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MOMENT CONVERGENCE RATE OF ESTIMATORS IN

PARTIALLY LINEAR MODELS UNDER AANA ERRORS

LINGLING HE, XIAOQIN LI, YAN SHEN AND QIUYUE WU ∗

(Communicated by T. Burić)

Abstract. In this paper, we investigate the partially linear regression model based on asymptot-
ically almost negatively associated (AANA) random variables. Under some weak conditions,
some results of moment convergence and complete convergence are obtained for the parametric
least squares estimator and nonparametric weighted estimator. Our results extend the corre-
sponding ones for negatively associated (NA) errors to AANA errors. In addition, we discuss the
selection of design points and weight functions. Last, some simulations are illustrated to show
the performance of our results.

1. Introduction

Consider the following heteroscedastic partially linear regression model:

yi = xiβ +g(ti)+ σiei, i � 1, (1.1)

where σ2
i = f (ui) , (xi,ti,ui) are known and nonrandomdesign points, β is an unknown

parameter to be estimated, f (·) and g(·) are unknown functions defined on a closed
interval D of R , and {ei, i � 1} are random errors.

For the model (1.1) with 1 � i � n , Gao et al. [3] and Baek and Liang [9] respec-
tively defined the least squares (LS) and weighted least squares (WLS) estimator of β
and corresponding estimators of g(·) :

β̂n =
n

∑
i=1

x̃iỹi/S2
n, β̃n =

n

∑
i=1

γix̃iỹi/T 2
n , (1.2)

ĝn(t) =
n

∑
i=1

Wni(t)(yi− xiβ̂n), g̃n(t) =
n

∑
i=1

Wni(t)(yi − xiβ̃n), (1.3)

where

S2
n =

n

∑
i=1

x̃2
i , T 2

n =
n

∑
i=1

γix̃
2
i , (1.4)
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γi = 1/ f (ui) , x̃i = xi −∑n
j=1Wnj(ti)x j , ỹi = yi −∑n

j=1Wnj(ti)y j and

Wni(t) = Wni(t;t1,t2, . . . ,tn)

is a measurable weight function on the closed interval D .
Partially linear model was introduced by Engle et al. [2] to analyse the relationship

between temperature and electricity usage. Since then, many statisticians pay attention
to studying the asymptotic properties of the estimators in the model (1.1).

Under the case of independent random errors, Hu [6] and Chen et al. [5] es-
tablished the strong consistency and mean consistency of the estimators; Gao et al.
[3] established the asymptotic normality for the estimators of β ; and so on. Under
the case of dependent random errors, the authors in [7, 10, 26] established the mean
consistency and complete consistency of the estimators based on Lq mixingale, linear
time series and ϕ -mixing errors, respectively; Liang and Jing [12] studied the asymp-
totic normality of estimators with martingale difference errors and linear process errors;
Baek and Liang [9] investigated the strong consistency and asymptotic normality of the
estimators under negatively associated (NA) errors; Zhou and Hu [14] derived the mo-
ment consistency of the estimators with NA errors; Zhang et al. [27] investigated the
strong consistency of the estimators under asymptotically almost negatively associated
(AANA) errors; and so forth.

Inspired by the literatures above, we devote to investigating the mean consistency
and complete consistency of the estimators in model (1.1) based on asymptotically
almost negatively associated random variables. Our results in the paper will extend and
improve the corresponding ones for independent and identically distributed random
errors and some dependent random errors.

Let us begin by recalling the concept of AANA dependence introduced by Chandra
and Ghosal [4].

DEFINITION 1.1. A sequence {Xn,n � 1} of random variables is called AANA
if there exists a nonnegative sequence q(n) → 0 as n → ∞ such that

Cov( f (Xn),g(Xn+1, . . . ,Xn+k)) � q(n)[Var( f (Xn))Var(g(Xn+1, . . . ,Xn+k))]1/2,

for all n, k � 1 and for all coordinatewise nondecreasing continuous functions f and
g whenever the variances exist. {q(n),n � 1} are called the mixing coefficients of
{Xn,n � 1} .

The family of AANA sequence contains NA and independent sequences as special
cases. An example of an AANA sequence which is not NA was constructed by Chandra
and Ghosal [4]. Many applications of AANA sequences have been found. For the
details, one can refer to [4, 16, 18, 24] for the strong laws of large numbers; Ko et al.
[8] for the Hájeck-Rènyi type inequalities; Yuan and An [13] for some Rosenthal type
inequalities; Wang et al. [17] and Xi et al. [25] for the complete convergence; An [23]
for the complete moment convergence; and so on.

