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SHARP BOUNDS ON THE FOURTH–ORDER HERMITIAN TOEPLITZ

DETERMINANT FOR STARLIKE FUNCTIONS OF ORDER 1/2

YONG SUN, ZHI-GANG WANG ∗ AND HUO TANG

(Communicated by V. Rao Allu)

Abstract. In this paper, we prove the sharp bounds on the fourth-order Hermitian Toeplitz deter-
minant for starlike functions of order 1/2 , which solves a conjecture posed by Cudna et al. [10]
for the case q = 4 .

1. Introduction

Let A denote the class of functions analytic in the unit disk D := {z∈C : |z|< 1}
and of the form

f (z) = z+
∞

∑
n=2

anz
n. (1.1)

We denote S by the subclass of A consisting of univalent functions.
Given α ∈ [0,1) , a function f ∈A is called starlike function of order α , if

ℜ
(

z f ′(z)
f (z)

)
> α (z ∈ D).

We denote this class by S∗(α) .
Similarly, for α ∈ [0,1) , a function f ∈ A is called convex function of order α ,

if

ℜ
(

1+
z f ′′(z)
f ′(z)

)
> α (z ∈ D).

This class is denoted by Sc(α) .
Both S∗(α) and Sc(α) were introduced by Robertson [36], they are subclasses

of S . In particular, S∗ := S∗(0) and Sc := Sc(0) are the classes of starlike and convex
functions (see [11]), respectively. The class S∗(1/2) plays important roles in geometry
function theory, one of significant results was given by Marx [29] and Strohhäcker [37],
they proved that

Sc ⊂ S∗(1/2). (1.2)
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The function
f (z) =

z
1− z

(z ∈ D) (1.3)

plays as an extremal function for both Sc and S∗(1/2) .
Recently, Cunda et al. [10] (see also [21]) introduced the notion of Hermitian

Toeplitz determinants for the class A , and some of its subclasses. Hermitian Toeplitz
matrices play an important role in functional analysis, applied mathematics as well as
in physics and technical sciences, e.g., in the Szegö theory, the stochastic filtering, the
signal processing, the biological information processing and other engineering prob-
lems.

Given q,n ∈ N , the Hermitian Toeplitz matrix Tq,n( f ) of a function f ∈ A of the
form (1.1) is defined by

Tq,n( f ) =

⎛
⎜⎜⎜⎝

an an+1 · · · an+q−1

an+1 an · · · an+q−2
...

...
...

...
an+q−1 an+q−2 · · · an

⎞
⎟⎟⎟⎠ ,

where ak := ak . For convenience,we let det(Tq,n)( f ) denote the determinant of Tq,n( f ) .
By the definition, det(T4,1)( f ) is given by

det(T4,1)( f ) =

∣∣∣∣∣∣∣∣
a1 a2 a3 a4

a2 a1 a2 a3

a3 a2 a1 a2

a4 a3 a2 a1

∣∣∣∣∣∣∣∣
.

Note that for f ∈ A , we get a1 = 1, and det(T4,1)( f ) reduces to

det(T4,1)( f ) =1−3|a2|2 + |a2|4 −2|a2|2|a3|2−2|a3|2 + |a3|4 + |a2|2|a4|2−|a4|2
+4ℜ

(
a2

2a3
)
+4ℜ

(
a2a3a4

)−2ℜ
(
a3

2a4
)−2ℜ

(
a2a

2
3a4
)
.

(1.4)

In recent years, many scholars devoted to finding bounds of determinants, whose
elements are coefficients of functions in A , or its subclasses. Hankel matrices, i.e.,
square matrices which have constant entries along the reverse diagonal, and the sym-
metric Toeplitz determinant (see [1]) are of particular interests.

