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EXACT EXPONENTS FOR INCLUSION OF DISCRETE

MUCKENHOUPT CLASSES INTO GEHRING CLASSES AND REVERSE

SAMIR H. SAKER, RAMY R. MAHMOUD AND MARIO KRNIĆ

(Communicated by T. Burić)

Abstract. In this paper, we establish some embedding relationships between Muckenhoupt and
Gehring classes Ap and Gr by proving transition and inclusion relations. We also identify the
exact range of τ > 1 for which wτ ∈ Ap . Additionally, we show that the weights that satisfy
the Ap -condition also meet the A∞ -condition. Next, we prove the Jones factorization property
of Ap weights in terms of two A1 weights by employing the discrete Rubio De Francia iterated
algorithm. Finally, we determine the specific ranges of indices (sharp exponents) for which w
belongs to Gr (Ap) if w belongs to Ap (Gr) and the precise range of q < p for which w belongs
to Aq given that it belongs to Ap.

1. Introduction

Our aim in this paper is to study the transition and inclusion relations between
the discrete Muckenhoupt and Gehring weights and some applications of these results
in terms of the boundedness of Hardy-littlewood maximal operator, discrete Rubio De
Francia iterated algorithm and discrete Jones factorization Theorem to find the sharp
range of embedding and transition exponents. Throughout this paper, Z+ stands for a
set of positive integers i.e. Z+ = {1,2,3, . . .} . By interval J , we mean a finite subset
of Z+ consisting of consecutive integers, i.e. J = {1,2, . . . ,n} for n ∈ Z+ and |J|
stands for its cardinality. A discrete weight on Z+ is a sequence w = {w(n)}∞

n=1 of
nonnegative real numbers. The usual discrete weighted Lebesgue space �p

u (Z+) is
defined for nonnegative sequences f by

�p
u (Z+) :=

⎧⎨
⎩ f : ‖ f‖�

p
u(Z+) =

(
∞

∑
n=1

f p(n)u(n)

)1/p

< ∞

⎫⎬
⎭ .

Following the usual terminology [3] and [23, 29], a discrete weight u belongs to the
discrete A1(A) Muckenhoupt class for A > 1, if the inequality

1
|J| ∑

J⊂Z+

u � A inf
J⊂Z+

u, for all J ⊂ Z+. (1.1)
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holds for every subinterval J ⊂ Z+. That is a sequence u ∈ A1 iff its norm

A1(u) := sup
J⊂Z+

1
|J|

(
∑

J⊂Z+

u
ess infJ⊂Z+ u

)
< ∞.

A discrete weight u belongs to the discrete A2(A) Muckenhoupt class for A > 1, if the
inequality (

1
|J| ∑

J⊂Z+

u

)(
1
|J| ∑

J⊂Z+

u−1

)
� A, (1.2)

holds for every subinterval J ⊂ Z+ . A discrete nonnegative sequence u belongs to the
discrete Muckenhoupt class Ap(C) for p > 1 and C > 1 if the inequality(

1
|J| ∑

J⊂Z+

u

)(
1
|J| ∑

J⊂Z+

u
1

1−p

)p−1

� C, (1.3)

holds for every subinterval J ⊂Z+. For a given exponent p > 1, we define the Ap(u)-
norm of the discrete weight u by the following quantity

Ap(u) := sup
J⊂Z+

1
|J| ∑

J⊂Z+

u

(
1
|J| ∑

J⊂Z+

u
1

1−p

)p−1

.

The class A∞ is naturally defined as the union of all the Ap classes, that is A∞ ≡
∪p>1Ap .

A discrete nonnegative weight u belongs to the discrete Gehring class Gq(K) for a
given exponent q > 1 and a constant K > 1, (or satisfies the reverse Hölder inequality)
if (

1
|J| ∑

J⊂Z+

uq

) 1
q

� K 1
|J| ∑

J⊂Z+

u,

holds for every subinterval J ⊂ Z+. For given exponent q > 1, we define the Gq(u)-
norm of the discrete weight u by the following quantity

Gq(u) := sup
J⊂Z+

⎡
⎣
(

1
|J| ∑

J⊂Z+

u

)−1(
1
|J| ∑

J⊂Z+

uq

)1/q
⎤
⎦

q
q−1

,

where the supremum is taken over all intervals J ⊂ Z+ . A discrete nonnegative weight
u belongs to the discrete Gehring class G∞(C), if

sup
J⊂Z+

u � C 1
|J| ∑

J⊂Z+

u.

The discrete weight u belongs to the discrete Gehring class G1(K) , if

exp

(
1
|J| ∑

J⊂Z+

u
1
|J| ∑J⊂Z+ u

log
u

1
|J| ∑J⊂Z+ u

)
� K, for K > 1,
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for every subinterval J ⊂ Z+ . We define G1(u)-norm by the following quantity

G1(u) := sup
J⊂Z+

[
exp

(
1
|J| ∑

J⊂Z+

u
1
|J| ∑J⊂Z+ u

log
u

1
|J| ∑J⊂Z+ u

)]
.

In [1], Arińo and Muckenhoupt introduced the characterizations of A1 -class and proved
that if u is nonincreasing and satisfies (1.1), then the space d(u−q∗/q,q∗) is the dual
space of the discrete classical Lorentz space

d(u,q) =

⎧⎨
⎩x : ‖x‖u,q =

(
∞

∑
n=1

|x∗(n)|q u(n)

)1/q

< ∞

⎫⎬
⎭ ,

where x∗(n) is the nonincreasing rearrangement of |x(n)| and q∗ is the conjugate of q.
Pavlov [19] and Lyubarskii and Seip [9] introduced the characterizations of A2 -class
and gave a full description of all complete interpolating sequences on the real line by
using the condition (1.2). A sequence λ (n) of complex numbers is called interpolating
sequence if for all complex sequence a(n) with

∑
n∈Z+

|a(n)|2 e−2π |ℑλ (n)|(1+ |ℑλ (n)|) < ∞,

the interpolation problem f (λ (n)) = a(n) has a unique solution f ∈ PW 2
π , where PW 2

π
is the Paly-Wiener space of all entire functions of exponential type at most π which
belong to L2 on the real line. The authors in [9] and [19] proved that the sequence
λ (n) of real numbers is a complete interpolating sequence if and only if:

(i). the sequence λ (n) is a separated sequence,
(ii). the limit

F(z) = lim
R→∞ ∏

|λ (n)|<R

(
1− z

λ (n)

)
,

exists uniformly on compact subset of the complex space and defines an entire function
F of exponential type π , the generating function,

(iii). there is a relatively dense subsequence λ (nk) such that the numbers d(k) =∣∣∣F ′
(λ (nk)

∣∣∣2 satisfies the discrete Muckenhoupt condition

(
1
|J| ∑

J⊂Z+

d(k)

)(
1
|J| ∑

J⊂Z+

d−1(k)

)
� A, (1.4)

for some A > 0 and all subintervals J ⊂ Z+ of consecutive integers containing |J|
elements.

