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THE THIRD–ORDER HERMITIAN TOEPLITZ DETERMINANT

FOR SOME CLASSES OF ANALYTIC FUNCTIONS

ADAM LECKO ∗ AND BARBARA ŚMIAROWSKA

(Communicated by V. R. Allu)

Abstract. Sharp lower and upper bounds are found of the second and third-order Hermitian
Toeplitz determinants for some classes of analytic functions.

1. Introduction

Let H be the class of analytic functions in D := {z ∈ C : |z| < 1} and A be its
subclass of functions f of the form

f (z) =
∞

∑
n=1

anz
n, a1 = 1, z ∈ D. (1)

Let S be the subclass of A of all univalent functions. Given α ∈ [0,1), let P ′(α)
and T (α) denote the subclass of A of all f satisfying

Re f ′(z) > α, z ∈ D, (2)

and

Re
f (z)
z

> α, z ∈ D. (3)

Functions f in P ′(α) are called of bounded turning of order α. Particularly, elements
of P ′(0) =: P ′ are called of bounded turning (cf. [9, Vol. I, p. 101]). On the other
hand, the condition (2) with α = 0 is known as a famous criterium of univalence due to
Alexander [1] (cf. [9, Vol. I, p. 88]) which means that P ′ ⊂ S . Since P ′(α) ⊂ P ′
for α ∈ [0,1), it follows that P ′(α) ⊂ S for all α ∈ [0,1). The class P ′ is one of
the fundamental subfamily of univalent functions and has been extensively studied by
many authors e.g., [14], [13].

The family T (α) , particularly T (0) =: T , plays an important role in the geo-
metric function theory although their elements are functions which are not necessarily
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univalent. One of the significant results belongs to Marx [16] and Strohhäcker [22].
They proved that

S c ⊂ S ∗(1/2)⊂ T (1/2) (4)

(see also [17, Theorem 2.6a, p. 57]), where S c stands for the class of convex functions
introduced by Study [23], i.e., the subfamily of S of all univalent functions which map
D onto convex domains, and S ∗(1/2) means the class of starlike functions of order
1/2. Functions starlike of order α (α ∈ [0,1)) were introduced by Robertson [20]. By
the well known result due to Study ([23], see also [7, p. 42]) a function f ∈ A belongs
to S c if and only if

Re

{
1+

z f ′′(z)
f ′(z)

}
> 0, z ∈ D.

A function f ∈A is in S ∗(α) (α ∈ [0,1) ([20], see also [9, Vol. I, p. 138] if and only
if

Re
z f ′(z)
f (z)

> α, z ∈ D.

The class T plays a fundamental role in the theory of semigroups of analytic func-
tions as a generator of one-parameter continues semigroups studied by Berkson, Porta,
Shoikhet, Elin and others (e.g., [21], [8]). For other classical results concerning the
classes T and T (1/2) see e.g., [15], [19].

Given q,n ∈ N, define the matrix Tq,n( f ) of a function f ∈ A of the form (1) by

Tq,n( f ) :=

⎡
⎢⎢⎢⎣

an an+1 . . . an+q−1

an+1 an . . . an+q−2
...

...
...

...
an+q−1 an+q−2 . . . an

⎤
⎥⎥⎥⎦ ,

where ak := ak. In the case when an is a real number, Tq,n( f ) is called the Hermitian
Toeplitz matrix. In particular,

detT3,1( f ) =

∣∣∣∣∣∣
1 a2 a3

a2 1 a2

a3 a2 1

∣∣∣∣∣∣
= 1+2Re

(
a2

2a3
)−2|a2|2−|a3|2. (5)

In recent years a lot of papers has been devoted to the estimation of determinants
whose entries are coefficients of functions in the class A or its subclasses. Hankel ma-
trices i.e., square matrices which have constant entries along the reverse diagonal (see
e.g., [4], [5] and [12], with further references), and the symmetric Toeplitz determinant
(see [2]) are of particular interest.