The remainder of this paper is organized as follows. Some assumptions and main
results are given in Section 2. Simulation is presented in Section 3. We give conclusions
in Section 4. We provide preliminary lemmas and proofs of the main results in Section
5. Throughout this paper, let C, C1 , C2 , . . . , Cp be positive constants whose values
may vary at different places.
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2. Main results

2.1. Assumptions

To obtain main results, the following assumptions are needed.

A1. Let {ei, i � 1} in model (1.1) be an AANA sequence with Eei = 0 and Ee2
i = 1,

i � 1. Suppose that sup
i�1

E|ei|p < ∞ for some p > 2 and there exists a positive

integer k such that p ∈ (2k,2k+1] . In addition, the mixing coefficients {q(i), i �
1} satisfy ∑∞

n=1 qp̃(n) < ∞ , where p̃ = (1/2k−1−2/p)p/(p−1) .

A2. (i) 0 < C1 � liminf
n→∞

S2
n
n � limsup

n→∞

S2
n
n � C2 < ∞ , where S2

n is defined in (1.4).

(ii) 0 < m0 � min
1�i�n

f (ui) � max
1�i�n

f (ui) � M0 < ∞ .

(iii) g(·) satisfies the first-order Lipschitz condition on closed interval D .

A3. (i) sup
t∈D

∑n
j=1 |Wnj(t)| = O(1) .

(ii) max
1� j�n

∑n
i=1 |Wnj(ti)| = O(1).

(iii) sup
t∈D

max
1� j�n

|Wnj(t)| = O(n−
1
2 ).

A4. There exists some a ∈ (0,1) and kn,1 � kn � n such that

lim
n→∞

kn = ∞, lim
n→∞

kn

n1−a = 0, (2.1)

sup
t∈D

n

∑
j=1

|Wnj(t)|I
(
|t− t j| > kn

n

)
� C3

kn

n
, (2.2)

sup
t∈D

∣∣∣ n

∑
j=1

Wnj(t)−1
∣∣∣� C4

kn

n
. (2.3)

A5. max
1�i�n

|xi| � Cna , where a is defined by A4.

REMARK 2.1. Conditions A2(ii)(iii), A3(i)(iii) are used in [5, 9, 14]; condition
A4 (2.1)(2.2), A5 are used in [7, 10, 26]. Therefore, our conditions are quite mild and
can be easily satisfied.

2.2. Consistency

THEOREM 2.1. In the model (1.1) , suppose that A1–A5 hold.
(i) If A4 and A5 hold for some a ∈ (0,1) and p > 2 , then

E
∣∣∣β̂n−β

∣∣∣p = O
( 1

n(1−a)p/2

)
+O

(kp
n

np

)
, (2.4)
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E
∣∣∣β̃n−β

∣∣∣p = O
( 1

n(1−a)p/2

)
+O

(kp
n

np

)
. (2.5)

(ii) If A4 and A5 hold for some a ∈ (0,1/3) and p > 2 , then

sup
t∈D

E |ĝn (t)−g(t)|p = O
( 1

n(1−3a)p/2

)
+O

( 1

np/4

)
+O

( kp
n

n(1−a)p

)
, (2.6)

sup
t∈D

E |g̃n (t)−g(t)|p = O
( 1

n(1−3a)p/2

)
+O

( 1

np/4

)
+O

( kp
n

n(1−a)p

)
. (2.7)

THEOREM 2.2. Assume the conditions of Theorem 2.1 hold.
(i) If A4 and A5 hold for some a ∈ (0,1− 2

p ) , where p > 2 , then β̂n converges to

β completely; similarly, β̃n converges to β completely.
(ii) If A4 and A5 hold for some a∈ (0, 1

3 − 2
3p) , where p > 4 , then ĝn(t) converges

to g(t) completely; similarly, g̃n(t) converges to g(t) completely.

2.3. The choice of the design points and the weight functions

We will show that the nearest neighbor weights satisfy the designed assumptions.
For simplicity, we assume that D = [0,1] and ti = i/n , xi = (−1)ii/n , i = 1, . . . ,n .

