is necessarily quasiconvex.

Many properties of convex functions have equivalent properties for quasi-convex functions. We refer the reader to the excellent review on quasi-convex functions in [5], where an informative list is provided.

Notice that quasi-convex functions belong to another class of functions called Q class. A function $f: J \rightarrow \mathbb{R}$ is said to be Q-class if for any $0<t<1$

$$
\begin{equation*}
f((1-t) a+t b) \leqslant \frac{1}{1-t} f(a)+\frac{1}{t} f(b) \tag{1.3}
\end{equation*}
$$

for all $a, b \in J$. Godunova and Levin introduced this concept in [4].
Let \mathscr{S} be a subset of \mathbb{R} with at least three elements. A function $f: \mathscr{S} \rightarrow \mathbb{R}$ is called a Schur function if

$$
\begin{equation*}
f(t)(t-s)(t-u)+f(s)(s-t)(s-u)+f(u)(u-t)(u-s) \geqslant 0 \tag{1.4}
\end{equation*}
$$

for all $s, t, u \in \mathscr{S}$. For $f(x)=x^{r},(x \in[0, \infty), r>0)$, (1.4) is just the well-known inequality due to Schur [18]. In [4], Godunova and Levin demonstrated that the class of Schur functions and the Q-class functions overlap. Several properties of classical Q-class functions can be found in [12].

It is uncomplicated to notice that every non-negative monotone function or convex function is of Q-class. Thus functions of class Q emerge as an extension of these two important classes of function.

One of the most celebrated inequalities for convex functions is Jensen-Mercer's inequality [8]. This inequality is expressed as follows: Let $f:[m, M] \rightarrow \mathbb{R}$ be a convex function and let $w_{1}, w_{2}, \ldots, w_{n} \geqslant 0$ with $\sum_{i=1}^{n} w_{i}=1$. Then

$$
f\left(M+m-\sum_{i=1}^{n} w_{i} t_{i}\right) \leqslant f(M)+f(m)-\sum_{i=1}^{n} w_{i} f\left(t_{i}\right) ; m \leqslant t_{i} \leqslant M, \quad i=1,2, \ldots, n
$$

Finding further inequalities for convex functions with possible applications has been an emerging trend in mathematical inequalities. See [3] for example.

This article presents several new inequalities for quasi-convex and Q-class functions. These new inequalities will match the corresponding known inequalities for convex functions.

2. Quasi-convex functions

We begin with the following refinement of (1.2).
LEMMA 2.1. Let $f: J \rightarrow \mathbb{R}$ be a quasi-convex function. Then for all $a, b \in J$ and $0 \leqslant t \leqslant 1$,

$$
f((1-t) a+t b) \leqslant \begin{cases}\max \left\{f(a), f\left(\frac{a+b}{2}\right)\right\} ; & 0 \leqslant t \leqslant \frac{1}{2} \\ \max \left\{f(b), f\left(\frac{a+b}{2}\right)\right\} ; & \frac{1}{2} \leqslant t \leqslant 1\end{cases}
$$

Proof. We consider the case $0 \leqslant t \leqslant 1 / 2$. In this case, we have

$$
f((1-t) a+t b)=f\left((1-2 t) a+2 t \frac{a+b}{2}\right) \leqslant \max \left\{f(a), f\left(\frac{a+b}{2}\right)\right\}
$$

where we have used (1.2) to obtain the inequality, noting that $0 \leqslant 2 t \leqslant 1$.
For the case $1 / 2 \leqslant t \leqslant 1$, we can write

$$
f((1-t) a+t b)=f\left((2 t-1) b+(2-2 t) \frac{a+b}{2}\right) \leqslant \max \left\{f(b), f\left(\frac{a+b}{2}\right)\right\} .
$$

This completes the proof.
REMARK 2.1. Since f is quasi-convex on $[a, b]$ in Lemma 2.1, we have $f\left(\frac{a+b}{2}\right)$ $\leqslant \max \{f(a), f(b)\}$. Therefore the inequality in Lemma 2.1 gives an improvement of the definition of the quasi-convex function on $[a, b]$ in (1.2).

At this point, we should remark that Lemma 2.1 is the quasi-version of the inequality

$$
\begin{equation*}
f((1-t) a+t b) \leqslant(1-t) f(a)+t f(b)-2 r\left(\frac{f(a)+f(b)}{2}-f\left(\frac{a+b}{2}\right)\right) \tag{2.1}
\end{equation*}
$$

valid for the convex function $f: J \rightarrow \mathbb{R}$, where $a, b \in J, 0 \leqslant t \leqslant 1$ and $r=\min \{t, 1-$ $t\}$. This inequality was proved in [2]. Later, in [10], further discussion was made on the general case. In [14, 15], a more elaborated discussion with some geometric comprehension was made.

Now we use Lemma 2.1 to present the following upper bounds for quasi-convex functions.