For this reason looking on the interest of specialists in [6], [10] and [11] the study
of the Hermitian Toeplitz determinants Tq,1( f ) on the class A or its subclasses has be-
gun. Hermitian Toeplitz matrices play an important role in functional analysis, applied
mathematics as well as in physics and technical sciences.
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In this paper, we continue the research study of the Hermitian Toeplitz determi-
nants. We will find sharp lower and upper bounds of the second and third order Hermi-
tian Toeplitz determinants for the classes P ′(α) and T (α) with α ∈ [0,1).

Let P be the class of all p ∈ H of the form

p(z) = 1+
∞

∑
n=1

cnz
n, z ∈ D, (6)

which have positive real part.
In the proof of the main result we will use the following lemma which contains the

well-known formulas for c1 and c2 ([3], [18, p. 166]) with further remarks in [5]).

LEMMA 1.1. If p ∈ P is of the form (6), then

c1 = 2ζ1 (7)

and

c2 = 2ζ 2
1 +2(1−|ζ1|2)ζ2 (8)

for some ζi ∈ D , i ∈ {1,2} .
For ζ1 ∈ T , there is a unique function p ∈ P with c1 as in (7), namely,

p(z) =
1+ ζ1z
1− ζ1z

, z ∈ D.

For ζ1 ∈ D and ζ2 ∈ T , there is a unique function p ∈P with c1 and c2 as in (7) and
(8), namely,

p(z) =
1+(ζ1ζ2 + ζ1)z+ ζ2z2

1+(ζ1ζ2− ζ1)z− ζ2z2
, z ∈ D. (9)

Recall now the following observation ([11]). Given a compact subclass F of A ,
let A2(F ) := max{|a2| : f ∈ F}. Thus if f ∈ A , ten

detT2,1( f ) = 1−|a2|2,

and the result below is clear. Equality for the lower bound is attained by a function
in F which is extremal for A2(F ) and for the upper bound when f is the identity
function.

THEOREM 1.2. Let F be a compact subclass of A . If the identity is an element
of F , then

1−A2
2(F ) � detT2,1( f ) � 1.

Both inequalities are sharp.
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2. The class P ′(α)

We will now find the upper and lower bounds of detT2,1( f ) and detT3,1( f ) in the
class of P ′(α).

Let α ∈ [0,1) . Since by (14), A2(P ′(α)) = 1−α with the extremal function
f ∈ A satisfying

f ′(z) =
1+(1−2α)z

1− z
, z ∈ D, (10)

and since the identity function belongs to the class P ′(α)) , by Theorem 1.2 we have

THEOREM 2.1. Let α ∈ [0,1) . If f ∈ P ′(α) , then

α(2−α) � detT2,1( f ) � 1.

Both inequalities are sharp.

Particularly, for α = 0 i.e., for the class P ′ we have

COROLLARY 2.2. If f ∈ P ′ , then

0 � detT2,1( f ) � 1.

Both inequalities are sharp.

Now we will compute the upper and lower bounds of detT3,1( f ).

THEOREM 2.3. Let α ∈ [0,1) . If f ∈ P ′(α) , then

detT3,1( f ) � 1, (11)

and

detT3,1( f ) �

⎧⎪⎪⎨
⎪⎪⎩

(2α2 −7α +1)2

8(3α −1)
, 0 � α <

1
18

,

−1
9
(2α +1)(6α2−10α +1),

1
18

� α < 1,

(12)

All inequalities are sharp.

Proof. Fix α ∈ [0,1) and let f ∈ P ′(α) be of the form (1). Then by (2),

f ′(z) = (1−α)p(z)+ α, z ∈ D, (13)

for a certain p∈P of the form (6). Putting the series (1) and (6) into (13), by equating
the coefficients we get

a2 =
1
2
(1−α)c1, a3 =

1
3
(1−α)c2. (14)
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Since the class P ′(α) and detT3,1 are rotation invariant, we may assume that a2 � 0,
i.e., by (14) that c1 � 0, so by (7) that ζ1 ∈ [0,1] .

