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Abstract. In this paper, we discuss the isoperimetric-type inequalities for the closed convex curve
in the Euclidean plane R

2 . The main result of this paper is that we establish a family of para-
metric inequalities. By adjusting the parameters, we can derive some well-known isoperimetric
inequalities and some new improved isoperimetric-type inequalities. Furthermore, we investi-
gate the stability property of the main inequality.

1. Introduction and main results

The classical isoperimetric inequality in the Euclidean plane R
2 is one of the

oldest and the most important geometric inequalities. It states that:

THEOREM 1. (classical isoperimetric inequality) If γ is a simple colsed curve of
length L, enclosing a region of area A, then one gets

L2 −4πA � 0, (1.1)

and the equality holds if and only if γ is a circle.

This famous fact was known to the ancient Greeks, but the first mathematical proof
was only given in the 19th century by Steiner [1]. Since then, there have been many new
proofs, sharpened forms, generalizations, and applicationsof this famous inequality.

Recently, in [2], there had established a reverse isoperimetric inequality for convex
curves, which states that

THEOREM 2. (Pan-Zhang) If γ is a closed strictly convex curve in the plane R
2

with length L and enclosing an area A, then

L2 � 4π(A+ |Ã|), (1.2)

where Ã denotes the oriented area of the domain enclosed by the locus of curvature
centers of γ , and the equality holds if and only if γ is a circle.
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THEOREM 3. (Gao) [3] If γ is a closed strictly convex curve in the plane R
2 with

length L and enclosing an area A, then

L2 � 4πA+ π |Ã|, (1.3)

where Ã denotes the oriented area of the domain enclosed by the locus of curvature
centers of γ , and the equality holds if and only if γ is a circle.

THEOREM 4. (Li-Gao) [4] Let γ be a smooth regular positively oriented and
closed strictly convex curve in the Euclidean plane R

2 with length L and enclosing an
area A, then ∫ 2π

0
ρ(θ )2dθ � L2

π
−2A+ |Ã|, (1.4)

where ρ is the radius of curvature and θ is the angle between x-axis and the outward
normal vector at the corresponding point p , and the equality in (1.4) holds if and only
if γ is a circle.

THEOREM 5. (Bottema) For the convex domain D in the E
2 , if the boundary ∂D

of D is an oval curve, the following reverse Bonnesen style inequality (cf. [5], [7])

L2 −4πA � π2(ρM −ρm)2, (1.5)

where ρM and ρm are the maximum and minimum of the continuous curvature radius
ρ of ∂D, respectively. The equality in (1.5) holds if and only if ρM = ρm , that is, ∂D
is a circle.

Pleijel had an improvement of the Bottema’s result as follows (cf. [6], [7]):

L2 −4πA � π(4−π)(ρM−ρm)2, (1.6)

where the equality holds if and only if ∂D is a circle.

In [4], a family of parametric inequalities have been established, but there exist
some unnecessary geomertric quantities. So, in this paper, we establish an improved
inequality and gain sharp version of (1.5) and (1.6). We firstly prove the following
interesting inequality:

THEOREM 6. Let γ be a smooth regular positively oriented and closed strictly
convex curve in the Euclidean plane R

2 with length L and enclosing an area A. If γ
is not circle, then

(ρM −ρm)2 >
L2

π2 , (1.7)

where ρM and ρm are the maximum and minimum of the continuous curvature radius
ρ of γ , respectively.