Corollary 2.1. Let $f: J \rightarrow \mathbb{R}$ be a quasi-convex function and let $a, b \in J$.
(i) If $0 \leqslant t \leqslant 1 / 2$, then

$$
f((1-t) a+t b) \leqslant \frac{3}{4} f(a)+\frac{1}{4} f(b)+\frac{1}{2}\left(\left|f(a)-f\left(\frac{a+b}{2}\right)\right|+\frac{1}{2}|f(a)-f(b)|\right) .
$$

(ii) If $1 / 2 \leqslant t \leqslant 1$,

$$
f((1-t) a+t b) \leqslant \frac{3}{4} f(b)+\frac{1}{4} f(a)+\frac{1}{2}\left(\left|f(b)-f\left(\frac{a+b}{2}\right)\right|+\frac{1}{2}|f(a)-f(b)|\right) .
$$

Proof. First of all, notice that

$$
\max \{x, y\}=\frac{x+y+|x-y|}{2} ; \quad x, y \in \mathbb{R}
$$

If $0 \leqslant t \leqslant 1 / 2$, Lemma 2.1 implies

$$
\begin{aligned}
f((1-t) a+t b) & \leqslant \max \left\{f(a), f\left(\frac{a+b}{2}\right)\right\} \\
& =\frac{1}{2}\left(f(a)+f\left(\frac{a+b}{2}\right)+\left|f(a)-f\left(\frac{a+b}{2}\right)\right|\right) \\
& \leqslant \frac{1}{2}\left(f(a)+\max \{f(a), f(b)\}+\left|f(a)-f\left(\frac{a+b}{2}\right)\right|\right) \\
& =\frac{3}{4} f(a)+\frac{1}{4} f(b)+\frac{1}{2}\left(\left|f(a)-f\left(\frac{a+b}{2}\right)\right|+\frac{1}{2}|f(a)-f(b)|\right)
\end{aligned}
$$

where the first inequality follows from Lemma 2.1 and the second inequality is obtained from (1.2) by setting $t=1 / 2$. Therefore,

$$
f((1-t) a+t b) \leqslant \frac{3}{4} f(a)+\frac{1}{4} f(b)+\frac{1}{2}\left(\left|f(a)-f\left(\frac{a+b}{2}\right)\right|+\frac{1}{2}|f(a)-f(b)|\right) .
$$

This proves (i). If $1 / 2 \leqslant t \leqslant 1$, then

$$
\begin{aligned}
f((1-t) a+t b) & \leqslant \max \left\{f(b), f\left(\frac{a+b}{2}\right)\right\} \\
& =\frac{1}{2}\left(f(b)+f\left(\frac{a+b}{2}\right)+\left|f(b)-f\left(\frac{a+b}{2}\right)\right|\right) \\
& \leqslant \frac{1}{2}\left(f(b)+\max \{f(a), f(b)\}+\left|f(b)-f\left(\frac{a+b}{2}\right)\right|\right) \\
& =\frac{3}{4} f(b)+\frac{1}{4} f(a)+\frac{1}{2}\left(\left|f(b)-f\left(\frac{a+b}{2}\right)\right|+\frac{1}{2}|f(a)-f(b)|\right)
\end{aligned}
$$

Consequently,

$$
f((1-t) a+t b) \leqslant \frac{3}{4} f(b)+\frac{1}{4} f(a)+\frac{1}{2}\left(\left|f(b)-f\left(\frac{a+b}{2}\right)\right|+\frac{1}{2}|f(a)-f(b)|\right)
$$

which completes the proof.
We notice that a convex function $f: J \rightarrow \mathbb{R}$ satisfies the mid-convexity condition $f\left(\frac{a+b}{2}\right) \leqslant \frac{f(a)+f(b)}{2}$. It is interesting that quasi-convex functions satisfy the following.

THEOREM 2.1. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a quasi-convex function and let $a, b>0$. Then

$$
\begin{aligned}
& \frac{f(a)+f(b)}{2} \\
& \leqslant f\left(\frac{a+b}{2}\right)+\frac{1}{2}\left(f(0)+\left|f(a+b)-f\left(\frac{a+b}{2}\right)\right|+\left|f(0)-f\left(\frac{a+b}{2}\right)\right|\right)
\end{aligned}
$$

Proof. Noting that $t x=(1-t) \times 0+t x$, Lemma 2.1 implies

$$
f(t x) \leqslant \begin{cases}\max \left\{f(0), f\left(\frac{x}{2}\right)\right\} ; & 0 \leqslant t \leqslant \frac{1}{2} \tag{2.2}\\ \max \left\{f(x), f\left(\frac{x}{2}\right)\right\} ; & \frac{1}{2} \leqslant t \leqslant 1\end{cases}
$$

First assume that $a \leqslant b$ (i.e., $a /(a+b) \leqslant 1 / 2$ and $1 / 2 \leqslant b /(a+b)$). Then (2.2) implies

$$
f(a)=f\left(\frac{a}{a+b} \cdot(a+b)\right) \leqslant \max \left\{f(0), f\left(\frac{a+b}{2}\right)\right\}
$$

and

$$
f(b)=f\left(\frac{b}{a+b} \cdot(a+b)\right) \leqslant \max \left\{f(a+b), f\left(\frac{a+b}{2}\right)\right\} .
$$

In summary,

$$
a \leqslant b \Rightarrow\left\{\begin{array}{l}
f(a) \leqslant \max \left\{f(0), f\left(\frac{a+b}{2}\right)\right\} \\
f(b) \leqslant \max \left\{f(a+b), f\left(\frac{a+b}{2}\right)\right\}
\end{array}\right.
$$

Thus,

$$
\begin{aligned}
& f(a)+f(b) \\
& \leqslant \max \left\{f(0), f\left(\frac{a+b}{2}\right)\right\}+\max \left\{f(a+b), f\left(\frac{a+b}{2}\right)\right\} \\
& =f\left(\frac{a+b}{2}\right)+\frac{1}{2}\left(f(a+b)+f(0)+\left|f(a+b)-f\left(\frac{a+b}{2}\right)\right|+\left|f(0)-f\left(\frac{a+b}{2}\right)\right|\right)
\end{aligned}
$$

which is equivalent to the desired inequality for the case $a \leqslant b$.
If $b \leqslant a$, interchanging a and b in the first case completes the proof.
We notice that a concave function $f:[0, \infty) \rightarrow \mathbb{R}$ satisfies the inequality $\frac{f(a)+f(b)}{2} \leqslant$ $f\left(\frac{a+b}{2}\right)$. It is interesting that a monotone quasi-convex function follows a similar behavior, as we state in the following remark.