A. Since by (14),

|a3| � 2
3
(1−α) < 1,

by (5) we have

detT3,1( f ) = 1+2Re
(
a2

2a3
)−2|a2|2 −|a3|2

= 1−2a2
2 (1−Re(a3))−|a3|2

� 1,

which shows (11).
B. Now we show the inequality (12). From (5) with (14), (7) and (8) we have

9detT3,1( f ) =−4(1−α)2(3α −2)ζ 4
1 −18(1−α)2ζ 2

1 +9

−4(1−α)2(3α −1)(1− ζ 2
1 )Re

(
ζ 2

1 ζ2

)
−4(1−α)2(1− ζ 2

1 )2|ζ2|2
(15)

for some ζ1,ζ2 ∈ D.
Define

F(x,y, t) :=−4(1−α)2(3α −2)x2−18(1−α)2x+9

−4(1−α)2(3α −1)(1− x)xycost−4(1−α)2(1− x)2y2

for x,y ∈ [0,1] and t ∈ [0,2π ].
When ζ2 �= 0, then ζ2 = |ζ2|eiθ for a unique θ ∈ [0,2π). Thus by (15),

9detT3,1( f ) = F(ζ 2
1 , |ζ2|,θ ).

When ζ2 = 0, then by (15),

9detT3,1( f ) = F(ζ 2
1 ,0,θ ) = F(ζ 2

1 ,0,0).

We now find the minimum value of F.
B1. Suppose first that α ∈ [0,1/3). Then

F(x,y, t) �F(x,y,π)

=−4(1−α)2(3α −2)x2−18(1−α)2x+9

+4(1−α)2(3α −1)(1− x)xy−4(1−α)2(1− x)2y2

= : J(x,y), x,y ∈ [0,1], t ∈ [0,2π ].

(a) For x = 1,

J(1,y) = −4(1−α)2(3α −2)−18(1−α)2+9

= −(2α +1)(6α2−10α +1), y ∈ [0,1].
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(b) Let x ∈ [0,1). Because

yw :=
(3α −1)x
2(1− x)

< 0,

it follows that

J(x,y) � J(x,1) =8(1−3α)(α −1)2x2 +2(6α −7)(α −1)2x

− (2α +1)(2α −5), x ∈ [0,1).

Set

xw :=
6α −7

8(3α −1)
.

(c) Since xw < 1 holds for α ∈ [0,1/18), then

J(x,1) � J (xw,1) =
9(2α2−7α +1)2

8(3α −1)
, x ∈ [0,1).

Note additionally here that J(1,1) � J (xw,1) for x∈ [0,1), i.e., that for α ∈ [0,1/18),

−(2α +1)(6α2−10α +1) � 9(2α2−7α +1)2

8(3α −1)

equivalent to
(3α −1)(18α −1)2(α −1)2 � 0,

which is true for α ∈ [0,1/18).
(d) It remains to consider the case xw � 1 which holds only when 1/18� α < 1/3.

Then
J(x,1) � J(1,1) = −(2α +1)(6α2−10α +1), x ∈ [0,1).

B2. Suppose now that α ∈ [1/3,1). Then

F(x,y, t) �F(x,y,0)

=−4(1−α)2(3α −2)x2−18(1−α)2x+9

−4(1−α)2(3α −1)(1− x)xy−4(1−α)2(1− x)2y2

=:K(x,y), x,y ∈ [0,1], t ∈ [0,2π ].

(a) For x = 1,

K(1,y) =−4(1−α)2(3α −2)−18(1−α)2+9

=− (2α +1)(6α2−10α +1), y ∈ [0,1].

(b) Let x ∈ [0,1). Because

yw := − (3α −1)x
2(1− x)

� 0,



THE THIRD-ORDER TOEPLITZ DETERMINANT 937

we see that

K(x,y) � K(x,1)

= −6(2α +1)(α −1)2x− (2α +1)(2α −5)

� −(2α +1)(6α2−10α +1) = K(1,1), x ∈ [0,1).

C. Note that for ζ2 = 0, by (2),

9detT3,1( f ) = F(ζ 2
1 ,0,0) = G(ζ 2

1 ,0) = H(ζ 2
1 ,0).

D. Summarizing, from Parts A-C we get inequalities (11) and (12), respectively.
It remains to show sharpness of all inequalities. The identity function is extremal

for the first inequality in (11). The function f given by (10) for which a2 = 1−α and
a3 = 2(1−α)/3 is extremal for the second inequality in (12).