In [28, Theorem 3.2], the authors characterized the boundedness of the discrete
Hardy-Littlewood maximal operator

M f (n) = sup
n∈J

1
n

n

∑
k=1

f (k),
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on the usual weighted Lebesgue space �p
u (Z+) in terms of Ap -condition where f is

nonnegative sequence. Precisely, they proved that the operator M f is bounded on
�p
u (Z+) if and only if u ∈ Ap and the inequality

∞

∑
k=1

(M f (k))p u(k) � C
∞

∑
k=1

( f (k))p u(k), (1.5)

holds with C > 0 independent of p and depending only on the norm Ap(u). In [25]
the authors proved that if u is a nonincreasing sequence and satisfies (1.1) for A > 1,
then for p ∈ [1, A/(A−1)) the inequality

1
|J| ∑

J⊂Z+

up � A1

(
1
|J| ∑

J⊂Z+

u

)p

, (1.6)

holds for every subinterval interval J ⊂ Z+ . This result proves that any A1 -Mucken-
houpt weight belongs to some Gehring classes Gp (will be defined later) of weights
satisfy reverse Hölder’s inequality (a transition property). The self-improving proper-
ties of discrete Muckenhoupt and Gehring classes have been studied recently by some
authors. For example in [27] the authors proved that if q > 1, A > 1, u is a nonde-
creasing weight and belongs to Aq(A) , then u ∈ Ap(A1) for p ∈ (p0,q] where p0 > 1
is the unique solution of the equation

(Ax)
1

q−1

(
q− x
q−1

)
= 1. (1.7)

This result proves that if u ∈ Aq(A) then there exist an ε > 0 and a constant A1 =
A1(p,A) such that u ∈ Aq−ε(A1) , (self-improving property) and thus

Aq(A) ⊂Aq−ε(A1), (1.8)

where ε = q− p for p∈ (p0,q] and p0 > 1 is the unique solution of the equation (1.7).
In [25] the authors proved that if q > 1, K > 1 and v is a nonincreasing sequence
belongs to Gq(K) , then there exist an ε > 0, and a constant K1 = K1(q,K) such that
v ∈ Gp+ε(K1) , (self-improving property) and thus

Gq(K) ⊂ Gq+ε(K1). (1.9)

There is an alternative way involves exploiting the correspondence between a weighted
Muckenhoupt class and the reverse Hölder class. This in fact provides a simple proof
of the self-improving property of Gq(K) as follows: Assume that v ∈ Gq(K) i.e., the
condition (

1
|J| ∑

J⊂Z+

vq

)1/q

� K
(

1
|J| ∑

J⊂Z+

v

)
, for all J ⊂ Z+, (1.10)

holds. This condition can be rewritten in the form(
1
|J| ∑

J⊂Z+

vq− 1
p−1

(
1
v

) −1
p−1

)p−1

� Kq(p−1)

(
1
|J| ∑

J⊂Z+

v

)q(p−1)

. (1.11)



EMBEDDING BETWEEN SOME CLASSES 947

By taking p = q/(q−1), we have from (1.11) that (here Λ(J) = ∑J v(n))

(
1

Λ(J) ∑
J⊂Z+

v

(
1
v

))(
1

Λ(J) ∑
J⊂Z+

v

(
1
v

) −1
p−1

)p−1

(1.12)

� Kq(p−1) |J|p
Λp(J)

(
Λ(J)
|J|

)p

= Kp, (1.13)

for all J ⊂ Z+, which is a weighted Ap,v(Kp) condition for v−1 with respect to the
weight v and q = p/(p− 1). This shows that if v ∈ Gq(K) then v−1 ∈ Ap,v(C) with
C = Kp where q = p/(p−1).

Making use of this discrete Gehring result, the authors in [26] proved that the
so-called reverse Hölder inequality for discrete Muckenhoupt weights is also satisfied.
Precisely, their result reads as follows: If 1 < p < ∞ and u ∈ Ap, then there are
constants q > 1 and 0 < C < ∞ such that

(
1
|J| ∑

J⊂Z+

uq(k)

) 1
q

� C
1
|J| ∑

J⊂Z+

u(k), for all J ⊂ Z+.

This equivalence gives the transition property between the discrete Muckenhoupt and
Gehring classes in the form: If u ∈ Ap for some p then u ∈ Gq for some q . In this
paper, we will prove the inverse and prove that if u ∈ Gs for some s then u ∈ Aq for
some q. For more details and additional results, we refer the reader to the paper [22].

The interesting question arises now is: What are the relations between p and q
for which the inclusions Ap ⊂ Gq and Gq ⊂Ap hold?

In this paper, we give a solution of this question by employing a new approach
depends upon the appropriate factorizations of w. Precisely, the aims of this paper are
the following:

1). For w∈Ap, we find the precise range of r ’s such that w ∈ Gr, and the precise
range of q < p for which w ∈ Aq.

2). For w∈Gr, we find the precise range of p ’s such that w∈Ap, and the precise
range of q > r for which w ∈ Gq.

3). Find the precise range of τ > 1, such that wτ ∈ Ap .
For classical results of integral forms, we refer the reader to the papers [2, 11, 12,

13, 18, 20, 21, 31] and the references cited therein.
The paper is organized as follows:
In Section 2, we state some basic results that are needed in the proofs of the main

results, prove some results of the structure of the discrete Muckenhoupt and Gehring
weights (Lemma 2.1 and Theorem 2.1 and Theorem 2.2). Next, we prove that if u∈Ap

then u ∈ G1+δ for some positive δ > 0 that is if u ∈ Ap then it satisfies a reverse
Hölder inequality (Theorem 2.3). The the self-improving property of the Muckenhoupt
weights will be proved in Lemma 2.2. In addition, we prove that the weights satisfy
Ap -condition also satisfy A∞ -condition and if u ∈ Ap then uτ ∈ Ap for some τ > 1.
We also show that if u ∈Ap , then uδ ∈ Aq and establish the explicit value of q . Next,
we establish the transition and inclusion relations between the two classes which give



948 S. H. SAKER, R. R. MAHMOUD AND M. KRNIĆ

embedding relations between Ap and Gr and prove that if the weights satisfy G∞ -
condition then the weights also satisfy Ap -condition.

In Section 3, we give some applications and start by proving the properties of the
discrete Rubio De Francia iterated algorithm and pass to prove the discrete version of
Jones’s Factorization Theorem of Ap weights in terms of two A1 weights and inves-
tigate the exact range on q < p such that w ∈ Ap implies w ∈ Aq and investigate the
exact range on p > r such that w ∈ Gr implies w ∈ Ap and investigate the exact range
on r such that w ∈ Ap implies w ∈ Gr . The ranges are optimal.