Let k = kn = [ n1−a

logn ] , where logn = ln(max(n,e)) , a ∈ (0, 1
2) . For t ∈ [0,1] , we rewrite

|t1− t|, |t2− t| , . . . , |tn − t| as follows:

|tR1(t) − t|� |tR2(t) − t|� · · · � |tRn(t) − t|.
If |ti − t|= |t j − t| , then |ti − t| is in front of |t j − t| when ti < t j . Define the k nearest
neighbor weight functions

Wni(t) =

{
1
k , if |ti − t|� |tRk(t) − t|,
0, otherwise.

(2.8)

Thus, by (2.8)

WnRi(t)(t) =

{
1
k , if i � k,

0, otherwise.

It is easily seen that the conditions A3(i), (2.3) in A4 and A5 are fulfilled. By (2.8) we
know that Wnj(t) = 0 if

∣∣t− t j
∣∣> kn

n and ∑n
i=1Wnl (ti) � 2 for 1 � l � n , so that (2.1),

(2.2) in A4 and A3(ii)(iii) hold.
For definiteness, we assume that k = kn is even. Through elementary computa-

tions, we can get

n

∑
i=1

Wni(tl)xi =
n

∑
i=1

Wn,Ri( l
n )

(
l
n

)
xRi( l

n ) =
1
k

k

∑
i=1

xRi( l
n ) =

1
nk

k

∑
i=1

(−1)Rl( l
n )Ri(

l
n
)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2n , if l = 1,2, . . . , k

2 +1,

(−1) j

2n , if l = k
2 +1+ j,1 � j � n− k−1,

(−1)n
2n , if n− k

2 +1 � l � n.

(2.9)
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In fact, if l ∈{1,2, . . ., k
2+1} , then by definition of Ri(t) we know that (R1( l

n ), . . .,Rk( l
n ))

is a replacement of (1,2, . . . ,k) , thus

1
nk

k

∑
i=1

(−1)Ri( l
n )Ri

(
l
n

)
=

1
nk

k

∑
i=1

(−1)ii =
1
2n

;

if l = k
2 + 1+ j,1 � j � n− k− 1, then (R1( l

n ), . . . ,Rk( l
n)) is a replacement of ( j +

1, j +2, . . . , j + k) , hence

1
nk

k

∑
i=1

(−1)Ri( l
n )Ri

(
l
n

)
=

1
nk

k

∑
i=1

(−1)i+ j(i+ j) =
(−1) j

2n
;

if n− k
2 +1 � l � n , then (R1( l

n ), . . . ,Rk( l
n )) is a replacement of (n,n−1,n−2, . . . ,n−

k+1) , and

1
nk

k

∑
i=1

(−1)Ri( l
n )Ri

(
l
n

)

=
1
nk

{(−1)nn+(−1)n−1(n−1)+ · · ·+(−1)n−k+1(n− k+1)}

=
(−1)n

2n
.

This proves (2.9). On the one hand, by k = [ n1−a

logn ] and a ∈ (0, 1
2 ) , it has lim

n→∞
k
n = 0

and (2.9),

S2
n =

n

∑
l=1

(
xl −

n

∑
i=1

Wni(tl)xi

)2

�
k
2 +1+n−k−1

∑
l= k

2 +2

(
xl −

n

∑
i=1

Wni(tl)xi

)2

=
n−k−1

∑
j=1

(
(−1)l l

n
−

n

∑
i=1

Wni(tl)xi

)2
∣∣∣∣∣
l= k

2 +1+ j

=
n−k−1

∑
j=1

(
(−1)

k
2 +1+ j

k
2 +1+ j

n
− (−1) j

2n

)2

=
n−k−1

∑
j=1

(
(−1)

k
2 +1
(

k
2n

+
1
n

+
j
n

)
− 1

2n

)2

�
n−k−1

∑
j=1

j2

n2 =
(n− k−1)(n− k)(2n−2k−1)

6n2 ∼ n
3
, n → ∞.
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Here an ∼ bn means an/bn → 1 as n → ∞ . On the other hand,

S2
n =

k
2 +1

∑
l=1

(
(−1)l l

n
− 1

2n

)2
+

k
2 +1+n−k−1

∑
l= k

2 +2

(
(−1)l l

n
− (−1) j

2n

)2

+
n

∑
l=n− k

2 +1

(
(−1)l l

n
− (−1)n

2n

)2

� 4
n

∑
l=1

l2

n2 ∼ 4n
3

, n → ∞.

Thus A2(i) holds.