Remark 2.2. From Theorem 2.1, we find the following.
(i) If a quasi-convex function $f:[0, \infty) \rightarrow \mathbb{R}$ is increasing, then we have

$$
\frac{f(a)+f(b)}{2} \leqslant f\left(\frac{a+b}{2}\right)+\frac{1}{2} f(a+b), \quad(a, b>0)
$$

(ii) If a quasi-convex function $f:[0, \infty) \rightarrow \mathbb{R}$ is decreasing, then we have

$$
\frac{f(a)+f(b)}{2} \leqslant f\left(\frac{a+b}{2}\right)+f(0)-\frac{1}{2} f(a+b), \quad(a, b>0)
$$

For a convex function $f: J \rightarrow \mathbb{R}$, it is well known that if $t \geqslant 0$ or $t \leqslant-1$, then

$$
f((1+t) a-t b) \geqslant(1+t) f(a)-t f(b), a, b \in J
$$

provided that $(1+t) a-t b \in J$. This inequality received some attention in the literature due to its applications in other fields, like operator theory. The reader is referred to $[6,11]$ for further related readings. In the following result, we present the quasi-version of this inequality.

THEOREM 2.2. Let $f: J \rightarrow \mathbb{R}$ be a quasi-convex function. Then for all $a, b \in J$,

$$
\min \{f(a), f(b)\} \leqslant \begin{cases}\max \{f((1+t) a-t b), f(b)\} ; & t \geqslant 0 \\ \max \{f((1+t) a-t b), f(a)\} ; & t \leqslant-1\end{cases}
$$

provided that $(1+t) a-t b \in J$.

Proof. Notice that

$$
\min \{x, y\}=\frac{x+y-|x-y|}{2} ; x, y \in \mathbb{R}
$$

If $t \geqslant 0$, we have

$$
\begin{aligned}
\min \{f(a), f(b)\} & \leqslant f(a) \\
& =f\left(\frac{1}{1+t}((1+t) a-t b)+\frac{t}{1+t} b\right) \\
& \leqslant \max \{f((1+t) a-t b), f(b)\}
\end{aligned}
$$

where the second inequality is obtained from (1.2). If $t \leqslant-1$, we get

$$
\begin{aligned}
\min \{f(a), f(b)\} & \leqslant f(b) \\
& =f\left(-\frac{1}{t}((1+t) a-t b)+\frac{1+t}{t} a\right) \\
& \leqslant \max \{f((1+t) a-t b), f(a)\},
\end{aligned}
$$

which completes the proof.
REMARK 2.3. A quasi-concave function is a function whose negative is quasiconvex. Equivalently a function f is quasi-concave if

$$
f((1-t) a+t b) \geqslant \min \{f(a), f(b)\}
$$

Applying the same method as in the proof of Lemma 2.1, we get that

$$
f((1-t) a+t b) \geqslant \begin{cases}\min \left\{f(a), f\left(\frac{a+b}{2}\right)\right\} ; & 0 \leqslant t \leqslant \frac{1}{2} \\ \min \left\{f(b), f\left(\frac{a+b}{2}\right)\right\} ; & \frac{1}{2} \leqslant t \leqslant 1\end{cases}
$$

which can be reduced to

$$
f(t x) \geqslant \begin{cases}\min \left\{f(0), f\left(\frac{x}{2}\right)\right\} ; & 0 \leqslant t \leqslant \frac{1}{2} \\ \min \left\{f(x), f\left(\frac{x}{2}\right)\right\} ; & \frac{1}{2} \leqslant t \leqslant 1\end{cases}
$$

Now, utilizing the same strategy used in the proof of Theorem 2.1, we infer that

$$
a \leqslant b \Rightarrow\left\{\begin{array}{l}
f(a) \geqslant \min \left\{f(0), f\left(\frac{a+b}{2}\right)\right\} \\
f(b) \geqslant \min \left\{f(a+b), f\left(\frac{a+b}{2}\right)\right\}
\end{array}\right.
$$

and

$$
b \leqslant a \Rightarrow\left\{\begin{array}{l}
f(a) \geqslant \min \left\{f(a+b), f\left(\frac{a+b}{2}\right)\right\} \\
f(b) \geqslant \min \left\{f(0), f\left(\frac{a+b}{2}\right)\right\}
\end{array}\right.
$$

Accordingly,

$$
\begin{aligned}
& f(a)+f(b) \\
& \geqslant f\left(\frac{a+b}{2}\right)+\frac{1}{2}\left(f(a+b)+f(0)-\left|f(a+b)-f\left(\frac{a+b}{2}\right)\right|-\left|f(0)-f\left(\frac{a+b}{2}\right)\right|\right) .
\end{aligned}
$$

We end this section by presenting Jensen-Mercer's inequality for quasi-convex functions.