2. Main results

We begin this section by recalling some properties of Muckenhoupt Ap -classes,
which are adapted from [26] and will be used later in the proof of the main results.
Recall that two positive quantities A, B are said to be equivalent, written A
B , if there
exists two constants c and C such that the inequality cB � A �CB holds. Furthermore,
A � B is satisfied if there exists a constant C such that the inequality A � CB holds.
Clearly the relation � is transitive, that is, if A � B and B � C hold, then A � C
also holds. Throughout this section, we assume that the sequences in the statements
of theorems are non-negative and assume for the sake of conventions that 0 ·∞ = 0,
0/0 = 0, ∑b

s=a y(s) = 0, for a > b , and by ∑J⊂Z+ u we mean that ∑n∈J⊂Z+ u(n) and

p
′
is the conjugate exponent given by 1/p+1/p

′
= 1.

LEMMA 2.1. Let u be a nonnegative weight and p and q be positive real num-
bers. The following properties hold:

(1) . If u ∈Ap then uα ∈ Ap, for 0 � α � 1, with Ap (uα) = Aα
p (u),

(2). If u ∈ Ap , then uτ ∈ Ap for some τ > 1,

(3) . u ∈ Ap if and only if u and u
1

1−p are in A∞.

(4). Given 1 < p and s < ∞. Then u ∈ Ap ∩Gs if and only if us ∈ Aq, where
q = s(p−1)+1.

Now, we start with the following properties for Ap weights, which will have a
clear imprint in the proofs of the main results for this paper.

THEOREM 2.1. (1). If 1 � p < q < ∞, then Ap ⊂Aq.

(2). If p > 1 , then u ∈ Ap if and only if u1−p′ ∈ Ap′ .

(3). If u1, u2 ∈ A1, then u1u
1−p
2 ∈Ap.

(4). If u ∈ Ap, then

1
|J| ∑

J⊂Z+

u � Ap(u)exp

(
1
|J| ∑

J⊂Z+

logu

)
,

for every J ⊂ Z+ .
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Proof. (1). Let p = 1 and 1 < q < ∞ and assume that u ∈ A1. Then

(
1
|J| ∑

J⊂Z+

u1−q′
)q−1

=

(
1
|J| ∑

J⊂Z+

(
1
u

) 1
q−1

)q−1

� esssup
J⊂Z+

1
u

=
1

inf
J⊂Z+

u

� A1(u)
1
|J| ∑J⊂Z+ u

, for every J ⊂ Z+.

This shows that u ∈Aq. Now, we consider the case when 1 < p < q < ∞ and u ∈Ap.
By applying Hölder’s inequality we obtain(

1
|J| ∑

J⊂Z+

u
1

1−q

)q−1

=

(
1
|J| ∑

J⊂Z+

(
1
u

) 1
q−1

)q−1

�
(

1
|J|

)q−1

⎛
⎜⎝ ∑

J⊂Z+

((
1
u

) 1
q−1

) q−1
p−1

⎞
⎟⎠

(q−1)
(

p−1
q−1

)

×
(

∑
J⊂Z+

1
q−1
q−p

)(q−1)
(

q−p
q−1

)

=
(

1
|J|

)q−1
(

∑
J⊂Z+

(
1
u

) 1
p−1

)p−1(
∑

J⊂Z+

1

)q−p

=
(

1
|J|

)q−1
(

∑
J⊂Z+

(
1
u

) 1
p−1

)p−1

|J|q−p

=

(
∑

J⊂Z+

(
1
u

) 1
p−1

)p−1

|J|1−p

=

(
1
|J| ∑

J⊂Z+

u
1

1−p

)p−1

.

This implies

1
|J| ∑

J⊂Z+

u(n)

(
1
|J| ∑

J⊂Z+

u
1

1−q

)q−1

� 1
|J| ∑

n∈J
u(n)

(
1
|J| ∑

J⊂Z+

u
1

1−p

)p−1

� [u]Ap ,

for every J ⊂ Z+. In the last inequality we used the fact that u ∈ Ap. This shows that
u ∈Aq .
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(2). First, assume that u ∈Ap with 1 < p < ∞. Then

1
|J| ∑

J⊂Z+

u1−p′
(

1
|J| ∑

J⊂Z+

(
u1−p′

) 1
1−p′

)p′−1

=
1
|J| ∑

J⊂Z+

u1−p′
(

1
|J| ∑

J⊂Z+

u

) 1
p−1

=
1
|J| ∑

J⊂Z+

u
1

1−p

(
1
|J| ∑

J⊂Z+

u

) 1
p−1

� A
1

p−1
p (u),

for every J ⊂ Z+, which shows that u1−p′ ∈ Ap′ . Now, we consider the reverse, i.e.,

we assume that u1−p′ ∈ Ap′ with 1 < p < ∞. As above we see that

1
|J| ∑

J⊂Z+

u
1

1−p

(
1
|J| ∑

J⊂Z+

u

) 1
p−1

=
1
|J| ∑

J⊂Z+

u1−p′
(

1
|J| ∑

J⊂Z+

u

) 1
p−1

=
1
|J| ∑

J⊂Z+

u1−p′
(

1
|J| ∑

J⊂Z+

(
u1−p′

) 1
1−p′

)p′−1

� Ap′(u
1−p′),

for every J ⊂ Z+ . This shows that u ∈ Ap .
(3). Assume that u1 ∈ A1 and u2 ∈A1. The Ap condition for u1u

1−p
2 is

1
|J| ∑

J⊂Z+

u1u2
1−p

(
1
|J| ∑

J⊂Z+

u1
1

1−p u2

)p−1

� c.

Since u1 ∈ A1 and u2 ∈ A1 , then

1
ui

� A1(ui)
|J|

ui(J)
,

almost for every J ⊂ Z+, and i = 1,2. This implies

1
|J| ∑

J⊂Z+

u1u2
1−p =

1
|J| ∑

J⊂Z+

u1

(
1
u2

)p−1

� Ap−1
1 (u2)

( |J|
u2(J)

)p−1
(

1
|J| ∑

J⊂Z+

u1(n)

)

= Ap−1
1 (u2)

( |J|
u2(J)

)p−1 u1(J)
|J| ,
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and

(
1
|J| ∑

J⊂Z+

u1
1

1−p u2

)p−1

=

(
1
|J| ∑

J⊂Z+

(
1
u1

) 1
p−1

u2

)p−1

� A1(u1)
|J|

u1(J)

(
1
|J| ∑

J⊂Z+

u2

)p−1

= A1(u1)
|J|

u1(J)

(
u2(J)
|J|

)p−1

.

Thus

∑
J⊂Z+

u1u2
1−p

(
1
|J| ∑

J⊂Z+

u1
1

1−p u2

)p−1

� A1(u1)Ap−1
1 (u2), for every J ⊂ Z+.

(4). To prove the result in this case we assume that p > 1. Then, for any J ⊂ Z+ , we
have that

[Ap(u)] : = sup
J⊂Z+

(
1
|J| ∑

J⊂Z+

u

)(
1
|J| ∑

J⊂Z+

u
−1
p−1

)p−1

� lim
q→∞

(
1
|J| ∑

J⊂Z+

u

)(
1
|J| ∑

J⊂Z+

u
−1
q−1

)q−1

=

(
1
|J| ∑

J⊂Z+

u

)
exp

(
1
|J| ∑

J⊂Z+

− logu

)
,

which proves the desired inequality. The proof is complete. �

REMARK 2.1. From the above results, we see that the Ap classes are nested and
A1 is the strongest condition. Also, the results show the interpretation of duality and
also give a method for constructing Ap weights from A1 weights.