Then we consider a family of parametric isoperimetric-type inequalities for closed
convex plane curves, which is actually an improved version of the reverse isoperimetric
inequalities (1.2), (1.3), (1.4), (1.5) and (1.6), and one of our main results is as follows:
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THEOREM 7. (Main Theorem) Let γ be a smooth regular positively oriented and
closed strictly convex curve in the Euclidean plane R

2 with length L and enclosing an
area A, let Ã denote the area of the domain enclosed by the locus of curvature centers.
Then for arbitrary constants λ , δ , σ , ω and ξ satisfying:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λ � 0

4π2δ + πσ +4ξ � 0

ω −2λ � 0

24λ −σ +4ω � 0

(1.8)

then we have:

λ
∫ 2π

0
ρβ (θ )2dθ + δL2 + σA+ ω |Ã|+ ξ (ρM −ρm)2 � 0, (1.9)

where ρM and ρm are the maximum and minimum of the continuous curvature radius
ρ of γ , respectively. ρβ denote curvature radii of the locus of curvature centers of γ .
The equality in (1.9) holds if γ is a circle and the parameters λ , δ , σ , ω and ξ meet

4πδ + σ = 0.

Moreover if the equality in (1.9) holds and the parameters λ , δ , σ , ω and ξ satisfy
(1.8), then γ is a circle.

REMARK 1. When λ = ξ = 0, δ = −1, σ = 4π , ω = 4π and λ = ξ = 0,
δ = −1, σ = 4π , ω = π , (1.8) satisfies clearly and the isoperimetric inequality (1.9)
respectively turns into (1.2) and (1.3). Hence (1.9) can also be regarded as a reverse
isoperimetric-type inequality. Furthermore, if we select other values of the parameters
λ , δ , σ , ω and ξ satisfying (1.8), then we can obtain some new reverse isoperimetric
inequalities:

COROLLARY 1. Let γ be a smooth regular positively oriented and closed strictly
convex curve in the Euclidean plane R

2 with length L and enclosing an area A, let
Ã denote the area of the domain enclosed by the locus of curvature centers. Then for
arbitrary constants α,β ,λ ,δ ,σ ,ω and ξ satisfying:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ξ = 0; α,λ � 0

4πδ + σ +2β � 0

ω +2β −2λ � 0

24λ −σ +6β +4ω � 0

(1.10)

then we have:

α
∫

γ
k2ds+ λ

∫ 2π

0
ρβ (θ )2dθ + δL2 + σA+ ω |Ã| � 0. (1.11)
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REMARK 2. This inequation can be find in [4]. As in [4], we can obtain a series
of results related to (1.11) under condition (1.10).

THEOREM 8. Let γ be a smooth regular positively oriented and closed strictly
convex curve in the Euclidean plane R

2 with length L and enclosing an area A, let Ã
denote the area of the domain enclosed by the locus of curvature centers. Then we have

L2 � 2πA+2π |Ã|+ π2(ρM −ρm)2 (1.12)

and the equality in (1.12) holds if and only if γ is a circle.
Moreover, when the relationship between A and |Ã| satisfies

A

|Ã| � π −2
8−2π

,

we can gain an improvement of the Pleijel’s result in (1.6) as follows:

L2 � (8π −16)A+(2π−4)|Ã|+ π(4−π)(ρM−ρm)2 (1.13)

and the equality in (1.13) holds if and only if γ is a circle.

THEOREM 9. Let γ be a smooth regular positively oriented and closed strictly
convex curve in the Euclidean plane R

2 with length L and enclosing an area A, let Ã
denote the area of the domain enclosed by the locus of curvature centers. When γ is
not circle, we have

(ρM −ρm)2 � 2
7π

∫ 2π

0
ρβ (θ )2dθ +

4
7π

|Ã|+ 4A
π

(1.14)

where ρM and ρm are the maximum and minimum of the continuous curvature radius
ρ of γ , respectively. ρβ denote curvature radii of the locus of curvature centers of γ .

REMARK 3. Besides those inequalities, we can actually derive more new and in-
teresting geometric isoperimetric type inequalities by selecting the appropriate param-
eters λ , δ , σ , ω and ξ satisfying (1.8).