The sharp upper bounds on the second Hankel determinants were obtained by
[5, 8, 12, 13, 26, 30], for various classes of analytic functions. We refer to [3, 6, 7, 15,
33, 35, 38, 40, 41] for discussions on the upper bounds of the third Hankel determinants
for various classes of univalent functions. However, these results are far from sharp-
ness. In a recent paper, Kwon et al. [17] found such a formula of expressing c4 for
Carathéodory functions. The sharp results of the third Hankel determinants are found
for some classes of univalent functions (see e.g., [4, 16, 18, 20, 23]). Moreover, Wang
et al. [39] determined the fourth-order Hankel determinant of a subclass of analytic
functions.
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Recently, Lecko et al. [23] and Kowalczyk et al. [16] obtained sharp bounds of
the third Hankel determinants for the classes S∗(1/2) and Sc , respectively. We note
that Rath et al. [34] pointed out there was an error in the proof of Theorem A, they
also gave a new corrected proof. Moreover, Nunokawa and Sokół [31] derived several
criteria for S∗(1/2) .

THEOREM A. If f ∈ S∗(1/2) be of the form (1.1), then the third Hankel determi-
nant

|det(H3,1)( f )| = ∣∣a3(a2a4−a2
3)−a4(a4−a2a3)+a5(a3−a2

2)
∣∣� 1

9
.

The result is sharp, with the extremal function given by

f (z) =
z

3
√

1− z3
= z+

1
3
z4 +

2
9
z7 + · · · . (1.5)

THEOREM B. If f ∈ Sc be of the form (1.1), then the third Hankel determinant

|det(H3,1)( f )| � 4
135

.

The result is sharp, with the extremal function given by

f (z) = arctanz =
1
2i

log
1+ iz
1− iz

= z− 1
3
z3 +

1
5
z5 + · · · . (1.6)

The Hermitian Toeplitz determinants related to normalized analytic functions is a
natural concept to study. We refer to [2, 9, 10, 14, 19, 21, 22, 25, 32] for discussions on
the sharp bounds of the Hermitian Toeplitz determinants for various classes of univalent
functions. Furthermore, in 2020, Cudna et al. [10] obtained sharp bounds of the second
and third-order Hermitian Toeplitz determinants for starlike and convex functions of
order α , and proposed a conjecture about the sharp estimates of det(Tq,1)( f )(q ∈ N\
{1}; N := {1,2,3, · · ·}) .

CONJECTURE 1.1. If f ∈ S∗(1/2) (or f ∈ Sc ) be of the form (1.1), then

0 � det(Tq,1)( f ) � 1 (q ∈ N\ {1}).
All of inequalities are sharp.

The cases for q = 2, 3 of Conjecture 1.1 were proved by Cudna et al. [10]. How-
ever, the problem of finding sharp estimates of the Hermitian Toeplitz determinants
det(Tq,1)( f ) for q � 4 is technically much more difficult, and few sharp bounds have
been obtained. Recently, Lecko et al. [24] proved the above conjecture for q = 4 in the
class Sc . The purpose of this paper is to prove this conjecture for q = 4 in the class
S∗(1/2) .

Denote P by the class of Carathéodory functions p normalized by

p(z) = 1+
∞

∑
n=1

cnz
n (z ∈ D), (1.7)
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and satisfy the condition ℜ
(
p(z)

)
> 0.

The following result will be required in the proof of our main result.

LEMMA 1.1. (See [27, 28]) If p ∈ P , then

2c2 = c2
1 +(4− c2

1)ζ , (1.8)

and
4c3 = c3

1 +(4− c2
1)c1ζ (2− ζ )+2(4− c2

1)(1−|ζ |2)η (1.9)

for some ζ , η ∈ D := {z ∈ C : |z| � 1} .

2. Main result

In this section, we will prove the sharp estimates of fourth-orderHermitian Toeplitz
determinant det(T4,1)( f ) for f ∈ S∗(1/2) , which gives an affirmative answer to Con-
jecture 1.1 for the case q = 4.

THEOREM 2.1. If f ∈ S∗(1/2) , then

0 � det(T4,1)( f ) � 1. (2.1)

The left inequality is sharp for the extremal function given by (1.3), and the right in-
equality is sharp for the identity function f (z) = z.

Proof. For the function f ∈ S∗(1/2) of the form (1.1), we know that there exists
an analytic function p ∈ P in the unit disk D with p(0) = 1 and ℜ

(
p(z)

)
> 0 such

that
z f ′(z)
f (z)

=
1
2

(
p(z)+1

)
(z ∈ D).