In the following lemma, we will present and prove some interesting properties for
the Gehring Gq classes.

THEOREM 2.2. Let u be a nonnegative weight and p and q be real positive
numbers such that p, q > 1 . The following properties hold:

(1). G∞ ⊂ Gq ⊂ G1 for all 1 < q � ∞,
(2). G1 =

⋃
1<q�∞

Gq with G1(u) = limq→1Gq,

(3) . G1 = A∞ =
⋃

1<p�∞
Ap =

⋃
1<q�∞

Gq.
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Proof. We give the proof of property (1). The proofs of the rest of the properties
are similar and will be omitted. If u ∈ G∞ , then by the definition of G∞ , there exists
0 < C < ∞, we have should be such that

u � C

(
1
|J| ∑

J⊂Z+

u

)
, for all J ⊂ Z+. (2.1)

For all 1 < q < ∞, by applying (2.1), we have that(
1
|J| ∑

J⊂Z+

uq

)1/q(
1
|J| ∑

J⊂Z+

u

)−1

�
[

1
|J| ∑

J⊂Z+

(
C

(
1
|J| ∑

J⊂Z+

u

))q]1/q(
1
|J| ∑

J⊂Z+

u

)−1

= C

(
1
|J| ∑

J⊂Z+

u

)(
1
|J| ∑

J⊂Z+

u

)−1

= C.

That is u ∈ Gq and hence G∞ ⊂ Gq . Now, if u ∈ Gq, then there exists G > 1 such that⎡
⎣
(

1
|J| ∑

J⊂Z+

uq

)1/q(
1
|J| ∑

J⊂Z+

u

)−1
⎤
⎦

q/(q−1)

� G, for all J ⊂ Z+. (2.2)

Taking the limit in (2.2) as q tends to 1, we obtain that

G � lim
q→1

⎡
⎣
(

1
|J| ∑

J⊂Z+

uq

)1/q(
1
|J| ∑

J⊂Z+

u

)−1
⎤
⎦

q/(q−1)

= lim
q→1

(
1
|J| ∑

J⊂Z+

(
u

1
|J| ∑J⊂Z+ u

)q)1/(q−1)

= exp

(
1
|J| ∑

J⊂Z+

u
1
|J| ∑J⊂Z+ u

log

(
u

1
|J| ∑J⊂Z+ u

))
.

That is from the definition of G1 we see that u ∈ G1 and hence, Gq ⊂ G1 , which is the
desired result. The proof is complete. �

The following theorem proves that if u ∈ Ap then it satisfies the reverse Hölder
inequality.

THEOREM 2.3. Let 1 < p < ∞ and assume that u ∈ Ap . Then there are δ > 0
and 0 < c < ∞ such that (

1
|J| ∑

J⊂Z+

u1+δ

) 1
1+δ

� c
1
|J| ∑

J⊂Z+

u, (2.3)
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for every J ⊂ Z+ .

Proof. By property (1) of Theorem 2.1 , we have Ap ⊂Aq, if 1 � p < q. Thus
we may assume that p > 2. From Hölder’s inequality, for every positive sequence u ,
we see that

1 �
(

1
|J| ∑

J⊂Z+

(
1
u

) 1
p−1

)(
1
|J| ∑

J⊂Z+

u
1

p−1

)
. (2.4)

By applying Ap -condition for u, we get that

1
|J| ∑

J⊂Z+

u

(
1
|J| ∑

J⊂Z+

u
1

1−p

)p−1

� c = c ·1p−1.

Recalling (2.4), we get that

1
|J| ∑

J⊂Z+

u

(
1
|J| ∑

J⊂Z+

u
1

1−p

)p−1

� c

(
1
|J| ∑

J⊂Z+

u
1

1−p

)p−1(
1
|J| ∑

J⊂Z+

u
1

p−1

)p−1

. (2.5)

Dividing both sides of (2.5) by

0 <

(
1
|J| ∑

J⊂Z+

u
1

1−p

)p−1

< ∞,

this leads directly to

1
|J| ∑

J⊂Z+

u � c

(
1
|J| ∑

J⊂Z+

u
1

p−1

)p−1

,

which gives (
1
|J| ∑

J⊂Z+

(
u

1
p−1

)p−1
) 1

p−1

� c
1
|J| ∑

J⊂Z+

u
1

p−1 . (2.6)

But since p > 2, then p−1 > 1 and (2.6) shows that u
1

p−1 satisfies the reverse Hölder
inequality. By (1.9) there exist q > p−1 and c

′
< ∞, such that

(
1
|J| ∑

J⊂Z+

u
q

p−1

) 1
q

� c′
1
|J| ∑

J⊂Z+

u
1

p−1 � c′
(

1
|J| ∑

J⊂Z+

u

) 1
p−1

,

for p− 1 < q < p− 1+ δ , δ > 0. The last inequality follows directly from Hölder’s
inequality. Finally, we get that

(
1
|J| ∑

J⊂Z+

u
q

p−1

) p−1
q

� c
1
|J| ∑

J⊂Z+

u.

Taking 1+ δ = q/(p−1), we obtain the assertion (2.3). The proof is complete. �
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REMARK 2.2. For different approaches to this important result in the continuous
case, we refer the interested reader to the books [4, Theorem 4.22], [6, page 397], [7,
Corollary 6.10], [8, Theorem 9.2.2], [10, Lemma 4.33], [12] and [17].

As a first application of Theorem 2.3, we present the so-called self improving
property for Muckenhoupt weights which is an important in its own seek.

LEMMA 2.2. Suppose that u ∈ Ap. Then, there is ε > 0 such that u ∈ Ap−ε .

Proof. We apply Theorem 2.3 to (1/u)1/(p−1), which is a weight sequence satis-
fying condition Aq -condition with q = p/(p−1) . This gives us that

(
1
|J| ∑

J⊂Z+

(
1
u

)(1+δ )/(p−1)
)(p−1)/(1+δ )

�
(

c
|J| ∑

J⊂Z+

(
1
u

)1/(p−1)
)p−1

.

Setting ε = (δ/(1+ δ ))(p−1) > 0, so that (p− ε)−1 = (p−1)/(1+ δ ) and multi-
plying both sides of the above inequality by (1/ |J|)∑J⊂Z+ u, this yields

(
1
|J| ∑

J⊂Z+

u

)(
1
|J| ∑

J⊂Z+

(
1
u

)1/(p−ε−1)
)p−ε−1

� c

(
1
|J| ∑

J⊂Z+

u

)(
1
|J| ∑

J⊂Z+

(
1
u

)1/(p−1)
)p−1

,

and then u ∈ (Ap−ε) . The proof is complete. �
Before, we continue to the next result, we need the following definition.