REMARK 2.2. In Theorem 2.1 (i), let k = kn = [ n1−a

logn ] , a = 1
3 . Then, for p > 2,

E|β̂n−β |p = O(n−p/3), E|β̃n−β |p = O(n−p/3).

So the convergence rates for β̂n−β and β̃n−β are

β̂n−β = OP(n−1/3), β̃n−β = OP(n−1/3).

Similarly, in Theorem 2.1 (ii), let k = kn = [ n1−3a

logn ] , a ∈ [1/8,1/6] . Then, for p > 2

sup
t∈D

E|ĝn(t)−g(t)|p = O(n−p/4),

sup
t∈D

E|g̃n(t)−g(t)|p = O(n−p/4).

Thus, the convergence rates for ĝn(t)−g(t) and g̃n(t)−g(t) are

ĝn(t)−g(t) = OP(n−1/4), g̃n(t)−g(t) = OP(n−1/4).

REMARK 2.3. In Theorem 2 of Zhou and Hu [14], the authors considered the
moment consistency of parametric least squares estimator in partially linear model (1.1)
with NA errors satisfying sup

i�1
E|ei|p < ∞ for some p > 4, and obtained the results

E|β̂n −β |p = o(n−p/4) and sup
t∈D

E|ĝn(t)− g(t)|p = o(n−p/4) . In this paper, we extend

Zhou and Hu [14] to AANA errors with weakly moment condition sup
i�1

E|ei|p < ∞ for

some p > 2, and obtain the convergence rates such as E|β̂n − β |p = O(n−p/3) and
sup
t∈D

E|ĝn(t)− g(t)|p = O(n−p/4) . In addition, we study the complete convergence for

β̂n and ĝn(t) in Theorem 2.2.
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3. Simulations

In this section, we will investigate the numerical performance of the moment con-
sistency for the estimators with AANA random errors. An AANA sequence is given:

ei = (1+a2
i )

−1/2(ηi +aiηi+1), i � 1, (3.1)

where η1,η2, . . . , are independent and identically distributed N(0,1) random variables
and ai = (1/i2) , i � 1. This sequence {ei, i � 1} has been proved to be an AANA
sequence but not a NA sequence (see Chandra and Ghosal [4]).

We will simulate a heteroscedastic partially linear model

yi = xiβ +g(ti)+ σiei, i � 1

where β = 2.5, g(t)= cos(πt) , σi = ( f (ui))1/2 = (1+0.8sin(4πui))1/2 , xi = (−1)ii/n ,
1 � i � n , and the random errors are given by (3.1). Let D = [0,1] , ui = ti = i/n ,
1 � i � n . Take kn = [n0.58] and the nearest neighbor weight defined by (2.8).

The sample sizes are taken as n =200, 500, 1000, 1500, 2000 and 2500, respec-
tively, and each case is repeated for 1000 times and the average values of β̂n and β̃n

are calculated as the estimators. Then, we examine the estimation errors of β̂n , β̃n and
ĝn , g̃n , measured by the mean square errors (MSE) defined as MSE(β̂n) = E|β̂n−β |2 ,
MSE(β̃n) = E|β̃n−β |2 and the mean integrated squared error(MISE) defined as MISE
(ĝn) = E

∫
D(ĝn(t)−g(t))2dt , MISE(g̃n) = E

∫
D(g̃n(t)−g(t))2dt .

Of interests are the sample means MSE(β̂n) and MSE(β̃n) of MSE(β̂n) and
MSE(β̃n) over the 1000 replications, and similar sample means MISE(ĝn) and
MISE(g̃n) .

The results are presented in Tables 1 , and the curves of g(t) , ĝn(t) , and g̃n(t) are
provided in Figure 1.

Table 1: The sample means MSE of LS estimator β̂n and WLS estimator β̃n ; MISE of ĝn and
g̃n with β = 2.5 .

n β̂n MSE(β̂n) MISE(ĝn) β̃n MSE(β̃n)/MSE(β̂n) MISE(g̃n)/MISE(ĝn)
200 2.5042 0.0126 0.0477 2.4989 0.5707 0.9988
500 2.4990 0.0052 0.0291 2.4978 0.5658 0.9946
1000 2.4985 0.0024 0.0196 2.4997 0.6159 0.9728
1500 2.5003 0.0015 0.0144 2.5014 0.7148 1.0040
2000 2.5013 0.0012 0.0123 2.5008 0.6131 1.0123
2500 2.5014 0.0010 0.0108 2.5010 0.5544 0.9891