By elementary calculations, we have

z+
∞

∑
n=2

nanz
n =

1
2

(
2+

∞

∑
n=1

cnz
n
)(

z+
∞

∑
n=2

anz
n
)

. (2.2)

It follows from (2.2) that

a2 =
1
2
c1, a3 =

1
8
(2c2 + c2

1), a4 =
1
48

(8c3 +6c1c2 + c3
1). (2.3)

Since the class S∗(1/2) and det(T4,1) are rotationally invariants, we may assume
that c := c1 ∈ [0,2] . Thus, we find from (1.4) and (2.3) that

det(T4,1)( f ) =
1

36864

[
36864−27648c2+5760c4−304c6 + c8

−4608|c2|2 +144|c2|4 +72c2(8− c2)|c2|2−256(4− c2)|c3|2

+192c2(24−5c2) ·ℜ(c2
)
+144c4 · [ℜ(c2

)]2 −48c4 ·ℜ(c2
2

)
−32c3(8+ c2) ·ℜ(c3

)
+1536c ·ℜ(c2c3

)−384c ·ℜ(c2
2c3
)]

.
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Hence, by using (1.8) and (1.9), we get

det(T4,1)( f ) =
1

36864
(4− c2)3 ·

[
576−4(72+ c2) · |ζ |2 +4c2 · |ζ |2 ·ℜ(ζ)

+(36− c2) · |ζ |4−32c · (1−|ζ |2) ·ℜ(ζη
)

+16c · (1−|ζ |2) ·ℜ(ζ 2η
)−64 · (1−|ζ |2)2 · |η |2]

(2.4)

for some ζ , η ∈ D and c ∈ [0,2] .
We now consider the lower and upper bounds for the class S∗(1/2) for various

cases.

Case 1. Suppose that ζ = 0. Then

0 � det(T4,1)( f ) =
1

576
(4− c2)3 · (9−|η |2)� 1 (2.5)

for all c ∈ [0,2] and η ∈ D .

Case 2. Suppose that η = 0. Then

det(T4,1)( f ) =
1

36864
(4− c2)3 ·

[
576−4(72+ c2) · |ζ |2 +4c2 · |ζ |2 ·ℜ(ζ)

+(36− c2) · |ζ |4
]
. (2.6)

We observe that

576−4(72+ c2) · |ζ |2 +4c2 · |ζ |2 ·ℜ(ζ)+(36− c2) · |ζ |4
� 576−4(72+ c2) · |ζ |2−4c2 · |ζ |3 +(36− c2) · |ζ |4
= 576−288|ζ |2+36|ζ |4− c2 · |ζ |2 · (2+ |ζ |)2

� 576−288|ζ |2+36|ζ |4−4|ζ |2 · (2+ |ζ |)2

= 576−304|ζ |2−16|ζ |3 +32|ζ |4
� 576−304|ζ |2−16|ζ |3 � 256 (0 � |ζ | � 1).

It follows from (2.6) that det(T4,1)( f ) � 0.
Similarly, we know that

576−4(72+ c2) · |ζ |2 +4c2 · |ζ |2 ·ℜ(ζ)+(36− c2) · |ζ |4
� 576−4(72+ c2) · |ζ |2 +4c2 · |ζ |3 +(36− c2) · |ζ |4
= 576−288|ζ |2+36|ζ |4− c2 · |ζ |2 · (2−|ζ |)2

� 576−288|ζ |2+36|ζ |4 � 576 (0 � |ζ | � 1).

Hence, we find from (2.6) that det(T4,1)( f ) � 1.
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Case 3. Suppose that ζ , η ∈ D \{0} . Then, there exist unique θ and ϕ in [0,2π)
such that ζ = xeiθ and η = yeiϕ , where x := |ζ | ∈ (0,1] and y := |η | ∈ (0,1] . Thus,
from (2.4), we get

det(T4,1)( f ) =
1

36864
(4− c2)3 ·F(c,x,y,θ ,ϕ), (2.7)

where

F(c,x,y,θ ,ϕ) = 576−4(72+ c2)x2 +4c2x3 cosθ +(36− c2)x4

−32c(1− x2)xycos(θ −ϕ)+16c(1− x2)x2ycos(2θ −ϕ)

−64(1− x2)2y2.