DEFINITION 2.1. A weight sequence u is said to satisfy A∞ -condition, if

u(E)
u(J)

� C

( |E|
|J|

)α
, (2.7)

where u(E) = ∑
E

u and u(J) = ∑J⊂Z+ u. The constants C > 0 and α > 0 in (2.7) are

supposed to be independent of E and J .

LEMMA 2.3. If u satisfies Ap -condition for some p < ∞, then u ∈ A∞ .

Proof. For E ⊂ Z+ , Hölder’s inequality and Theorem 2.3 give

1
|J| ∑E

u �
(

1
|J| ∑

J⊂Z+

u1+δ

)1/(1+δ )( |E|
|J|

)δ/(1+δ )

�
(

c
|J| ∑

J⊂Z+

u

)( |E|
|J|

)δ/(1+δ )

= c
∑J⊂Z+ u

|J|
( |E|
|J|

)δ/(1+δ )

,
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which is the A∞ -condition (2.7) with α = δ/(1+ δ ). The proof is complete. �
The next result improves the result in [30] by removing the monotonicity condition

of the weight sequence u .

THEOREM 2.4. If u ∈ Ap with 1 � p < ∞, then there exists ε = ε (p,Ap(u)) >
0 such that u1+ε ∈ Ap.

Proof. If u∈Ap with 1 � p < ∞, then by Theorem 2.3 there exists ε = ε (p,Ap(u))
> 0 and c = c(p,Ap(u)) such that

∑
J⊂Z+

u1+ε � c

(
1
J ∑

J⊂Z+

u

)1+ε

, for every J ⊂ Z+. (2.8)

For p = 1, assume that u ∈ A1 . Then (2.8) and the A1 -condition (1.1) imply that

∑
J⊂Z+

u1+ε � c

(
1
|J| ∑

J⊂Z+

u

)1+ε

� c

(
ess inf
J⊂Z+

u

)1+ε

= cess inf
J⊂Z+

u1+ε .

This shows that u1+ε ∈ A1. Assume that u ∈ Ap with 1 < p < ∞. Property (2) in
Theorem 2.1 implies that u1−p′ ∈ Ap′ . Applying Theorem 2.3, we may choose ε > 0,

so that both u and u1−p′ satisfy a revere Hölder inequality with the same exponent
1+ ε, that is, (2.8) holds and

∑
J⊂Z+

u(1−p′)(1+ε) � c

(
1
|J| ∑

J⊂Z+

u1−p′
)1+ε

, for every J ⊂ Z+.

Together with Ap condition (1.3), this implies that

1
|J| ∑

J⊂Z+

u1+ε

(
1
|J| ∑

J⊂Z+

u(1+ε)(1−p′)
)p−1

� c

(
1
|J| ∑

J⊂Z+

u

)1+ε (
1
|J| ∑

J⊂Z+

u1−p′
)(1+ε)(p−1)

= c

⎡
⎣
(

1
|J| ∑

J⊂Z+

u

)(
1
|J| ∑

J⊂Z+

u1−p′
)(p−1)

⎤
⎦

(1+ε)

� c1 < ∞.

This shows that u1+ε ∈Ap. The proof is complete �
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Before proceeding to the next application, we recall the following property for the
Muckenhoupt weights from Lemma 2.1. Precisely, if u ∈ Ap , then uδ ∈Ap. Here, we
give here an improvement for this result by presenting the explicit value for q such that
uδ ∈ Aq as follows.

LEMMA 2.4. Suppose that u ∈ Ap for some 1 < p < ∞ and 0 < δ < 1. Then,
uδ ∈ Aq for q = δ p+1− δ .

Proof. For 0 � δ � 1, and u ∈ Ap, we have 1/(p− 1) � δ/(p− 1) > 0, and
hence for all J ⊂ Z+, we have

(
1
|J| ∑

J⊂Z+

uδ

)(
1
|J| ∑

J⊂Z+

(
uδ

) 1
1−q

)q−1

=

(
1
|J| ∑

J⊂Z+

uδ

)(
1
|J| ∑

J⊂Z+

(
uδ

) 1
δ−δ p

)δ p−δ

�
(

1
|J| ∑

J⊂Z+

u

)δ (
1
|J| ∑

J⊂Z+

u
δ

δ−δ p

)δ p−δ

�
(

1
|J| ∑

J⊂Z+

u

)δ (
1
|J| ∑

J⊂Z+

u
1

1−p

)δ (p−1)

=

⎡
⎣
(

1
|J| ∑

J⊂Z+

u

)(
1
|J| ∑

J⊂Z+

u
1

1−p

)(p−1)
⎤
⎦

δ

� Aδ
p(u),

that is uδ ∈ Aq, with Aq
(
uδ) � Ap(u)δ , which is the desired result. The proof is

complete. �

COROLLARY 2.1. For any 1 < p < ∞ and for every u∈Ap there is q with q < p
such that u ∈Aq . In other words, we have

Ap =
⋃

q∈(1,p)

Aq.

Proof. Given u ∈Ap , by property (2) of Theorem 2.1 , we have u−1/(p−1) ∈Ap′ .

On the other hand, using Theorem 2.3 for the new weight u−1/(p−1), we know that
there exist δ > 0, C > 0 such that for every J ⊂ Z+

(
1
|J| ∑

J⊂Z+

u−(1+δ )/(p−1)

) 1
1+δ

� C
|J| ∑

J⊂Z+

u−1/(p−1).
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But 1+δ
p−1 > 1

p−1 implies that 1+δ
p−1 = 1

q−1 for some 1 < q < p. Then

(
1
|J| ∑

J⊂Z+

u

)(
1
|J| ∑

J⊂Z+

u−1/(q−1)

)q−1

=

(
1
|J| ∑

J⊂Z+

u

)(
1
|J| ∑

J⊂Z+

u−(1+δ )/(p−1)

) p−1
1+δ

� Cp−1

(
1
|J| ∑

J⊂Z+

u

)(
1
|J| ∑

J⊂Z+

u−1/(p−1)

)p−1

� C,

since u itself satisfies Theorem 2.3. The proof is complete. �

It has been proved (see [26]) that the norms of the classes A∞ and Gp are related
quantitatively in the following theorem.

THEOREM 2.5. Let u be a nonnegative weight and 1 < p < ∞ . Then

A1/p
∞ (up)
A∞(u)

� G1/p′
p (u) � A1/p

∞ (up). (2.9)

In the continuous versions, the classes A1 and G∞ generate A∞ in the sense that
A∞ = A1 · G∞ , and G∞ plays the same role relative to Gr as A1 does to Ap, (see [5]
for more details). The next theorem will play a crucial role in the proof of our main
results for the next section. Specifically, it gives the embedding relation between the
two discrete classes A1(C) and Gp(A) which adapted from [25].