THEOREM 2.3. Let $f:[m, M] \rightarrow \mathbb{R}$ be a quasi-convex function, let $t_{i} \in[m, M]$ $(i=1,2, \ldots, n)$ and let $w_{1}, w_{2}, \ldots, w_{n}$ be positive scalars such that $\sum_{i=1}^{n} w_{i}=1$. Then

$$
f\left(M+m-\sum_{i=1}^{n} w_{i} t_{i}\right) \leqslant 2 \max \{f(m), f(M)\}-\sum_{i=1}^{n} w_{i} f\left(t_{i}\right)
$$

Proof. The inequality (1.2) is equivalent to

$$
\begin{equation*}
f((1-t) a+t b) \leqslant \frac{1}{2}(f(a)+f(b)+|f(a)-f(b)|) \tag{2.3}
\end{equation*}
$$

where $a, b \in[m, M]$ and $0 \leqslant t \leqslant 1$. If we put $1-t=\frac{t_{i}-m}{M-m}, t=\frac{M-t_{i}}{M-m}, a=M$, and $b=m$, in (2.3), we get

$$
\begin{equation*}
f\left(t_{i}\right) \leqslant \frac{1}{2}(f(M)+f(m)+|f(M)-f(m)|) \tag{2.4}
\end{equation*}
$$

for any $m \leqslant t_{i} \leqslant M(i=1,2, \ldots, n)$. Multiplying inequality (2.4) by $w_{i}(i=1,2, \ldots, n)$ and adding, we get

$$
\begin{equation*}
\sum_{i=1}^{n} w_{i} f\left(t_{i}\right) \leqslant \frac{1}{2}(f(M)+f(m)+|f(M)-f(m)|) \tag{2.5}
\end{equation*}
$$

On the other hand, $m \leqslant t_{i} \leqslant M$ implies $m \leqslant M+m-t_{i} \leqslant M$. Thus, $m \leqslant M+m-$ $\sum_{i=1}^{n} w_{i} t_{i} \leqslant M$ for $i=1,2, \ldots, n$. From (2.4), we conclude that

$$
\begin{equation*}
f\left(M+m-\sum_{i=1}^{n} w_{i} t_{i}\right) \leqslant \frac{1}{2}(f(M)+f(m)+|f(M)-f(m)|) \tag{2.6}
\end{equation*}
$$

Adding (2.5) and (2.6) implies

$$
f\left(M+m-\sum_{i=1}^{n} w_{i} t_{i}\right)+\sum_{i=1}^{n} w_{i} f\left(t_{i}\right) \leqslant f(M)+f(m)+|f(M)-f(m)|
$$

which completes the proof.
REMARK 2.4. It follows from (2.5) and (2.6)

$$
\max \left\{\sum_{i=1}^{n} w_{i} f\left(t_{i}\right), f\left(M+m-\sum_{i=1}^{n} w_{i} t_{i}\right)\right\} \leqslant \frac{1}{2}(f(M)+f(m)+|f(M)-f(m)|)
$$

This implies

$$
\begin{aligned}
& \frac{1}{2}\left(\sum_{i=1}^{n} w_{i} f\left(t_{i}\right)+f\left(M+m-\sum_{i=1}^{n} w_{i} t_{i}\right)+\left|\sum_{i=1}^{n} w_{i} f\left(t_{i}\right)-f\left(M+m-\sum_{i=1}^{n} w_{i} t_{i}\right)\right|\right) \\
& \quad \leqslant \max \{f(m), f(M)\}
\end{aligned}
$$

where we have used the formula $\max \{x, y\}=\frac{x+y+|x-y|}{2}$, when $x, y \in \mathbb{R}$, to obtain the above inequality. This shows that

$$
\begin{aligned}
f\left(M+m-\sum_{i=1}^{n} w_{i} t_{i}\right) & +\left|\sum_{i=1}^{n} w_{i} f\left(t_{i}\right)-f\left(M+m-\sum_{i=1}^{n} w_{i} t_{i}\right)\right| \\
& \leqslant 2 \max \{f(m), f(M)\}-\sum_{i=1}^{n} w_{i} f\left(t_{i}\right)
\end{aligned}
$$

This provides a refinement of the result in Theorem 2.3.

3. Further properties on Q-class functions

We start this section by showing the supplemental inequality to (1.3). This simulates Theorem 2.2, which we proved for quasi-convex functions.

THEOREM 3.1. Let $f: J \rightarrow \mathbb{R}$ be a Q-classfunction and let $t<0$ or $t>1$. Then

$$
\begin{equation*}
f((1-t) a+t b) \geqslant \frac{1}{1-t} f(a)+\frac{1}{t} f(b) \tag{3.1}
\end{equation*}
$$

provided that $(1-t) a+t b \in J$.