For c ∈ [0,2] and x, y ∈ (0,1] , we have

G(c,x,y) � F(c,x,y,θ ,ϕ) � H(c,x,y), (2.8)

where

G(c,x,y) : = 576−4(72+ c2)x2−4c2x3 +(36− c2)x4

−16c(1− x2)(2+ x)xy−64(1− x2)2y2,
(2.9)

and

H(c,x,y) : = 576−4(72+ c2)x2 +4c2x3 +(36− c2)x4

+16c(1− x2)(2+ x)xy−64(1− x2)2y2.
(2.10)

Case 3.1. We discuss the lower bound of det(T4,1)( f ) . By observing that

G(c,x,y) = 576−4(72+ c2)x2 −4c2x3 +(36− c2)x4

−16c(1− x2)(2+ x)xy−64(1− x2)2y2

� 576−304x2−16x3 +32x4−32(1− x2)(2+ x)x−64(1− x2)2

= 512−64x−208x2+48x3

� 512−64x−208x2 � 240 (c ∈ [0,2]; x,y ∈ (0,1]),

it follows from (2.7) and (2.8) that

det(T4,1)( f ) =
1

36864
(4− c2)3 ·F(c,x,y,θ ,ϕ)

� 1
36864

(4− c2)3 ·G(c,x,y) � 5
768

(4− c2)3 � 0 (c ∈ [0,2]),

which together with Cases 1 and 2 lead to the lower bound in (2.1).

Case 3.2. We discuss the upper bound of det(T4,1)( f ) .
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Let x = 1. Then

H(c,1,y) = 324− c2 � 324 (c ∈ [0,2]; y ∈ (0,1]).

Let x ∈ (0,1) . Then

y0 =
cx(2+ x)
8(1− x2)

� 0, −64(1− x2)2 < 0.

Therefore, we consider the following two cases.

Case 3.2.1. If y0 < 1, that is x ∈ (0,x0(c)) , where

x0(c) =
−c+

√
c2 +8c+64
c+8

(c ∈ [0,2]).

Note that x0(c) � 1 for all c ∈ [0,2] and x0(0) = 1. Let

�1 :=
{

(c,x) : 0 � c � 2; 0 � x � x0(c)
}

.

We find that

H(c,x,y) � H(c,x,y0) =: h(c,x) ((c,x) ∈�1; y ∈ (0,1]),

where

h(c,x) = 576−288x2+8c2x3 +36x4

= 36(4− x2)2 +8c2x3 ((c,x) ∈�1).

(i) On the vertices of �1 , we have

h(0,0) = 576, h(0,x0(0)) = h(0,1) = 324, h(2,0) = 576,

h(2,x0(2)) = h

(
2,

√
21−1
5

)
=

32
(
6619+471

√
21
)

625
≈ 449.403 < 576.

(ii) On the side x = 0, we get

h(c,0) = 576 (c ∈ (0,2)).

(iii) On the side x = x0(c) for c ∈ (0,2) , we obtain

h(c,x0(c)) =
32

(c+8)4

[
− c6−14c5−87c4−96c3 +4680c2 +24192c+41472

+(c5 +10c4 +41c3 +380c2 +864c)
√

c2 +8c+64

]
=: γ(c).

Now, we shall prove that γ is an increasing function. Note that

γ ′(c) =
64

[
σ1(c)+ σ2(c)

√
c2 +8c+64

]
(c+8)5

√
c2 +8c+64

> 0 (c ∈ (0,2))
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is equivalent to

σ1(c)+ σ2(c)
√

c2 +8c+64 > 0 (c ∈ (0,2)),

where

σ1(c) = c7 +35c6 +428c5 +3104c4 +14936c3

+35840c2 +153088c+221184 (c ∈ (0,2))

and

σ2(c) = −c6−31c5−280c4−1344c3−5832c2 +1152c+13824 (c ∈ (0,2)).