THEOREM 2.6. Let u be a nonincreasing weight. If

1
|J| ∑

J⊂Z+

u � C inf
J⊂Z+

u, for some C > 1, (2.10)

then, for r ∈ [1, C/(C−1)), we have that

(
1
|J| ∑

J⊂Z+

ur

)1/r

� A1/r

(
1
|J| ∑

J⊂Z+

u

)
, (2.11)

where A is given by

A :=
C1−r

r− (r−1)C . (2.12)

REMARK 2.3. Theorem 2.6 proves that if u ∈ A1(C), then u ∈ Gp(A) for p ∈
[1,C/(C−1)).
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In the following, we will show that the so-called reverse Hölder inequality for
discrete Muckenhoupt weights is also satisfied. The proof requires a weighted versions
of the Ap and Gs conditions. Given a non-negative weight sequence w, we say that a
positive sequence u is in Ap,w(C) for some p, 1 < p < ∞, if(

1
w(J) ∑

J⊂Z+

uw

)(
1

w(J) ∑
J⊂Z+

u1−p′w

)p−1

� C,

where w(J) = ∑J⊂Z+ w . Similarly, we write u ∈ Gs,w(K) if it satisfies the reverse
Hölder’s inequality (

1
w(J) ∑

J⊂Z+

usw

)1/s

� K 1
w(J) ∑

J⊂Z+

uw,

for s > 1. The following theorem proves that the converse of Theorem 2.3 is also true.

THEOREM 2.7. If u ∈ Gs for 1 < s < ∞ , then there exists 1 < p < ∞, such that
u ∈Ap. The value of p depends only on s and Gs(u).

Proof. We know that if u ∈ Ap, then the Ap condition can be rewritten in the
form (

∑
J⊂Z+

u

)p′−1

∑
J⊂Z+

(
(u)−1

)p′
u � (Ap(u))p′−1

(
∑

J⊂Z+

(u)−1 u

)p′

,

which in turn is equivalent to the weighted Muckenhoupt condition

1
w(J) ∑

J⊂Z+

(
(u)−1

)p′
w � (Ap(u))p′−1

(
1

w(J) ∑
J⊂Z+

(u)−1 w

)p′

,

for the sequence 1/u with a weight w = u. It follows immediately that u ∈ Ap if and
only if u−1 ∈ Gp′,w. A similar argument shows that u ∈ Gs if and only if u−1 ∈ As′,w.

Therefore, given u ∈ Gs there exists some p > 1 such that u−1 ∈ Gp′,w , which in turn
is equivalent to u ∈ Ap. This completes our proof. �

Now, we are ready to state and prove one of the important results in this section
which explicitly gives the relation between the two classes G∞ and Ap with the best
range for the exponent p, for related results see also [16]. To provide more clarity on
the previous concepts, the authors in [24] investigated following estimates for power
low discrete weights by making use of some bounds of functions in [15, Lemma 2.2]
and [14, Lemma 2.2], respectively. These estimates will play a crucial role for the
precise range of constants of the classes.

LEMMA 2.5. If p > 1 and −1 < λ < p− 1 , then the norm Ap(nλ ) 
 Φ(p,λ ) ,
where

Φ(p,λ ) =
1

(1+ λ )

(
p−1

p−λ −1

)p−1

. (2.13)
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Taking limit as p → 1, we get the following corollary.

COROLLARY 2.2. If −1 < λ < 0 , then the norm A1(nλ ) 
 Φ(1,λ ) , where

Φ(1,λ ) =
1

(1+ λ )
. (2.14)

LEMMA 2.6. If p > 1 and α > −1/p, then the norm (Gp(nα))
p−1
p 
 Ψ(p,α) ,

where

Ψ(p,α) =
(1+ α)

(1+ pα)1/p
. (2.15)

Taking limit as p → ∞, we get the following corollary.

COROLLARY 2.3. The norm (G∞(nα))
p−1
p 
 Ψ(∞,α) , where

Ψ(∞,α) = (1+ α); if α > 0 or α < 0. (2.16)

THEOREM 2.8. Let w ∈ G∞ and assume that β = G∞ (w) . Then, there exists p >
β such that w ∈ Ap .

Proof. Suppose that w ∈ G∞, it follows from Property (1) in Lemma 2.2 that w
belongs to Gq for some q > 1. To finish the proof, it remains only to recall the result in
Theorem 2.7, which claims the assertion. To prove the that the range for the exponent
p is optimal, we use the weight sequence w(n) = nβ−1 for β > 1. Applying Lemma
2.3 for this sequence with α = β −1, we get that [G∞ (w)] 
 (1+ α) = β . Lemma 2.5
asserts also that this sequence belongs to Ap for p > β , but does not belong to Aβ .
This completes the proof. �

3. Applications

In this section, we will prove some applications of the results in Section 2. We
start with the properties of the discrete Rubio De Francia iterated algorithm which is
interesting in itself and of potential future use in different contexts. To do this, we will
consider the discrete Hardy-Littlewood maximal operator M f which is defined by

M f (n) = sup
n∈J

1
n

n

∑
k=1

f (k), for J ⊂ Z+. (3.1)

THEOREM 3.1. Fix 1 < p < ∞ and u ∈ Ap . For any non-negative sequence
f ∈ �p(u), define

Ψ f (n) :=
∞

∑
i=0

Mi f (n)
2i‖M‖i

�p(u)
, (3.2)

where for i > 0, Mi f := M ◦ · · · ◦M f denotes i iterations of the maximal operator
and M0 f = f . Then:
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(1). f (n) � Ψ f (n),
(2). ‖Ψ f‖�p(u) � 2‖ f‖�p(u),
(3). Ψ f ∈A1 and A1(Ψ f ) � 2‖M‖�p(u) .

Proof. (1). It is sufficient to consider the first term in (3.2) for i = 0.
(2). By applying Minkowski’s inequality to the norm of (3.2), we obtain that

‖Ψ f‖�p(u) �
∞

∑
i=0

∥∥Mi f
∥∥

�p(u)

2i‖M‖i
�p(u)

�
∞

∑
i=0

2−i‖ f‖�p(u) = 2‖ f‖�p(u),

where we have used the boundedness property of the discrete maximal operator M f
on the weighted discrete Lebesgue space �p(u) .

(3). Finally, since the maximal operator is subadditive, we get that

M(Ψ f )(n) = M

(
∞

∑
i=0

Mi f (n)
2i‖M‖i

�p(u)

)
�

∞

∑
i=0

Mi+1 f (n)
2i‖M‖i

�p(u)

� 2‖M‖�p(u)Ψ f (n),

that is Ψ f ∈A1 with a constant A1(Ψ f ) � 2‖M‖�p(u). The proof is complete. �
For applications, we will employ the discrete Rubio De Francia iterated algorithm

of two A1 weights (reverse factorization).

THEOREM 3.2. For 1 < p < ∞, a weight u is in Ap if and only if there exist u1,

u2 ∈A1 such that u = u1u
1−p
2 .

Proof. (=⇒) Fix p and u1, u2 ∈A1. Then, for any interval J ⊂Z
+ , we can write

that
1
|J| ∑

J⊂Z+

um � A1(um)um(k), for m = 1,2.

