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INEQUALITY FOR THE VARIANCE OF AN ASYMMETRIC LOSS
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(Communicated by M. Krnić)

Abstract. We assume that the forecast error follows a probability distribution which is symmetric
and monotonically non-increasing on non-negative real numbers, and if there is a mismatch
between observed and predicted value, then we suffer a loss. Under the assumptions, we solve a
minimization problem with an asymmetric loss function. In addition, we give an inequality for
the variance of the loss.

1. Introduction

Let ŷ be a predicted value of an observed value y . In this paper, we make the
assumptions (I) and (II):

(I) The prediction error z := ŷ− y is the realized value of a random variable Z ,
whose probability density function f (z) satisfies f (x) = f (−x) for x ∈ R and
f (x) � f (y) for 0 � x � y .

(II) Let k1 , k2 ∈ R>0 . If there is a mismatch between y and ŷ , then we suffer a loss

L(z) :=

{
k1z, z � 0,

−k2z, z < 0.

Under the assumptions (I) and (II), we solve the minimization problem for the expected
value of L(Z + c) :

C = argmin
c
{E[L(Z + c)]}.

In addition, we give the following theorem.

THEOREM 1. We have

V[L(Z +C)] � V[L(Z)],

where equality holds only when C = 0 ; that is, when k1 = k2 .

Theorem 1 is obtained by the following lemma.
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LEMMA 2. Suppose that a probability density function f (t) is monotonically non-
increasing on R�0 and satisfies

∫ ∞
0 f (t)dt = 1

2 . Then, for any x � 0 , we have

α(x) := 4
∫ x

0
f (t)dt

∫ ∞

x
t f (t)dt− x

2
+2x

(∫ x

0
f (t)dt

)2

� 0.

If f (t) is strictly decreasing, then α(x) > 0 holds for x > 0 . Also, α(x) = 0 holds
for x � 0 if and only if f (t) equals to the probability density function of a continuous
uniform distribution on R�0 .

These results are a generalization of the results of [5]. The paper [5] made the
assumptions (I’) and (II):

(I’) The prediction error z := ŷ− y is the realized value of a random variable Z ,
whose probability density function is a generalized Gaussian distribution func-
tion (see, e.g., [1], [2], and [3]) with mean zero

f (z) :=
1

2abΓ(a)
exp

(
−

∣∣∣ z
b

∣∣∣ 1
a
)

,

where Γ(a) is the gamma function and a,b > 0.

Assumption (I) is weaker than (I’). Thus, we assume a more general situation than
in [5]. In [5], under the assumptions (I’) and (II), the minimization problem for the
expected value of L(Z + c) is solved and the inequality V[L(Z +C)] � V[L(Z)] is
obtained. This inequality is derived from the following inequality: For a,x > 0 , we
have

xaγ(a,x)2 − xaΓ(a)2 +2γ(a,x)Γ(2a,x) > 0, (1)

where

Γ(a) :=
∫ +∞

0
ta−1e−tdt, Γ(a,x) :=

∫ +∞

x
ta−1e−t dt, γ(a,x) :=

∫ x

0
ta−1e−tdt.

Inequality (1) is the special case of Lemma 2 that f (z) is a generalized Gaussian dis-
tribution function.

Assumptions (I) and (II) have a background in the procurement from an electricity
market. Suppose that we purchase electricity ŷ from an market, based on a forecast
of the electricity y that will be needed. This situation makes the assumption (I). If
ŷ− y > 0, then there is a waste of procurement fee proportional to ŷ− y . If y− ŷ > 0,
then we are charged with a penalty proportional to y− ŷ . This situation makes the
assumption (II). For details, see [4].
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2. Proof of results

For c∈R , let sgn(c) := 1(c � 0) ; −1(c < 0) . From
∫ ∞
0 f (z)dz = 1

2 , the expected
value of L(Z + c) and L(Z + c)2 are as follows: For any c ∈ R ,

E[L(Z + c)] = (k1 + k2)
∫ ∞

|c|
z f (z)dz+

c(k1− k2)
2

+ |c|(k1 + k2)
∫ |c|

0
f (z)dz,

E[L(Z + c)2] = (k2
1 + k2

2)
∫ ∞

0
z2 f (z)dz+ sgn(c)(k2

1 − k2
2)

∫ |c|

0
z2 f (z)dz

+2c(k2
1− k2

2)
∫ ∞

|c|
z f (z)dz+

c2(k2
1 + k2

2)
2

+ c|c|(k2
1 − k2

2)
∫ |c|

0
f (z)dz.