Table 1 shows that as n increases, both MSE(β̂n) and MSE(β̃n) go to zero as
sample n increases. The simulation shows the consistency of β̂n , β̃n , ĝn(t) and g̃n(t)
in model (1.1) with AANA errors. In addition, we can also see that the MSE(β̃n) is
smaller than MSE(β̂n) , which the ratio is less than 1. Thus, the weighted LS estimator
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β̃n is better than LS estimator β̂n . On the other hand, by Table 1 and Fig 1, the non-
weighted nonparametric function estimator ĝn(t) is as well as weighted nonparametric
function estimator g̃n(t) .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-1.5

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: Curves of g(t) = cos(πt) , ĝn(t) and g̃n(t) with β = 2.5 and n = 1500 .

4. Conclusions

In this paper, we study the consistency of parametric least squares estimator and
nonparametric weighted estimator in partially linear regression models with AANA
errors. Some moment convergence and complete convergenceare obtained in Theorems
2.1 and 2.2. In order to illustrate our results, one example of weight functions and some
simulations are presented in Sections 2 and 3. Our results extend some results of Zhou
and Hu [14] based on NA errors to AANA errors. In future work, it is interesting for
researchers to study the limiting distributions of parametric least squares estimator β̂n

and nonparametric weighted estimator ĝn(t) based on AANA errors or other dependent
errors.

5. Proofs of main results

LEMMA 5.1. (cf. Yuan and An [13]) Let {Xi, i � 1} be an AANA sequence with
mixing coefficients {q(i), i � 1} . Then { fi(Xi), i � 1} is still an AANA sequence with
mixing coefficients {q(i), i � 1} , where f1, f2, . . . are nondecreasing or nonincreasing
continuous functions.

LEMMA 5.2. (cf. Yuan and An [13]) Let {Xi, i � 1} be an AANA sequence of
zero mean random variables with mixing coefficients {q(i), i � 1} . Assume further
that E|Xn|p < ∞ for all n � 1 and some p > 2 . Suppose that there exists a integer
number k such that p ∈ (2k,2k+1] , and {q(i), i � 1} satisfies ∑∞

n=1 qp̃(n) < ∞ , where
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p̃ = (1/2k−1−2/p)p/(p−1) , then there exists a positive constant Cp depending only
on p such that

E
(

max
1� j�n

∣∣∣ j

∑
i=1

Xi

∣∣∣p)� Cp

{ n

∑
i=1

E |Xi|p +
( n

∑
i=1

EX2
i

)p/2}
. (5.1)

LEMMA 5.3. Let {di(z); i � 1} be a sequence of real functions defined on closed
interval D, and the conditions of Lemma 5.2 hold and supi�1 E|Xi|p < ∞ for some
p > 2 . Then there exists a positive constant Cp which only depends on the given number
p such that

E
(

max
1� j�n

∣∣∣ j

∑
i=1

di(z)Xi

∣∣∣p)� Cp

( n

∑
i=1

(di(z))2
)p/2

, n � 1 (5.2)

Proof. Denote by d+
i (z) = max(di(z),0) , d−

i (z) = max(−di(z),0) . By Lemma
5.1 we know that {d+

i (z)Xi;1 � i � n} and {d−
i (z)Xi;1 � i � n} are still zero mean

AANA random variables with mixing coefficients {q(i), i � 1} . By using Lemma 5.2
for these two sequences respectively, we have

E
(

max
1� j�n

∣∣∣ j

∑
i=1

di(z)Xi

∣∣∣p) � Cp

{ n

∑
i=1

E|di(z)Xi|p +
( n

∑
i=1

E
(
di(z)Xi

)2)p/2}
.

By sup
i�1

E|Xi|p < ∞ and p > 2, we obtain that

sup
i�1

EX2
i �

(
sup
i�1

E|Xi|p
)2/p

< ∞.