Let u = u1u
1−p
2 ; then we have that

(
1
|J| ∑

J⊂Z+

u

)(
1
|J| ∑

J⊂Z+

u1−p′
)p−1

=
1
|J| ∑

J⊂Z+

u1u
1−p
2

(
1
J ∑

J⊂Z+

[
u1u

1−p
2

]1−p′
)p−1

� A1(u1)Ap−1
1 (u2)

(
1
|J| ∑

J⊂Z+

u1

)(
1
|J| ∑

J⊂Z+

u2

)1−p

×
(

1
|J| ∑

J⊂Z+

u2

)p−1(
1
|J| ∑

J⊂Z+

u1

)−1

= A1(u1)Ap−1
1 (u2).
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(⇐= ) Fix u ∈ Ap,1 < p < ∞, and let q = pp′ > 1. Define the operator

S1 f = (u)
1
q M

(
f p′u−

1
p

) 1
p′

.

Then S1 is sublinear and S1 : �q → �q since

∑
J⊂Z+

(S1 f )q = ∑
J⊂Z+

M
(

f p′u−
1
p

)p
u � C ∑

J⊂Z+

f q,

where C depending only on Ap(u). Similarly, for σ = u1−p′ ∈ Ap′ , consider

S2 f = σ
1
q M

(
f pσ− 1

p

) 1
p
,

we know that S2 is sublinear and S2 : �q → �q. Define S = S1 +S2 and form the Rubio
de Francia iteration algorithm

Ψ f (n) =
∞

∑
k=0

Sk f (n)
2k‖S‖k

�q

,

then, by the proof of Theorem 3.1, it follows that Ψ : �q → �q. Fix any non-zero function
f ∈ �q then Ψ f is finite almost everywhere. Moreover, S(Ψ f )(n) � 2‖S‖�qΨ f (n) . In
particular, we have that

u
1
q M

(
(Ψ f )p′u−

1
p

) 1
p′ = S1(Ψ f ) � Ψ f .

Hence, if we let u2 = (Ψ f )p′u−
1
p , then this inequality becomes Mu2 � u2, so u2 ∈A1.

Similarly, if we repeat this argument with S2 in place of S1, we get u1 = (Ψ f )pσ− 1
p′ ∈

A1. Moreover, it is immediate that u1u
1−p
2 = u

1
p u

1
p′ = u. This completes the proof. �

Next, we present the equivalence between the weight u that belongs to the class
A1 ∩Gs and the weight us that belongs to A1 class, which extends Lemma 3.3 to A1

weights. This result will be used later for the proof of Theorem 3.3 below.

LEMMA 3.1. Given a weight u and s > 1, then u∈A1∩Gs if and only if us ∈A1 .

Proof. Suppose first that u ∈ A1∩Gs . Then, we have that

1
|J| ∑

J⊂Z+

us �
(

1
|J| ∑

J⊂Z+

u

)s

� ess inf
J⊂Z+

us.

Hence, us ∈ A1 . Conversely, suppose us ∈ A1 . By Hölder’s inequality, we can write
that

1
|J| ∑

J⊂Z+

u �
(

1
|J| ∑

J⊂Z+

us

) 1
s

� ess inf
J⊂Z+

u � 1
|J| ∑

J⊂Z+

u.

It follows at once that u ∈A1 ∩Gs. This completes the proof. �
The next two lemmas consider dilations of A1 and G∞ weights.
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LEMMA 3.2. If u ∈ A1, then u−r ∈ G∞ for any r > 0.

Proof. By Hölder’s inequality with exponent p = 1+ r, we can write that

1 =
1
|J| ∑

J⊂Z+

u
1
p′ u

− 1
p′ �

(
1
|J| ∑

J⊂Z+

u

) r
1+r

(
1
|J| ∑

J⊂Z+

u−r

) 1
1+r

.

If we combine this with the fact that u ∈ A1, we get that

u−r �
(

1
|J| ∑

J⊂Z+

u

)−r

� 1
|J| ∑

J⊂Z+

u−r.

Hence, u−r ∈ G∞. This completes the proof. �

LEMMA 3.3. If u ∈ G∞, then ur ∈ G∞ for any r > 0.

Proof. If r > 1, from Hölder’s inequality we see that

ur �
(

1
|J| ∑

J⊂Z+

u

)r

� 1
|J| ∑

J⊂Z+

ur.

If r < 1, then, since u∈A∞, by Lemma 3.3, ur ∈G1/r. Hence, we can repeat the above
argument using the reverse Hölder inequality to get that ur ∈ G∞. This completes the
proof. �

We conclude this part by the following result, which gives the factorization of
some weights u belong to the class Ap∩Gs in terms of other weights belong to A1∩Gs

and Ap∩G∞, respectively.

THEOREM 3.3. For 1 < p, s < ∞, the weight u ∈ Ap ∩Gs if and only if there
exist weights v1, v2 such that u = v1v2, v1 ∈A1 ∩Gs and v2 ∈ Ap∩G∞.

Proof. We first fix v1 ∈ A1 ∩Gs and v2 ∈ Ap ∩G∞. By Lemmas 3.1 and 3.3,
vs
1 ∈ A1 and vs

2 ∈ G∞ . Then, we have that

1
|J| ∑

J⊂Z+

us �
(

1
|J| ∑

J⊂Z+

vs
1

)(
1
|J| ∑

J⊂Z+

vs
2

)

� 1
|J| ∑

J⊂Z+

vs
1

(
1
|J| ∑

J⊂Z+

v2

)s

�
(

1
|J| ∑

J⊂Z+

v1v2

)s

.
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Thus, u ∈ Gs. Similarly, by Lemma 3.2, v1−p′
1 ∈ G∞ and v1, v2 ∈ Ap, and so

1
|J| ∑

J⊂Z+

v1v2

(
1
|J| ∑

J⊂Z+

[v1v2]
1−p′

)p−1

�
(

1
|J| ∑

J⊂Z+

v1

)(
1
|J| ∑

J⊂Z+

v2

)(
1
|J| ∑

J⊂Z+

v1−p′
1

)p−1(
1
|J| ∑

J⊂Z+

v1−p′
2

)p−1

� Ap(v1)Ap(v2).

Thus u ∈ Ap. To prove the converse, fix u ∈ Ap ∩Gs . Then by Lemma 3.3, us ∈ Aq

with q = s(p − 1) + 1. But then by Theorem 3.2 there exist u1,u2 ∈ A1 such that

us = u1u
1−q
2 , or equivalently, u = u

1
s
1 u1−p

2 = v1v2. By Lemma 3.1, v1 ∈ A1 ∩Gs, and
again by Theorem 3.2 and Lemma 3.2, v2 ∈Ap ∩G∞. This completes the proof. �

In the following, we use Theorems 2.6, 2.8 for the extension to the classes Ap

and Gr, and, as we shall see, the range of the indices will be governed by factorizations
of the weights. For the continuous case, the authors in [5] have shown that w ∈ Gr iff
w = w0w1 where w0 ∈ G∞ and w1 ∈ Gr ∩A1. But then wr

1 ∈ A1, and thus w ∈ Gr iff
w = uv1/r with u∈ G∞ and v ∈A1. We shall also use the Jones Factorization Theorem
for Ap , Theorem 3.2, i.e. w ∈ Ap iff w = uv1−p with u, v ∈ A1.