Proof. In the case when $t<0$, we notice that $0<\frac{1}{1-t}<1$ and $0<\frac{-t}{1-t}<1$. Now (1.3) implies

$$
f(a)=f\left(\frac{1}{1-t}((1-t) a+t b)+\left(\frac{-t}{1-t}\right) b\right) \leqslant(1-t) f((1-t) a+t b)+\frac{1-t}{-t} f(b)
$$

which yields (3.1).
In the case when $t>1$, we notice that $0<\frac{1}{t}<1$ and $0<\frac{t-1}{t}<1$. Again, using (1.3), we infer that

$$
f(b)=f\left(\frac{1}{t}((1-t) a+t b)+\frac{t-1}{t} a\right) \leqslant t f((1-t) a+t b)+\frac{t}{t-1} f(a)
$$

which completes the proof.
We have seen how (2.1) refines (1.1) for convex functions and how Corollary 2.1 refines (1.2) for quasi-convex functions. We present a similar approach for Q-class functions in the following result.

Proposition 3.1. Let $f: J \rightarrow \mathbb{R}$ be a Q-class function, $a, b \in J$ and let $0<t<$ 1.
(i) If $0<t<1 / 2$, then

$$
\begin{aligned}
& \frac{1-2 t}{1-t} f((1-2 t) a+(1-t) b)+\frac{1}{1-t}\left(f(a)+f(b)-\frac{1}{2} f\left(\frac{a+b}{2}\right)\right) \\
& \leqslant \frac{1}{1-t} f(a)+\frac{1}{t} f(b)
\end{aligned}
$$

(ii) If $1 / 2<t<1$, then

$$
\begin{aligned}
& \frac{2 t-1}{t} f(t a+(2 t-1) b)+\frac{1}{t}\left(f(a)+f(b)-\frac{1}{2} f\left(\frac{a+b}{2}\right)\right) \\
& \leqslant \frac{1}{1-t} f(a)+\frac{1}{t} f(b)
\end{aligned}
$$

Proof. We compute

$$
\begin{aligned}
& \frac{1}{1-t} f(a)+\frac{1}{t} f(b)-\frac{1}{1-t}\left(f(a)+f(b)-\frac{1}{2} f\left(\frac{a+b}{2}\right)\right) \\
& =\frac{1-2 t}{1-t}\left(\frac{1}{t} f(b)+\frac{1}{2(1-2 t)} f\left(\frac{a+b}{2}\right)\right) \\
& \geqslant \frac{1-2 t}{1-t} f((1-2 t) a+(1-t) b) \quad(\text { by }(1.3))
\end{aligned}
$$

which implies (i). The second desired inequality can be shown similarly.
The following theorem shows the Jensen-Mercer inequality for Q-class functions.

THEOREM 3.2. Let $f: J \rightarrow \mathbb{R}$ be a Q-class function, let $m<t_{i}<M$ for $i=$ $1,2, \ldots, n$, and let $w_{1}, w_{2}, \ldots, w_{n}>0$ with $\sum_{i=1}^{n} w_{i}=1$. Then

$$
f\left(M+m-\sum_{i=1}^{n} w_{i} t_{i}\right) \leqslant \frac{(M-m)^{2}(f(M)+f(m))}{(M+m) \sum_{i=1}^{n} t_{i} / w_{i}-M m-\sum_{i=1}^{n} t_{i}^{2} / w_{i}}-\sum_{i=1}^{n} \frac{f\left(t_{i}\right)}{w_{i}}
$$

Proof. Notice that if $m<t<M$, then $0<\frac{M-t}{M-m}, \frac{t-m}{M-m}<1$. Put $1-t=\frac{t-m}{M-m}$, $t=\frac{M-t}{M-m}, a=M$, and $b=m$, in (1.3). Then

$$
\begin{align*}
f(t) & =f\left(\frac{t-m}{M-m} M+\frac{M-t}{M-m} m\right) \\
& \leqslant \frac{1}{\frac{t-m}{M-m}} f(M)+\frac{1}{\frac{M-t}{M-m}} f(m) \tag{3.2}\\
& =\frac{M-m}{t-m} f(M)+\frac{M-m}{M-t} f(m)
\end{align*}
$$

Since $m<t<M$, then $m<M+m-t<M$. Thus, we can substitute t by $M+m-t$, in (3.2). This yields

$$
\begin{equation*}
f(M+m-t) \leqslant \frac{M-m}{M-t} f(M)+\frac{M-m}{t-m} f(m) \tag{3.3}
\end{equation*}
$$

Adding the two inequalities (3.2) and (3.3), we get

$$
f(M+m-t) \leqslant \frac{(M-m)^{2}}{(t-m)(M-t)}(f(M)+f(m))-f(t)
$$

Hence,

$$
f\left(M+m-t_{i}\right) \leqslant \frac{(M-m)^{2}}{(M+m) t_{i}-M m-t_{i}^{2}}(f(M)+f(m))-f\left(t_{i}\right)
$$

provided that $m<t_{i}<M$ for $i=1,2, \ldots, n$.
Multiplying this inequality with $\frac{1}{w_{i}}$ and adding, we have

$$
\begin{align*}
& \sum_{i=1}^{n} \frac{f\left(M+m-t_{i}\right)}{w_{i}} \\
& \leqslant \sum_{i=1}^{n} \frac{1}{w_{i}}\left(\frac{(M-m)^{2}(f(M)+f(m))}{(M+m) t_{i}-M m-t_{i}^{2}}-f\left(t_{i}\right)\right) \tag{3.4}\\
& =\frac{(M-m)^{2}(f(M)+f(m))}{(M+m) \sum_{i=1}^{n} t_{i} / w_{i}-M m-\sum_{i=1}^{n} t_{i}^{2} / w_{i}}-\sum_{i=1}^{n} \frac{f\left(t_{i}\right)}{w_{i}} .
\end{align*}
$$