The stability problem associated with isoperimetric inequality is also interesting
and signficant. In this paper, we will also research the stability properties of our isoperi-
metric inequality (1.9) with respect to both Hausdorff distance and L2 -metric. In sec-
tion 2, we recall some basic facts about the plane convex geometry and introduce some
lemmas. In section 3, we firstly prove the inequalities in Theorem 6, and then pro-
vide the proof of Theorem 7 by using Fourier series. Besides, we use Theorem 7 to
prove Theorem 8 and Theorem 9. Finally, we discuss stability properties of inequality
(1.9). We believe that our trick could be used to derive more interesting isoperimetric
inequalities.
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2. Geometric quantities and lemmas

In this section, we recall some basic facts about the convex plane curve which
will be used later. In this paper we always assume that γ is a closed and convex plane
curve which is a smooth regular positively oriented and closed strictly convex curve in
the Euclidean plane R

2 , such that the curvature radii discussed can be defined and the
Fourier series needed in the proof is convergent uniformly. The details can be found in
the classical literature [8].

Let p(θ ) denote the Minkowski support function of curve, where θ is the angle
between x-axis and the outward normal vector at the corresponding point p. It gives us
the parametrization of γ(θ ) in terms of θ as follows

γ(θ ) = (γ1(θ ),γ2(θ )) = (p(θ )cosθ − p′(θ )sinθ , p(θ )sinθ + p′(θ )cosθ ).

Therefore the curvature k(θ ) and the radius of curvature ρ(θ ) of γ(θ ) can be
calculated by

k(θ ) =
dθ
ds

=
1

p(θ )+ p′′(θ )
> 0

and

ρ(θ ) =
ds
dθ

= p(θ )+ p′′(θ ) > 0,

where we use the fact that γ is a strictly convex plane curve. The length L of γ(θ ) and
the area A it bounds can be also calculated respectively by

L =
∫

γ
ds =

∫ 2π

0
p(θ )dθ

and

A =
1
2

∫
γ
p(θ )ds =

1
2

∫ 2π

0
(p(θ )2 − p′(θ )2)dθ .

At the same time, we could obtain the locus of centers of curvature of γ(θ ) as follows

β (θ ) = γ(θ )+ ρ(θ )N(θ )
= (−p′(θ )sinθ − p′′(θ )cosθ , p′(θ )cosθ − p′′(θ )sinθ )

then
β ′(θ ) = −(p′(θ )+ p′′′(θ ))(cosθ ,sinθ ).

Therefore the radius of curvature ρβ (θ ) of the locus of curvature centers β (θ )
can be calculated by

ρβ (θ ) =
ds
dθ

= p′(θ )+ p′′′(θ )

and ∫ 2π

0
ρ2

β (θ )dθ =
∫ 2π

0
(p′(θ )+ p′′′(θ ))2dθ .
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Moreover, the oriented area of the domain enclosed by β (θ ) is given by

Ã =
1
2

∫ 2π

0
(p′(θ )2 − p′′(θ )2)dθ .

Since the Minkowski support function of a given domain K is always continuous,
bounded and 2π -periodic, it has a Fourier series of the form

p(θ ) = a0 +
∞

∑
n=1

(an cosnθ +bn sinnθ). (2.1)

Differentiation of (2.1) with respect to θ gives us

p′(θ ) =
∞

∑
n=1

n(−an sinnθ +bn cosnθ), (2.2)

p′′(θ ) = −
∞

∑
n=1

n2(an cosnθ +bn sinnθ ), (2.3)

p′′′(θ ) = −
∞

∑
n=1

n3(−an sinnθ +bn cosnθ). (2.4)

Thus by (2.1), (2.2), (2.3), (2.4) and the Parseval equality we could express these
geometric quantities in terms of the Fourier coefficients of p(θ ) as follows

L = 2πa0,

A = πa2
0−

π
2

∞

∑
n=2

(n2−1)(a2
n +b2

n),

|Ã| = π
2

∞

∑
n=2

n2(n2−1)(a2
n +b2

n)

and ∫ 2π

0
ρ2

β (θ )dθ

=
∫ 2π

0
(p′(θ )+ p′′′(θ ))2dθ

=
∫ 2π

0
(

∞

∑
n=1

n(−an sinnθ +bn cosnθ)−
∞

∑
n=1

n3(−an sinnθ +bn cosnθ ))2dθ

=
∫ 2π

0
(

∞

∑
0

n(n2−1)(−an sinnθ +bn cosnθ ))2dθ

= π
∞

∑
n=1

n2(n2−1)2(a2
n +b2

n).