Hence, one can get that

E
(

max
1� j�n

∣∣∣ j

∑
i=1

di(z)Xi

∣∣∣p)� Cp

{ n

∑
i=1

|di(z)|p +
( n

∑
i=1

(
di(z)

)2)p/2}
. (5.3)

Using the fact that

( n

∑
i=1

|di(z)|p
)1/p

�
( n

∑
i=1

(
di(z)

)2)1/2
, p � 2. (5.4)

Therefore, the desired result (5.2) follows by (5.3) and (5.4) immediately. This com-
pletes the proof. �

Proof of Theorem 2.1. We prove (2.4) first. It follows from (1.1) and (1.2) that

β̂n−β =
{ n

∑
i=1

x̃iεi +
n

∑
i=1

x̃ig̃(ti)−
n

∑
i=1

x̃i

( n

∑
j=1

Wnj(ti)ε j

)}
/S2

n. (5.5)
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where g̃(ti) = g(ti)−∑n
j=1Wnj(ti)g(t j) and εi = σiei . For p > 2, one can get by Cr -

inequality that

E
∣∣∣β̂n−β

∣∣∣p � 3p−1
{

E
∣∣∣ n

∑
i=1

x̃iεi/S2
n

∣∣∣p +
∣∣∣ n

∑
i=1

x̃ig̃(ti)/S2
n

∣∣∣p +E
∣∣∣ n

∑
i=1

x̃i

n

∑
j=1

Wnj (ti)ε j/S2
n

∣∣∣p}.

(5.6)

We observe from Lemma 5.3 with p > 2 that

E
∣∣∣1
n

n

∑
i=1

x̃iεi

∣∣∣p = E
∣∣∣1
n

n

∑
i=1

x̃iσiei

∣∣∣p � Cp

(
1
n2

n

∑
i=1

x̃2
i σ2

i

)p/2

. (5.7)

We obtain from A2(i)(ii), A3(i) and A5 that for i = 1, . . . ,n ,

|x̃i| � |xi|+ sup
t∈D

n

∑
j=1

∣∣Wnj (t)
∣∣ max
1� j�n

∣∣x j
∣∣� Cna, (5.8)

n

∑
i=1

x̃2
i σ2

i � C
n

∑
i=1

x̃2
i � Cn.

Hence,

E
∣∣∣1
n

n

∑
i=1

x̃iεi

∣∣∣p � Cp

np/2
, (5.9)

which combining with A2(i) implies that

E
∣∣∣ n

∑
i=1

x̃iεi/S2
n

∣∣∣p = O
( 1

np/2

)
. (5.10)

By Lemma 5.3 with p > 2, it follows that

E
∣∣∣1
n

n

∑
i=1

x̃i

n

∑
j=1

Wnj (ti)ε j

∣∣∣p = E
∣∣∣1
n

n

∑
j=1

n

∑
i=1

x̃iWn j (ti)σ je j

∣∣∣p

� Cp

( 1
n2

n

∑
j=1

( n

∑
i=1

x̃iWn j (ti)σ j

)2)p/2
.

(5.11)

By A2(ii), A3(i)(ii) and (5.8), it is easy to see that

n

∑
j=1

( n

∑
i=1

x̃iWn j (ti)σ j

)2

� max
1� j�n

σ2
j max

1�i�n
|x̃i| max

1� j�n

n

∑
i=1

∣∣∣Wnj (ti)
∣∣∣ n

∑
j=1

n

∑
i=1

∣∣∣x̃iWn j (ti)
∣∣∣

�Cna
(

sup
t∈D

n

∑
j=1

∣∣Wnj (t)
∣∣)( n

∑
i=1

|x̃i|
)

� Cna

√
n

∑
i=1

x̃2
i

√
n � Cna+1.



CONVERGENCE RATE OF ESTIMATORS IN MODELS UNDER AANA ERRORS 979

Thus

E
∣∣∣1
n

n

∑
i=1

x̃i

n

∑
j=1

Wnj (ti)ε j

∣∣∣p � Cp

n(1−a)p/2
, (5.12)

which combining with A2(i) yields

E
∣∣∣ n

∑
i=1

x̃i

n

∑
j=1

Wnj (ti)ε j/S2
n

∣∣∣p = O
( 1

n(1−a)p/2

)
. (5.13)

By A2(iii), A3(i) and A4, it can be seen that

sup
t∈D

|g̃(t)| = sup
t∈D

∣∣∣∣∣g(t)−
n

∑
j=1

Wnj(t)g(t j)

∣∣∣∣∣
= sup

t∈D

∣∣∣g(t)(1−
n

∑
j=1

Wnj (t))+
n

∑
j=1

Wnj (t)(g(t)−g(t j))
∣∣∣

� C sup
t∈D

∣∣∣ n

∑
j=1

Wnj (t)−1
∣∣∣+C sup

t∈D

n

∑
j=1

∣∣Wnj (t)
∣∣ ∣∣t− t j

∣∣ I(∣∣t− t j
∣∣> kn

n

)