Let now 0 � α < 1/18. Set

τ :=

√
6α −7

8(3α −1)
=
√

xw.

Since τ � 1, by (9) the function

p̃(z) :=
1− z2

1−2τz+ z2 = 1+2τz+(4τ2−2)z2 + · · · , z ∈ D,

belongs to P. Thus the function f given by (13), where p is replaced by p̃, being of
the form (1) with

a2 = (1−α)τ, a3 =
2
3
(1−α)(2τ2−1),

belongs to P ′(α) and is extremal for the first inequality in (12). This ends the proof
of the theorem. �

Particularly, for α = 0 we get the followning result.

COROLLARY 2.4. If f ∈ P ′ , then

−1
8

� detT3,1( f ) � 1.

Both inequalities are sharp.

3. The class T (α)

Now we will compute the sharp upper and lower bounds of detT2,1( f ) and detT3,1( f )
in the class T (α).

Let α ∈ [0,1) . Since by (20) below, A2(F2(α)) = 2(1−α) with the extremal
function

f (z) = z
1+(1−2α)z

1− z
, z ∈ D, (16)

and since the identity function belongs to the class T (α) , by Theorem 1.2 we have
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THEOREM 3.1. Let α ∈ [0,1) . If f ∈ T (α) , then

(2α −1)(3−2α) � detT2,1( f ) � 1.

Both inequalities are sharp.

Particularly, for α = 0, we have the following result.

COROLLARY 3.2. If f ∈ T , then

−3 � detT2,1( f ) � 1.

Both inequalities are sharp.

Now we will estimate detT3,1( f ).

THEOREM 3.3. Let α ∈ [0,1) . If f ∈ T (α) , then

detT3,1( f ) �

⎧⎪⎨
⎪⎩

(5−4α)(2α −1)2, 0 � α <
1
4
,

1,
1
4

� α < 1,
(17)

and

detT3,1( f ) �

⎧⎪⎨
⎪⎩

(2α −1)(α −2)2, 0 � α <
1
2
,

(5−4α)(2α −1)2,
1
2

� α < 1,
(18)

All inequalities are sharp.

Proof. Fix α ∈ [0,1) and let f ∈ T (α) be of the form (1). Then by (3),

f (z)
z

= (1−α)p(z)+ α, z ∈ D, (19)

for a certain p ∈ P of the form (6). Substituting the series (1) and (6) into (19), by
equating the coefficients we get

a2 = (1−α)c1, a3 = (1−α)c2. (20)

Since the class T (α) and detT3,1 are rotation invariant, we may assume that a2 � 0,
i.e., by (20) that c1 � 0, so by (7) that ζ1 ∈ [0,1] .

A. By (20),
0 � a2 � 2(1−α), |a3| � 2(1−α), (21)

and by (5),

detT3,1( f ) = 1+2Re
(
a2

2a3
)−2|a2|2 −|a3|2

= 1+2a2
2 (Re(a3)−1)−|a3|2.

(22)
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A1. Suppose first that Re(a3) � 1. Then from (22) we get at once

detT3,1( f ) � 1. (23)

A2. Suppose now that Re(a3) > 1. Then from (22) and (21) we obtain

detT3,1( f ) = 1−|a3|2 +2(Re(a3)−1)a2
2

� 1−|a3|2 +8(|a3|−1)(1−α)2 = γ(|a3|),
(24)

where
γ(t) := −t2 +8(1−α)2t +1−8(1−α)2, 0 � t � 2(1−α).

Observe that for 0 � t � 2(1−α),

|γ(t)| �

⎧⎪⎨
⎪⎩

(5−4α)(2α −1)2, 0 � α � 1
2
,

(
4(1−α)2−1

)2
,

1
2

< α < 1.
(25)