The following results are essential to proof of the main resutlt of this note.
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LEMMA 1. [2] Let γ be a C2 closed and strictly convex curve in the plane, ρ
is the radius of curvature of γ , A is the area enclosed by γ and Ã the oriented area
enclosed by the locus of centers of curvature β . Then we have∫ 2π

0
ρ2dθ = 2(A+ |Ã|). (2.5)

DEFINITION 1. Let γ be a C2 closed and strictly convex curve in the plane, and
γ(θ ,0) � γ0(θ ) . If each point on the curve moves along the outward unit normal vector
of the curve at that point, the unit-speed outward normal flow is to forms a family of
simple closed curves γ(θ ,t) on the plane, with original curve γ(θ ,0) , being equal to
γ0(θ ) . So that the evolution of curve can be noted by⎧⎨⎩

∂γ(θ ,t)
∂ t =�u(θ )

γ(θ ,0) = γ0(θ ).
(2.6)

where �u(θ ) = (cosθ ,sinθ ) .

This note has shown in [10] that the tangent vector field T and the unit outward
normal vector field N are independent of the time t . Using the conclusions in [10], we
could gain the following results

LEMMA 2. Let γ(θ ,t) be a curve at the time t � 0 , then the following equations
hold:

ρ(θ ,t) = ρ(θ ,0)+ t, (2.7)

k(θ ,t) =
ρ(θ ,0)

1+ k(θ ,0)t
, (2.8)

L(t) = L(0)+2πt, (2.9)

A(t) = A(0)+L(0)t + πt2, (2.10)

where ρ(θ , t) , k(θ , t) , L(t) , A(t) are the radius of curvature, curvature, circumference
and the area of curve γ enclosing in time t , respectively. The equation (2.10) is usually
called the Steiner polynomial.

LEMMA 3. Let γ be a C2 closed and strictly convex curve in the plane. t1 � t2
are the two roots of the Steiner polynomial A(t) , where

A(t) = A(0)+L(0)+ πt2.

When γ is not circle, then we have [10]

−ρM < t2 < −re < − L
2π

< −ri < t1 < −ρm, (2.11)

where re and ri are, respectively, the radius of the minimum circumscribed circle and
the maximum inscribed circle of γ , k is the curvature, ρ = 1

k is the radius of curvature,
and ρM and ρm are the maximum and minimum of the continuous curvature radius ρ
of γ , respectively. The quantities are all equal if the curve γ is a circle.
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3. Proof of the main results

In this section, we firstly prove the inequality (1.7).

Proof of Theorem 6. We have defined Steiner polynomial (2.10) at Lemma 2.
Firstly, let the closed convex curve γ be A(t) , that is to say, A(t)� A(γ) �A . Then

let the closed convex curve be γ0 when t = 0, where A(0) and L(0) are, respectively,
the area enclosed by γ0 and the length of γ0 . We have

A(t) = A(0)+L(0)t + πt2,

equally,
A0 +L0t + πt2−A = 0. (3.1)

This means that the equation (3.1) has two roots:

t1 =
−L0 +

√
L0

2 −4π(A0−A)
2π

,

t2 =
−L0−

√
L0

2 −4π(A0−A)
2π

.

Thus we have

(t1 − t2)2 =
L2

0 −4π(A0−A)
π2 (3.2)

then applying Lamma 3, we gain

(ρM −ρm)2 > (t1− t2)2 =
L0

2−4πA0 +4πA
π2 . (3.3)

By (2.9) and (2.10), the following equation holds,

L(t)2 −4πA(t) = (L(0)+2πt)2−4π(A(0)+L(0)t + πt2)

= L(0)2 +4πtL(0)+4π2t2−4πA(0)−4πtL(0)−4π2t2

= L(0)2−4πA(0).