+C sup
t∈D

n

∑
j=1

∣∣Wnj (t)
∣∣ ∣∣t − t j

∣∣ I(∣∣t− t j
∣∣� kn

n

)
� Ckn

n
. (5.14)

From A2(i), we have ∣∣∣1
n

n

∑
i=1

x̃ig̃(ti)
∣∣∣� sup

t∈D
|g̃(t)|

n

∑
i=1

|x̃i|
n

� Ckn

n
, (5.15)

which combining with A2(i) implies that

n

∑
i=1

x̃ig̃(ti)/S2
n = O

(kn

n

)
. (5.16)

From (5.6), (5.10), (5.13) and (5.16), we obtain

E
∣∣∣β̂n−β

∣∣∣p = O
( 1

n(1−a)p/2

)
+O

(kp
n

np

)
.

Therefore, we prove (2.4).
Now we prove (2.5), which is similar to the proof of (2.4). For p > 2, one can get

E
∣∣∣β̃n−β

∣∣∣p � 3p−1E
∣∣∣ n

∑
i=1

γix̃iεi/T 2
n

∣∣∣p +3p−1
∣∣∣ n

∑
i=1

γix̃ig̃(ti)/T 2
n

∣∣∣p

+3p−1E
∣∣∣ n

∑
i=1

γix̃i

n

∑
j=1

Wnj (ti)ε j/T 2
n

∣∣∣p (5.17)

and

E
∣∣∣1
n

n

∑
i=1

γix̃iεi

∣∣∣p � Cp

( 1
n2

n

∑
i=1

γ2
i x̃2

i σ2
i

)p/2
. (5.18)
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Noticing that

max
1�i�n

|γix̃iσi| � Cna,
n

∑
i=1

γ2
i x̃2

i σ2
i � C

n

∑
i=1

x̃2
i � Cn,

from A2(ii). Then it has

E
∣∣∣1
n

n

∑
i=1

γix̃iεi

∣∣∣p � Cp

np/2
, (5.19)

which combining with A2(i) and T 2
n = ∑n

i=1 γix̃2
i imply that

0 < C1 � liminf
n→∞

T 2
n

n
� limsup

n→∞

T 2
n

n
� C2 < ∞,

and

E
∣∣∣ n

∑
i=1

γix̃iεi/T 2
n

∣∣∣p = O
( 1

np/2

)
. (5.20)

The remaining steps of the proof of (2.5) are similar to the proof of (2.4); thus, we
omit the details here.

Now we prove (2.6). From (1.3) and model (1.1) and Cr -inequality, for p > 2,
one gets

sup
t∈D

E |ĝn (t)−g(t)|p

= sup
t∈D

E
∣∣∣ n

∑
j=1

Wnj (t)σ je j −
(

β̂n−β
) n

∑
j=1

Wnj (t)x j − g̃(t)
∣∣∣p

� 3p−1
(

sup
t∈D

E
∣∣∣ n

∑
j=1

Wnj (t)σ je j

∣∣∣p + sup
t∈D

E
∣∣∣(β̂n−β

) n

∑
j=1

Wnj (t)x j

∣∣∣p + sup
t∈D

|g̃(t)|p
)
.

(5.21)

We know from (5.14) that

sup
t∈D

|g̃(t)|p = O
( kp

n

np

)
. (5.22)

A3(i) and A5 imply that

sup
t∈D

E
∣∣∣(β̂n−β

) n

∑
j=1

Wnj (t)x j

∣∣∣p � CE
∣∣∣na
(

β̂n−β
)∣∣∣p. (5.23)

By (5.6), (5.9), (5.12) and (5.15), we have

E
∣∣∣na 1

n

n

∑
i=1

x̃iεi

∣∣∣p � Cp

n(1−2a)p/2
, (5.24)

E
∣∣∣na 1

n

n

∑
i=1

x̃i

n

∑
j=1

Wnj (ti)ε j

∣∣∣p � Cp

n(1−3a)p/2
, (5.25)
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∣∣∣na 1
n

n

∑
i=1

x̃ig̃(ti)
∣∣∣� Ckn

n1−a . (5.26)

Thus by A2(i), (5.5), (5.23)–(5.26) and Cr -inequality, one gets

sup
t∈D

E
∣∣∣(β̂n−β

) n

∑
j=1

Wnj (t)x j

∣∣∣p = O
( 1

n(1−3a)p/2

)
+O

( kp
n

n(1−a)p

)
. (5.27)