On the other hand, we know that [9]

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} w_{i} t_{i}\right) \leqslant \sum_{i=1}^{n} \frac{f\left(t_{i}\right)}{w_{i}} \tag{3.5}
\end{equation*}
$$

which implies

$$
\begin{align*}
f\left(M+m-\sum_{i=1}^{n} w_{i} t_{i}\right) & =f\left(\sum_{i=1}^{n} w_{i}\left(M+m-t_{i}\right)\right) \tag{3.6}\\
& \leqslant \sum_{i=1}^{n} \frac{f\left(M+m-t_{i}\right)}{w_{i}}
\end{align*}
$$

Noting the two inequalities (3.4) and (3.6), we get

$$
f\left(M+m-\sum_{i=1}^{n} w_{i} t_{i}\right) \leqslant \frac{(M-m)^{2}(f(M)+f(m))}{(M+m) \sum_{i=1}^{n} t_{i} / w_{i}-M m-\sum_{i=1}^{n} t_{i}^{2} / w_{i}}-\sum_{i=1}^{n} \frac{f\left(t_{i}\right)}{w_{i}}
$$

as desired.
We provide a reverse for the inequality (3.5) in the following result.

Proposition 3.2. Let $f: J \rightarrow \mathbb{R}$ be a Q-class function, let $m<t_{i}<M$ for $i=1,2, \ldots, n$, and let $w_{1}, w_{2}, \ldots, w_{n}>0$ with $\sum_{i=1}^{n} w_{i}=1$. Then for any $\alpha \geqslant 0$,

$$
\sum_{i=1}^{n} \frac{f\left(t_{i}\right)}{w_{i}} \leqslant \beta+\alpha f\left(\sum_{i=1}^{n} w_{i} t_{i}\right)
$$

where $\beta=\max _{m<x<M}\left\{\frac{M-m}{x-m} f(M)+\frac{M-m}{M-x} f(m)-\alpha f(x)\right\}$.

Proof. Multiplying (3.4) by $\frac{1}{w_{i}}(i=1,2, \ldots, n)$, then adding over i from 1 to n, we have

$$
\sum_{i=1}^{n} \frac{f\left(t_{i}\right)}{w_{i}} \leqslant \frac{M-m}{\sum_{i=1}^{n} w_{i} t_{i}-m} f(M)+\frac{M-m}{M-\sum_{i=1}^{n} w_{i} t_{i}} f(m)
$$

Therefore,

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{f\left(t_{i}\right)}{w_{i}}-\alpha f\left(\sum_{i=1}^{n} w_{i} t_{i}\right) \\
& \leqslant \frac{M-m}{\sum_{i=1}^{n} w_{i} t_{i}-m} f(M)+\frac{M-m}{M-\sum_{i=1}^{n} w_{i} t_{i}} f(m)-\alpha f\left(\sum_{i=1}^{n} w_{i} t_{i}\right) \\
& \leqslant \max _{m<x<M}\left\{\frac{M-m}{x-m} f(M)+\frac{M-m}{M-x} f(m)-\alpha f(x)\right\}
\end{aligned}
$$

This completes the proof.

REMARK 3.1. Let the assumptions of Proposition 3.2 hold.

- If we put $\beta=0$, then

$$
\sum_{i=1}^{n} \frac{f\left(t_{i}\right)}{w_{i}} \leqslant \alpha f\left(\sum_{i=1}^{n} w_{i} t_{i}\right)
$$

where $\alpha=\max _{m \leqslant x \leqslant M}\left\{\frac{1}{f(x)}\left(\frac{M-m}{x-m} f(M)+\frac{M-m}{M-x} f(m)\right)\right\}$.

- If we put $\alpha=1$, then

$$
\sum_{i=1}^{n} \frac{f\left(t_{i}\right)}{w_{i}} \leqslant \beta+f\left(\sum_{i=1}^{n} w_{i} t_{i}\right)
$$

where $\beta=\max _{m \leqslant x \leqslant M}\left\{\frac{M-m}{x-m} f(M)+\frac{M-m}{M-x} f(m)-f(x)\right\}$.
It is well known that if $f:[0, \infty) \rightarrow \mathbb{R}$ is a convex function such that $f(0) \leqslant$ 0 , then $f(a)+f(b) \leqslant f(a+b)$. Usually, this is referred to as the super-additivity of convex functions. Interestingly, Q-class functions satisfy the following super-additive behavior.

THEOREM 3.3. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a Q-class function. If $f(0) \leqslant 0$, then

$$
f(a)+f(b) \leqslant \frac{(a+b)^{2}}{a b} f(a+b)
$$

for any $a, b>0$.

Proof. It follows from (1.3) that for any $0<t<1$ and $x \in[0, \infty)$,

$$
\begin{equation*}
f(t x) \leqslant \frac{1}{1-t} f(0)+\frac{1}{t} f(x) \leqslant \frac{1}{t} f(x) \tag{3.7}
\end{equation*}
$$

where the second inequality follows from the hypothesis $f(0) \leqslant 0$. Utilizing (1.3) and (3.7), we have

$$
f(a)=f\left(\frac{a}{a+b}(a+b)\right) \leqslant \frac{a+b}{a} f(a+b)
$$

Likewise,

$$
f(b) \leqslant \frac{a+b}{b} f(a+b)
$$

Adding the two inequalities above implies

$$
f(a)+f(b) \leqslant \frac{(a+b)^{2}}{a b} f(a+b)
$$

which completes the proof.
We show a Shur-Jensen-type inequality for Q-class functions in the following.