Applying the above equation to (3.3), we have

(ρM −ρm)2 >
L2 −4πA+4πA

π2 =
L2

π2 ,

where γ must not be a circle. If γ is a circle, ρM = ρm . �

Now we turn to prove our main result Theorem 7.

Proof of Theorem 7. To prove (1.9), it suffices to prove the inequality below under
the condition (1.8)

λ
∫ 2π

0
ρβ (θ )2dθ + δL2 + σA+ ω |Ã|+ ξ (ρM −ρm)2

� λ
∫ 2π

0
ρβ (θ )2dθ +

(
δ +

ξ
π2

)
L2 + σA+ ω |Ã| (3.4)

� 0.
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Then by using the expression of the geometric quantities in terms of the Fourier coeffi-
cients of p(θ ) in section 2. The equation (3.4) can be written as

λ
∫ 2π

0
ρβ (θ )2dθ +

(
δ +

ξ
π2

)
L2 + σA+ ω |Ã|

= λ π
∞

∑
n=1

n2(n2−1)2(a2
n +b2

n)+
(

δ +
ξ
π2

)
(2πa0)2

+ σ

(
πa2

0−
π
2

∞

∑
n=2

(n2−1)(a2
n +b2

n)

)
+

π
2

ω
∞

∑
n=2

n2(n2−1)(a2
n +b2

n)

= (4π2δ +4ξ + πσ)a2
0 + π

∞

∑
n=2

(
λn2(n2−1)− σ

2
+

ωn2

2

)
(n2−1)(a2

n +b2
n).

Thus it follows from (1.8) that

4π2δ +4ξ + πσ > 0

and

π
∞

∑
n=2

(
λn2(n2−1)− σ

2
+

ωn2

2

)
(n2−1)(a2

n +b2
n)

� 3π
∞

∑
n=2

(12λ − σ
2

+2ω)(a2
n +b2

n)

=
3
2

π
∞

∑
n=2

(24λ −σ +4ω)(a2
n +b2

n)

� 0,

which implies that

λ
∫ 2π

0
ρβ (θ )2dθ +

(
δ +

ξ
π2

)
L2 + σA+ ω |Ã| � 0.

Then the main inequality in Theorem 7 is proved. �

Furthermore, if γ is a circle, then ρM = ρm and together with the equality condi-
tion in (1.1) we have

λ
∫ 2π

0
ρβ (θ )2dθ + δL2 + σA+ ω |Ã|+ ξ (ρM −ρm)2 = δL2 + σA,

then for the parameters λ ,δ ,σ ,ω ,ξ satisfying

4πδ + σ = 0

we have

λ
∫ 2π

0
ρβ (θ )2dθ + δL2 + σA+ ω |Ã|+ ξ (ρM −ρm)2 = 0.
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Proof of Theorem 8. In fact, we can proof the inequality (1.12) and (1.13) by
selecting the appropriate parameters λ ,δ ,σ ,ω ,ξ satisfying (1.8).

Firstly, let λ = 0, δ = −1, ξ = π2,σ = ω = 2π , we obtain (1.12) which, in fact,
is a improved version of (1.5).

Then, let λ = 0, δ = −1, ξ = π(4−π) , thus it follows from (1.8) that{
σ � 8π −16

σ � 4ω.

In order to get an improved and sharp version of (1.6), the following inequality must be
satisfied

σA+ ω |Ã| � 4πA

Let σ = 8π −16, then we can obtain

2π −4 � ω � (16−4π)A

|Ã| .