THEOREM 3.4. Let w = uv1/r be in Gr with u ∈ G∞ and v ∈ A1, and let C1 =
G∞(u). Then w ∈ Ap for all p > C1 . This range of p is optimal.

Proof. Let p > C1 . Then

1
|J| ∑

J⊂Z+

uv1/r

(
1
|J| ∑

J⊂Z+

(
uv1/r

)1−p′
)p−1

� sup
J⊂Z+

u
1
|J| ∑

J⊂Z+

v1/r

(
1
|J| ∑

J⊂Z+

u1−p′
)p−1

sup
J⊂Z+

1

v1/r

� 1
|J| ∑

J⊂Z+

u inf
J

v1/r

(
1
|J| ∑

J⊂Z+

u1−p′
)p−1

sup
J⊂Z+

1

v1/r
� C,

since u ∈ Ap for p > C1 by Theorem 2.8. From Corollary 2.3, we conclude that the
sequence w(n) = nC1−1 belongs to G∞ ⊂ Gr which shows that the range of p is best
possible. This completes the proof. �

The next result will give us the precise range of higher summability for w ∈ Gr.

THEOREM 3.5. Let w = uv1/r be in Gr with u ∈ G∞ and v ∈ A1. If C2 = A1(v)
then w ∈ Gp for all r � p < C2r/(C2−1) . This range of p is optimal.
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Proof. Let p satisfies the above inequality, and then choose q > 1 such that

p <
C2r

q(C2−1)
.

Since

1 � pq
r

<
C2

C2−1
,

then by Theorem 2.6, we get that v ∈ Gqp/r . This and Hölder’s inequality and the fact
u ∈ G∞ give us that

1
|J| ∑

J⊂Z+

wp =
1
|J| ∑

J⊂Z+

upvp/r �
(

1
|J| ∑

J⊂Z+

uq′p
)1/q′ (

1
|J| ∑

J⊂Z+

vqp/r

)1/q

� sup
J

up · C
(

1
|J| ∑

J⊂Z+

v

)p/r

� C′ sup
J

up · inf
J

vp/r

� C′′
(

1
|J| ∑

J⊂Z+

uv1/r

)p

.

Let 0 < α < 1 and consider the sequence w(n) = n−α . Using the estimate in Lemma
(2.6), then w∈Gr for 1 < r < 1/α. We fix such an r and write w = v1/r, and v = n−αr.
This is the factorization w = uv1/r with u ≡ 1. By recalling the estimate in Corollary
2.2, we get that A1(v) = C2 = 1/(1−αr) . That is C2r/(C2−1) = 1/α which is
the precise upper bound of higher summability for this weight. This completes the
proof. �

For the next Theorem, we need the fact that v ∈ A1 implies that (1/v)γ ∈ G∞ for
every γ > 0 (see Lemma 3.2) .

THEOREM 3.6. Let w = uv1−p be in Ap with u, v ∈ A1, and let C = A1(u).
Then w ∈ Gr for all 1 < r < C/(C −1) . This range of r is optimal.

Proof. Using Theorem 2.6, we obtain that

1
|J| ∑

J⊂Z+

wr =
1
|J| ∑

J⊂Z+

ur 1

vr(p−1) � 1
|J|

1

vr(p−1)

1
|J| ∑

J⊂Z+

ur

� C sup
J

1

vr(p−1)

(
1
|J| ∑

J⊂Z+

u

)r

� CAr
1(u) sup

J⊂Z+

1

vr(p−1) ·
(

inf
J⊂Z+

u

)r

� CAr
1(u)Cr

(
1
|J| ∑

J⊂Z+

1
vp−1 · inf

J⊂Z+
u

)r

� CAr
1(u)Cr

(
1
|J| ∑

J⊂Z+

w

)r

.
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To prove the optimality of the range for the exponent r , we use the weight sequence

w(n) = n
1
C−1 for C > 1. Applying Lemma 2.6 for this sequence with α = 1

C − 1, we
get that w ∈ Gr (w) for α > −1/r . Which leads to the best possible range 1 < r < C

C−1
after direct substitutions . This completes the proof. �

COROLLARY 3.1. Let w = uv1−p be in Ap with u, v ∈ A1 . If C = max{A1(u),
A1(v)} , then wτ ∈Ap for 1 � τ < C/(C−1) . This range of τ is optimal.

Proof. From Theorem 3.6 we have that w and w1−p′ are in Gτ for 1 � τ <
C/(C − 1) and hence wτ ∈ Ap. Again using Corollary 2.2, we observe that the se-
quence w(n) = n−α ,0 < α < 1 belongs to A1 ⊂ Ap, and thus we can take u = n−α ,
v ≡ 1. Then C = 1/(1−α) and thus C/(C − 1) = 1/α which is best possible. This
completes the proof. �

We will now use Theorem 3.6 to investigate the exact range on q < p such that
w ∈Ap implies w ∈Aq.

THEOREM 3.7. Let w = uv1−p be in Ap with u, v ∈ A1 and let C∗ = A1(v).
Then w ∈Aq for all q satisfying

(p−1)(C∗ −1)
C∗ +1 < q � p.

This range of q is optimal.

Proof. Since w1−p′ = vu1−p′ is in Ap′ we get from Theorem 3.6 that w1−p′ ∈ Gr

for 1 < r < C∗/(C∗ −1) . Hence since w ∈ Ap

1
|J| ∑

J⊂Z+

w

(
1
|J| ∑

J⊂Z+

wr(1−p′)
)(p−1)/r

� C 1
|J| ∑

J⊂Z+

w

(
1
|J| ∑

J⊂Z+

w1−p′
)p−1

� C′ < ∞.

Thus w ∈ Aq, for q = 1+(p−1)/r, that is (p−1)(C∗ −1)/C∗ +1 < q � p. We will
now show that this range is best possible by considering the sequence w(n) = n and fix
p0 > 2. Then, applying the estimates in Lemma 2.5 and Corollary 2.2 respectively to
get that w ∈Ap0 and w = v1−p0 with v = n1−p′0 ∈A1. Since A1(v) = 1/(2− p′0) = C∗
the lower bound of the range of q given above is 2. This completes the proof. �
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[3] A. BÖTTCHER AND M. SEYBOLD, Wackelsatz and Stechkin’s inequality for discrete Muckenhoupt
weights, preprint no. 99–7, TU Chemnitz, (1999).

[4] D. V. CRUZ-URIBE AND A. FIORENZA, Variable Lebesgue spaces: Foundations and harmonic anal-
ysis, Springer Science & Business Media, 2013.

[5] D. V. CRUZ-URIBE, AND C. J. NEUGEBAUER, The structure of the reverse Hölder classes, Trans.
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