THEOREM 3.4. Let $f: J \rightarrow \mathbb{R}$ be a Q-class function, let $s_{i}, t_{i} \in J(i=1,2, \ldots, n)$, and let $w_{1}, w_{2}, \ldots, w_{n}>0$ with $\sum_{i=1}^{n} w_{i}=1$. If $f(0)=0$, then

$$
\left(\sum_{i=1}^{n} w_{i} f\left(s_{i}\right) s_{i}\right) \sum_{i=1}^{n} w_{i} t_{i}-\sum_{i=1}^{n} w_{i} f\left(s_{i}\right) s_{i}^{2} \leqslant \sum_{i=1}^{n} w_{i} f\left(t_{i}\right) t_{i}^{2}-\left(\sum_{i=1}^{n} w_{i} f\left(t_{i}\right) t_{i}\right) \sum_{i=1}^{n} w_{i} s_{i}
$$

Proof. If we set $u=0$ and use the assumption $f(0)=0$, we get from (1.4),

$$
\begin{equation*}
f(s)\left(s t_{i}-s^{2}\right) \leqslant f\left(t_{i}\right)\left(t_{i}^{2}-s t_{i}\right) \tag{3.8}
\end{equation*}
$$

for $i=1,2, \ldots, n$. Multiplying (3.8) by $w_{i}(i=1,2, \ldots, n)$ and adding over i from 1 to n, we infer

$$
\begin{equation*}
f(s)\left(s \sum_{i=1}^{n} w_{i} t_{i}-s^{2}\right) \leqslant \sum_{i=1}^{n} w_{i} f\left(t_{i}\right) t_{i}^{2}-s \sum_{i=1}^{n} w_{i} f\left(t_{i}\right) t_{i} \tag{3.9}
\end{equation*}
$$

If we apply (3.9) for the selection $s=s_{i}(i=1,2, \ldots, n)$, we may write

$$
\begin{equation*}
\left(\sum_{i=1}^{n} w_{i} t_{i}\right) f\left(s_{i}\right) s_{i}-f\left(s_{i}\right) s_{i}^{2} \leqslant \sum_{i=1}^{n} w_{i} f\left(t_{i}\right) t_{i}^{2}-\left(\sum_{i=1}^{n} w_{i} f\left(t_{i}\right) t_{i}\right) s_{i} \tag{3.10}
\end{equation*}
$$

Multiplying (3.10) by $w_{i}(i=1,2, \ldots, n)$ and adding over i from 1 to n, we get

$$
\left(\sum_{i=1}^{n} w_{i} f\left(s_{i}\right) s_{i}\right) \sum_{i=1}^{n} w_{i} t_{i}-\sum_{i=1}^{n} w_{i} f\left(s_{i}\right) s_{i}^{2} \leqslant \sum_{i=1}^{n} w_{i} f\left(t_{i}\right) t_{i}^{2}-\left(\sum_{i=1}^{n} w_{i} f\left(t_{i}\right) t_{i}\right) \sum_{i=1}^{n} w_{i} s_{i}
$$

as desired.
In Theorem 3.4, letting $t_{i}=s_{i}(i=1,2, \ldots, n)$, we get the following.
Corollary 3.1. Let $f: J \rightarrow \mathbb{R}$ be a Q-class function, let $t_{i} \in J(i=1,2, \ldots, n)$, and let $w_{1}, w_{2}, \ldots, w_{n}>0$ with $\sum_{i=1}^{n} w_{i}=1$. If $f(0)=0$, then

$$
\left(\sum_{i=1}^{n} w_{i} f\left(t_{i}\right) t_{i}\right) \sum_{i=1}^{n} w_{i} t_{i} \leqslant \sum_{i=1}^{n} w_{i} f\left(t_{i}\right) t_{i}^{2} .
$$

For the rest of our results, we present some mean-type inequalities for Q-class functions.

THEOREM 3.5. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous Q-class function. If $f(0)=0$, then

$$
\frac{a+b}{2} \int_{a}^{b} t f(t) d t \leqslant \int_{a}^{b} t^{2} f(t) d t
$$

Proof. Since f is Q-class function and $f(0)=0$, it fulfills the inequality

$$
f(s)\left(s t-s^{2}\right) \leqslant f(t)\left(t^{2}-s t\right)
$$

for any $s, t \in[a, b]$. Upon integration, this implies

$$
\left(\frac{b^{2}-a^{2}}{2}\right) f(s) s-(b-a) f(s) s^{2} \leqslant \int_{a}^{b} t^{2} f(t) d t-s \int_{a}^{b} t f(t) d t
$$