Since 1 �
(
4(1−α)2−1

)2
for 1/2 < α < 1 and 1 � (5− 4α)(2α − 1)2 for 1/4 �

α � 1/2, we deduce from (23), (24) and (25) that the upper bound (17) is true.
B. Now we show the inequality (18). From (5) with (20), (7) and (8) we have

detT3,1( f ) =−4(4α −3)(α −1)2ζ 4
1 −8(α −1)2ζ 2

1 +1

−8(2α −1)(α −1)2(1− ζ 2
1 )ζ 2

1 Re(ζ2)

−4(α −1)2(1− ζ 2
1 )2|ζ2|2

(26)

for some ζ1,ζ2 ∈ D.
Define

F(x,y, t) :=−4(4α −3)(α −1)2x2−8(α −1)2x+1

−8(2α −1)(α −1)2(1− x)xycos(t)−4(α −1)2(1− x)2y2

for x,y ∈ [0,1] and t ∈ [0,2π ].
When ζ2 �= 0, then ζ2 = |ζ2|eiθ for unique θ ∈ [0,2π). Thus by (26),

detT3,1( f ) = F(ζ 2
1 , |ζ2|,θ ).

When ζ2 = 0, then by (26),

detT3,1( f ) = F(ζ 2
1 ,0,θ ) = F(ζ 2

1 ,0,0).

We now find the minimum value of F.
B1. Suppose first that α ∈ [0,1/2). Then

F(x,y, t) �F(x,y,π)

=−4(4α −3)(α −1)2x2−8(α −1)2x+1

−8(1−2α)(α −1)2(1− x)xy−4(α −1)2(1− x)2y2

=:J(x,y), x,y ∈ [0,1], t ∈ [0,2π ].
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(a) For x = 1,

J(1,y) = (5−4α)(2α −1)2, y ∈ [0,1].

(b) Let x ∈ [0,1). Since

yw :=
(2α −1)x

1− x
� 0,

we deduce that

J(x,y) � J(x,1) = −16(2α −1)(α −1)2x2 +8(2α −1)(α −1)2x− (2α −1)(2α −3)

� (2α −1)(α −2)2 = J

(
1
4
,1

)
, x ∈ [0,1).

B2. Suppose α ∈ [1/2,1). Then

F(x,y, t) �F(x,y,0)

=−4(4α −3)(α −1)2x2−8(α −1)2x+1

−8(2α −1)(α −1)2(1− x)xy−4(α −1)2(1− x)2y2

=:K(x,y), x,y ∈ [0,1], t ∈ [0,2π ].

(a) For x = 1,

K(1,y) = (5−4α)(2α −1)2, y ∈ [0,1].

(b) Let x ∈ [0,1). Since

yw :=
(1−2α)x

1− x
� 0,

we deduce that

K(x,y) � K(x,1)

= −8(2α −1)(α −1)2x− (2α −1)(2α −3)

� K(1,1) = (5−4α)(2α −1)2, x ∈ [0,1) .

C. Note that for ζ2 = 0, by (3),

detT3,1( f ) = F(ζ 2
1 ,0,0) = J(ζ 2

1 ,0) = K(ζ 2
1 ,0).

D. Summarizing, from Parts A-C we get inequalities (17) and (18), respectively.
It remains to show sharpness of all inequalities. The identity function is extremal

for the second inequality in (17). The function f given by (16) for which a2 = 2(1−α)
and a3 = 2(1−α) is extremal for the first inequality in (17) and the second one in (18).

Let now 0 � α < 1/2. Set τ := 1/2. Since τ � 1, by (9) the function

p̃(z) :=
1− z2

1−2τz+ z2 = 1+2τz+(4τ2−2)z2 + · · · , z ∈ D,
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belongs to P. Thus the function f given by (19), where p is replaced by p̃, being of
the form (1) with

a2 = 1−α, a3 = −(1−α),

belongs to T (α) and is extremal for the first inequality in (18). This ends the proof of
the theorem. �

Particularly, for α = 0 we get the following result.

COROLLARY 3.4. If f ∈ T , then

−4 � detT3,1( f ) � 5.

Both inequalities are sharp.

In view of the inclusions (4) the case α = 1/2 is of particular interest. Then

COROLLARY 3.5. If f ∈ T (1/2) , then

0 � detT3,1( f ) � 1.

Both inequalities are sharp.

Note that the above result is the same for the class of convex function S c and for
the class S ∗(1/2) of starlike functions of order 1/2 ([6]).

Acknowledgements. We would like to express gratitude to the referee for his con-
structive comments and suggestions that helped to improve the clarity of this manuscript.
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