By Lemma 5.3, it is clearly that

sup
t∈D

E
∣∣∣ n

∑
j=1

Wnj (t)σ je j

∣∣∣p � Cp sup
t∈D

( n

∑
j=1

W 2
n j (t)σ2

j

)p/2
. (5.28)

The conditions A3(i)(iii) imply that

sup
t∈D

n

∑
j=1

W 2
n j (t)σ2

j � max
1� j�n

σ2
j sup

t∈D
max

1� j�n

∣∣Wnj (t)
∣∣sup

t∈D

n

∑
j=1

∣∣Wnj (t)
∣∣� Cn−

1
2 .

Thus

sup
t∈D

E
∣∣∣ n

∑
j=1

Wnj (t)σ je j

∣∣∣p = O
( 1

np/4

)
. (5.29)

By (5.21), (5.22), (5.27) and (5.29), it follows

sup
t∈D

E |ĝn (t)−g(t)|p = O
( 1

n(1−3a)p/2

)
+O

( 1

np/4

)
+O

( kp
n

n(1−a)p

)
. (5.30)

The proof of (2.7) is similar to that of (2.6); thus, we omit the details here. This
completes the proof of theorem 2.1. �

Proof of Theorem 2.2. (i) By p > 2, a ∈ (0,1− 2/p) , Markov inequality, (5.9)
and (5.12), for every ε > 0, it has

∞

∑
n=1

P

(∣∣∣∣∣1n
n

∑
i=1

x̃iεi

∣∣∣∣∣> ε

)
�

∞

∑
n=1

E

∣∣∣∣∣1n
n

∑
i=1

x̃iεi

∣∣∣∣∣
p

/ε p � Cp

ε p

∞

∑
n=1

1

np/2
< ∞, (5.31)

∞

∑
n=1

P

(∣∣∣∣∣1n
n

∑
i=1

x̃i

n

∑
j=1

Wnj (ti)ε j

∣∣∣∣∣> ε

)
�

∞

∑
n=1

E

∣∣∣∣∣1n
n

∑
i=1

x̃i

n

∑
j=1

Wnj (ti)ε j

∣∣∣∣∣
p

/ε p

� Cp

ε p

∞

∑
n=1

1

n(1−a)p/2
< ∞.

(5.32)

Combining with A2(i) implies that

n

∑
i=1

x̃iεi/S2
n and

n

∑
i=1

x̃i

n

∑
j=1

Wnj (ti)ε j/S2
n
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converge to zero completely, which combining with (5.5) and (5.16) yields that β̂n

converges to β completely. Similarly, one can easily obtain that β̃n converges to β
completely.

(ii) We will prove that ĝn(t) converges to g(t) completely.
For p > 4, a ∈ (0, 1

3 − 2
3p) , by (5.29), we obtain

∞

∑
n=1

P(|
n

∑
j=1

Wnj (t)ε j| > ε) �
∞

∑
n=1

E|
n

∑
j=1

Wnj (t)ε j|p/ε p � Cp

ε p

∞

∑
n=1

1

np/4
< ∞. (5.33)

Similar to the (5.31),

∞

∑
n=1

P(|na 1
n

n

∑
i=1

x̃iεi| > ε) �
∞

∑
n=1

E|na 1
n

n

∑
i=1

x̃iεi|p/ε p � Cp

ε p

∞

∑
n=1

1

n(1−2a)p/2
< ∞, (5.34)

∞

∑
n=1

P(|na 1
n

n

∑
i=1

x̃i

n

∑
j=1

Wnj (ti)ε j| > ε) �
∞

∑
n=1

E|na 1
n

n

∑
i=1

x̃i

n

∑
j=1

Wnj (ti)ε j|p/ε p

� Cp

ε p

∞

∑
n=1

1

n(1−3a)p/2
< ∞.

(5.35)

It is easily seen that A2(i), (5.5), (5.26),(5.34) and (5.35) imply that ∑n
j=1Wnj(t)(β̂n −

β ) converges to zero completely; (5.33) implies that ∑n
j=1Wnj(t)ε j converges to zero

completely; hence ĝn(t)− g(t) = ∑n
j=1Wnj(t)ε j −∑n

j=1Wnj(t)x j(β̂n − β )− g̃(t) con-
verges to zero completely.

In the same way, g̃n(t)− g(t) converges to zero completely. This completes the
proof. �
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