Therefore, the expected value and the variance of L(Z) are as follows:

E[L(Z)] = (k1 + k2)
∫ ∞

0
z f (z)dz,

V[L(Z)] = (k2
1 + k2

2)
∫ ∞

0
z2 f (z)dz− (k1 + k2)2

(∫ ∞

0
z f (z)dz

)2

.

We determine the value c that gives the minimum value of E[L(Z + c)] . From

d
dc

E[L(Z + c)] =
k1− k2

2
+ sgn(c)(k1 + k2)

∫ |c|

0
f (z)dz,

d2

dc2 E[L(Z + c)] = (k1 + k2) f (c) � 0,

we can see that E[L(Z +c)] has the minimum value at the zero point of d
dc E[L(Z +c)] .

The zero point C satisfies the following equation:

k1− k2

2
+ sgn(C)(k1 + k2)

∫ |C|

0
f (z)dz = 0.

From this, C = 0 if and only if k1 = k2 . Also, we have

E[L(Z +C)] = (k1 + k2)
∫ ∞

|C|
z f (z)dz,

V[L(Z +C)] = (k2
1 + k2

2)
∫ ∞

0
z2 f (z)dz−2(k1 + k2)2

∫ |C|

0
f (z)dz

∫ |C|

0
z2 f (z)dz

−4|C|(k1 + k2)2
∫ |C|

0
f (z)dz

∫ ∞

|C|
z f (z)dz+

C2(k1 + k2)2

4

− (k1 + k2)2
(∫ ∞

|C|
z f (z)dz

)2

−C2(k1 + k2)2
(∫ |C|

0
f (z)dz

)2

.
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Let

β (x) := −
(∫ ∞

0
z f (z)dz

)2

+2
∫ x

0
f (z)dz

∫ x

0
z2 f (z)dz+4x

∫ x

0
f (z)dz

∫ ∞

x
z f (z)dz

− x2

4
+

(∫ ∞

x
z f (z)dz

)2

+ x2
(∫ x

0
f (z)dz

)2

.

Then, V[L(Z)]−V[L(Z +C)] = (k1 + k2)2β (C) holds. From β (0) = 0 and

d
dx

β (x) = 4
∫ x

0
f (z)dz

∫ ∞

x
z f (z)dz− x

2
+2x

(∫ x

0
f (z)dz

)2

+2 f (x)
∫ x

0
z2 f (z)dz+2x f (x)

∫ ∞

x
z f (z)dz,

if Lemma 2 is proved, then Theorem 1 is immediately obtained. We prove Lemma 2.

Proof of Lemma 2 . Take any x � 0. If f (x) = 0, then α(x) = 0− x
2 +2x · 1

4 = 0.
Below, we consider the case that f (x) > 0. Let γ :=

∫ x
0 f (t)dt . For a function g = g(t)

satisfying f (x) � g(t) � 0 for x � t and γ +
∫ ∞
x g(t)dt = 1

2 , we define a functional S(g)
by

S(g) :=
∫ ∞

x
tg(t)dt.

Regarding S(g) as a solid with the bottom surface area
∫ ∞
x g(t)dt = 1

2 − γ (constant),
we find that if we make g(t) as large as possible within the range where t is small, then
S(g) become smaller. Thus, the function g that minimizes S(g) is g(t) = u(t) defined
by

u(t) :=

{
f (x), x � t � x+ 1

f (x)

(
1
2 − γ

)
,

0, otherwise.

From

S(u) =
∫ ∞

x
tu(t)dt = x

(
1
2
− γ

)
+

1
2 f (x)

(
γ2 − γ +

1
4

)

and γ � x f (x) , we have

α(x) � 4γS(u)− x
2

+2xγ2

= 4γ
{

x

(
1
2
− γ

)
+

1
2 f (x)

(
γ2− γ +

1
4

)}
− x

2
+2xγ2

� 2xγ −4xγ2 +2x

(
γ2− γ +

1
4

)
− x

2
+2xγ2

= 0.
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Also, from this, if f (t) is strictly decreasing, then α(x) > 0 holds for x > 0. In addi-
tion, f (t) is the function of the form

f (t) =

{
1
2a , 0 � t � a,

0, t > a

if and only if α(x) = 0 holds for x � 0. �
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