Because A and |Ã| satisfy the following relationship at this time

A

|Ã| � π −2
8−2π

,

ω must exist. Take ω = 2π −4, then

L2 � (8π −16)A+(2π−4)|Ã|+ π(4−π)(ρM−ρm)2. �

REMARK 4. Moreover, let λ = 0, δ =−1, σ = 4π , ω = 2π , ξ = 0 and combine
with Lemma 1, then we have ∫ 2π

0
ρ(θ )2dθ � L2 −2πA

π
. (3.5)

On the other hand, let λ = 0, δ =−1, σ = 4π , ω = π , ξ = 0. Using the same method
as above, we can prove the inequality (1.4) which Li-Gao have proved in [4].

Proof of Theorem 9. If we select λ = 2π
7 , δ = 0, σ = 4π , ω = 4π

7 , ξ = −π2 ,
then (1.8) also satisfies and we obtain (1.14). �

4. The stability properties of the isoperimetric inequality

Let K and M be two convex domains with respective Minkowski support func-
tions pK and pM . The most frequently used function to measure the deviation between
K and M is the Hausdorff distance

h1(K,M) = max
u

|pK(u)− pM(u)|. (4.1)
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Another such measure which appears to be of particular value with respect to stability
problems is the measure that corresponds to the L2 -metric in the function space, which
is defined by

h2(K,M) =

(∫ 2π

0
|pK(θ )− pM(θ )|2dθ

) 1
2

. (4.2)

It is abvious that h1(K,M) = 0 or h2(K,M) = 0 if and only if K = M .
Now, we consider the stability properties of the reverse isoperimetric inequality

(1.9) with respect to the deviation measures h1 and h2 .

THEOREM 10. Let K be a domain enclosed by a C2 closed and strictly convex
plane curve γ with area A(K) and perimeter L(K) , and let Ã(K) denote the oriented
area of the domain enclosed by the locus of curvature centers of γ , S(K) denotes the
Steiner disc associated with K . Then for arbitrary constants λ ,δ ,σ ,ω ,ξ satisfying⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λ � 0

4π2δ + πσ +4ξ � 0

ω −2λ � 0

24λ −σ +4ω � 0

(4.3)

then we have

h1(K,S(K))2 � C(λ ,σ ,ω)

×
(

λ
∫ 2π

0
ρ2

β (θ )dθ + δL2 + σA+ ω |Ã|+ ξ (ρM −ρm)2

)
(4.4)

where k is the curvature of γ , ρ and ρβ respectively denote curvature radii of the
curve γ and the locus of curvature centers,

C(λ ,σ ,ω) = max

{
1,

∞

∑
n=2

1

π(λn2(n2 −1)− σ
2 + ωn2

2 )(n2−1)

}
.

The equality holds if γ is a circle and the parameters λ ,δ ,σ ,ω ,ξ satisfy

4πδ + σ = 0.

Proof. We assume �S(K) = (0,0) , then the support functions PK and PS(K) can be
written as

PK(θ ) =
L(K)
2π

+
∞

∑
n=2

(an cosnθ +bn sinnθ)

and

PS(K)(θ ) =
L(K)
2π
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it follows that

|PK(θ )−PS(K)(θ )| =
∣∣∣L(K)

2π
+

∞

∑
n=2

(an cosnθ +bn sinnθ)− L(K)
2π

∣∣∣
�

∞

∑
n=2

|an cosnθ +bn sinnθ |

�
∞

∑
n=2

√
a2

n +b2
n.

We have proved the following inequality in section 3

λ
∫ 2π

0
ρβ (θ )2dθ + δL2 + σA+ ω |Ã|+ ξ (ρM −ρm)2

� λ
∫ 2π

0
ρβ (θ )2dθ +

(
δ +

ξ
π2

)
L2 + σA+ ω |Ã|

= (4π2δ +4ξ + πσ)a2
0

+ π
∞

∑
n=2

(
λn2(n2−1)− σ

2
+

ωn2

2

)
(n2−1)(a2

n +b2
n). (4.5)

Using Hölder’s inequality, together with (4.5) we have

h1(K,S(K))2

� (
∞

∑
n=2

√
a2

n +b2
n)