Integration, again, implies

$$
\begin{aligned}
& \left(\frac{b^{2}-a^{2}}{2}\right) \int_{a}^{b} t f(t) d t-(b-a) \int_{a}^{b} t^{2} f(t) d t \\
\leqslant & (b-a) \int_{a}^{b} t^{2} f(t) d t-\left(\frac{b^{2}-a^{2}}{2}\right) \int_{a}^{b} t f(t) d t
\end{aligned}
$$

which yields

$$
\frac{b^{2}-a^{2}}{2(b-a)} \int_{a}^{b} t f(t) d t \leqslant \int_{a}^{b} t^{2} f(t) d t
$$

as desired.
Corollary 3.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous Q-class function. If $f(0)=$ 0 , then

$$
\int_{0}^{1} t f(t) d t \leqslant 2 \int_{0}^{1} t^{2} f(t) d t
$$

Proposition 3.3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous Q-class function. Then

$$
\frac{2}{3}\left(b^{2}-a^{2}\right) \int_{a}^{b} t f(t) d t \leqslant(b-a) \int_{a}^{b} t^{2} f(t) d t+\frac{b^{3}-a^{3}}{3} \int_{a}^{b} f(t) d t
$$

In particular,

$$
2 \int_{0}^{1} t f(t) d t \leqslant 3 \int_{0}^{1} t^{2} f(t) d t+\int_{0}^{1} f(t) d t
$$

Proof. Setting $s=t$ in (1.4), we infer that

$$
f(u)(u-t)^{2} \geqslant 0
$$

which is equivalent to

$$
2 t f(u) u \leqslant f(u) u^{2}+f(u) t^{2}
$$

We get the desired result by applying the same procedure as in the proof of Theorem 3.5.

Declarations

Availability of data and materials. Not applicable.

Competing interests. The authors declare that they have no competing interests.

Funding. This research is supported by a grant (JSPS KAKENHI, Grant Number: 21 K 03341) awarded to the author, S. Furuichi.

Authors' contributions. Authors declare that they have contributed equally to this paper. All authors have read and approved this version.

REFERENCES

[1] S. S. Dragomir, C. E. M. Pearce, Quasi-convex functions and Hadamard's inequality, Bull. Aust. Math. Soc., 57 (1998), 377-385.
[2] S. S. Dragomir, J. E. Pečarić, and L. E. Persson, Properties of some functionals related to Jensen's inequality, Acta Math. Hungar., 70 (1996), 129-143.
[3] S. Furuichi, H. R. Moradi, Advances in mathematical inequalities, De Gruyter, 2020.
[4] E. K. Godunova, V. I. Levin, Inequalities for functions of a broad class that contains convex monotone and some other forms of functions, Numerical Math. and Math. Physics, (in Russian) (1985), 138-142.
[5] H. J. Greenberg, W. P. Pierskalla, A review of quasi-convex functions, Oper. Res., 19 (7) (1971), 1553-1570.
[6] I. H. GÜmÜş, H. R. Moradi, and M. Sababheh, Further subadditive matrix inequalities, Math. Inequal. Appl., 23 (3) (2020), 1127-1134.
[7] J. L. W. V. Jensen, Sur les fonctions convexes et les inéqalitiés entre les valeurs moyennes, Acta Math., 30 (1906), 175-193.
[8] A. McD. Mercer, A variant of Jensen's inequality, J. Inequal. Pure Appl. Math., 4 (2) (2003), Article 73.
[9] D. S. Mitrinović, J. E. PečARić, Note on a class of functions of Godunova and Levin, C. R. Math. Rep. Acad. Sci. Canada, 12 (1990), 33-36.
[10] F. C. Mitroi, About the precision in Jensen-Steffensen inequality, Ann. Univ. Craiova, 37 (4) (2010), 73-84.
[11] H. R. Moradi, S. Furuichi, and M. Sababheh, Some operator inequalities via convexity, Linear Multilinear Algebra, 70 (22) (2022), 7740-7752.
[12] M. S. Moslehian, M. Kian, Jensen type inequalities for Q-class functions, Bull. Aust. Math. Soc., 85 (2012), 128-142.
[13] A. W. Roberts, D. E. Varberg, Convex functions, Academic Press, New York, 1973.
[14] M. SABABHEH, Improved Jensen's inequality, Math. Ineq. Appl., 20 (2) (2017), 389-403.
[15] M. SababHEH, Means refinements via convexity, Mediterr. J. Math., 14, 125 (2017), https://doi.org/10.1007/s00009-017-0924-8.
[16] M. Sababheh, H. R. Moradi, and S. Furuichi, Integrals refining convex inequalities, Bull. Malays. Math. Sci. Soc., 43 (2020), 2817-2833, https://doi.org/10.1007/s40840-019-00839-0.
[17] M. Sababheh, H. R. Moradi, Radical convex functions, Mediterr. J. Math., 18, 137 (2021), https://doi.org/10.1007/s00009-021-01784-8.
[18] G. N. Watson, Schur's inequality, Math. Gaz., 39 (1955), 207-208.

Hamid Reza Moradi
Department of Mathematics
Mashhad Branch, Islamic Azad University Mashhad, Iran
e-mail: hrmoradi@mshdiau.ac.ir
Shigeru Furuichi
Department of Information Science
College of Humanities and Sciences, Nihon University
Setagaya-ku, Tokyo, Japan
e-mail: furuichi.shigeru@nihon-u.ac.jp
Mohammad Sababheh
Department of basic sciences
Princess Sumaya University for Technology
Amman, Jordan
e-mail: sababheh@yahoo.com

[^0]: Mathematics subject classification (2020): Primary 26A51, 39B62; Secondary 26D15, 26D07.
 Keywords and phrases: Quasi-convex, Q-class function, Schur function, Jensen inequality, JensenMercer inequality.