2

� (4π2δ +4ξ + πσ)a2
0

+

(
π

∞

∑
n=2

(
λn2(n2−1)− σ

2
+

ωn2

2

)
(n2−1)(a2

n +b2
n)

)

×
(

∞

∑
n=2

1

π(λn2(n2−1)− σ
2 + ωn2

2 )(n2−1)

)

� max

{
1,

∞

∑
n=2

1

π(λn2(n2 −1)− σ
2 + ωn2

2 )(n2−1)

}

×
(

λ
∫ 2π

0
ρ2

β (θ )dθ +
(

δ +
ξ
π2

)
L2 + σA+ ω |Ã|

)

� C(λ ,σ ,ω)(λ
∫ 2π

0
ρ2

β dθ + δL2 + σA+ ω |Ã|+ ξ (ρM −ρm)2)

for arbitrary constants λ ,δ ,σ ,ω ,ξ satisfying (4.3). Besides, if γ is a circle,

λ
∫ 2π

0
ρ2

β (θ )dθ + δL2 + σA+ ξ (ρM−ρm)2 = 0.

It is obvious that h1(K,S(K)) = 0. �
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THEOREM 11. Under the same assumptions of Theorem 10, Then for arbitrary
constants λ ,δ ,σ ,ω ,ξ ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λ � 0

4π2δ + πσ +4ξ � 0

ω −2λ � 0

72λ −3σ +12ω −2 � 0

(4.6)

then we have

h2(K,S(K))2 � λ
∫ 2π

0
ρ2

β (θ )dθ + δL2 + σA+ ω |Ã|+ ξ (ρM −ρm)2. (4.7)

The equality holds if γ is a circle and the parameters λ ,δ ,σ ,ω ,ξ satisfy

4πδ + σ = 0.

Proof. Using Parseval equality, we have

h2(K,S(K))2 =
∫ 2π

0
|PK(θ )−PS(K)(θ )|2dθ

=
∞

∑
n=2

((
√

πan)2 +(
√

πbn)2)

= π
∞

∑
n=2

(a2
n +b2

n).

Since it is easily seen that

λ
∫ 2π

0
ρ2

β (θ )dθ +
(

σ +
ξ
π2

)
L2 + σA+ ω |Ã|−h2(K,S(K))2

= (4π2δ +4ξ + πσ)a2
0

+ π
∞

∑
n=2

((
λn2(n2−1)− σ

2
+

ωn2

2

)
(n2−1)−1

)
(a2

n +b2
n).

Becasue the parameters λ ,δ ,σ ,ω ,ξ satisfy (4.6), we have

π
∞

∑
n=2

((
λn2(n2−1)− σ

2
+

ωn2

2

)
(n2−1)−1

)
(a2

n +b2
n)

� π
∞

∑
n=2

(
3
(
12λ − σ

2
+2ω

)
−1
)

(a2
n +b2

n)

=
π
2

∞

∑
n=2

(72λ −3σ +12ω −2)(a2
n +b2

n)

� 0.
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Thus

h2(K,S(K))2

�λ
∫ 2π

0
ρ2

β (θ )dθ +
(

δ +
ξ
π2

)
L2 + σA+ ω |Ã|

�λ
∫ 2π

0
ρ2

β (θ )dθ + δL2 + σA+ ω |Ã|+ ξ (ρM −ρm)2. �

REMARK 5. Combining Theorem 10 and Theorem 11, we can obtain:

max{h1(K,S(K))2,h2(K,S(K))2}

� C(λ ,σ ,ω)(λ
∫ 2π

0
ρ2

β (θ )dθ + δL2 + σA+ ω |Ã|+ ξ (ρM −ρm)2)

where

C(λ ,σ ,ω) = max

{
1,

∞

∑
n=2

1

π(λn2(n2−1)− σ
2 + ωn2

2 )(n2−1)

}
which states that the isoperimetric inequality (1.9) does have well stability properties
with respect to both Hausdorff distance and L2 -metric.
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