Since
∇ :=

√
c2 +8c+64 � 2

√
21 ≈ 9.1652 (c ∈ (0,2)),

we have

σ1(c)+ σ2(c)∇ = c7 +(35−∇)c6 +(428−31∇)c5+(3104−280∇)c4

+(14936−1344∇)c3+(35840−3000∇)c2+(153088−2832c∇)c
+1152c∇+13824∇+221184> 0 (c ∈ (0,2)),

we see that γ is an increasing function for c ∈ (0,2) , thus,

h(c,x0(c)) = γ(c) � γ(2) =
32
(
6619+471

√
21
)

625
≈ 449.403 < 576 (c ∈ (0,2)).

(iv) On the side c = 0, we get

h(0,x) = 36(4− x2)2 � 576 (x ∈ (0,1]).

(v) On the side c = 2, we have

h(2,x) = 576− (288−32x−36x2)x2 � 576 (x ∈ (0,x0(2)]).

(vi) It remains to consider the interior of �1 . Since the system of equations{
∂h/∂c = 16cx3 = 0

∂h/∂x = −576x+24c2x2 +144x3 = 0

has solutions (0,0), (0,2) and (0,−2) , we see that h has no critical point in the interior
of �1 .

Case 3.2.2. If y0 � 1, that is x ∈ [x0(c),1] for all c ∈ [0,2] . Let

�2 := {(c,x) : 0 � c � 2; x0(c) � x � 1} .

Then
H(c,x,y) � H(c,x,1) =: g(c,x) ((c,x) ∈�2; y ∈ (0,1]),
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where

g(c,x) = 576−4(72+c2)x2 +4c2x3 +(36−c2)x4 +16c(1−x2)(2+x)x−64(1−x2)2.

(i) On the vertices of �2 , we get

g(0,x0(0)) = g(0,1) = 324, g(2,1) = 320,

g(2,x0(2)) = g

(
2,

√
21−1
5

)
=

32
(
6619+471

√
21
)

625
≈ 449.403 < 576.

(ii) On the side x = x0(c) , see the Case 3.2.1 (iii).
(iii) On the side x = 1, we see that

g(c,1) = 324− c2 � 324 (c ∈ (0,2)).

(iv) On the side c = 2, we know that

g(2,x) = −64x4−48x3−144x2 +64x+512

(
x ∈
[√

21−1
5

, 1

))
.

Since
−256x3−144x2−288x+64= 0

has a unique real solution x≈ 0.196247, we know that the function g(2,x) is decreasing
for x ∈ [x0(2),1) . Therefore, we get

g(2,x) � g(2,x0(2)) = g

(
2,

√
21−1
5

)
≈ 553.184

(
x ∈
[√

21−1
5

, 1

))
.

(v) It remains to consider the interior of �2 . Since the system of equations⎧⎪⎨
⎪⎩

∂g/∂c = −8cx2 +8cx3−2cx4 +16(1− x2)(2+ x)x = 0

∂g/∂x = −8(72+ c2)x+12c2x2 +4(36− c2)x3

+16c(2+2x−6x2−4x3)+256x(1− x2) = 0

(2.11)

has the solution c = x = 0. Let x 	= 0. From the first equation, we get

c =
8(2+ x)(1− x2)

x(2− x)2 , (2.12)

which satisfies the inequality 0 � c � 2 only for x ∈ [x′,1) , where x′ ≈ 0.954858
satisfies the condition

−5x3−4x2 +8 = 0.

Now, by substituting (2.12) into the second equation of (2.11), we obtain

−9x7−42x6 +248x5−80x4 +48x3−256x2 +64x = 0,
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which exists a unique solution in (0,1) , namely,

x′′ ≈ 0.261557 /∈ [x′,1).

Thus, g has no critical point in the interior of �2 .
Therefore, in view of Case 3.2, it follows that

det(T4,1)( f ) =
1

36864
(4− c2)3 ·F(c,x,y,θ ,ϕ) � 1

36864
×43×576 = 1.

It is clear that equality for the lower bound in (2.1) holds for the function

f (z) =
z

1− z
= z+ z2 + z3 + · · ·+ zn + · · · ,

and for the upper bound in (2.1), equality holds for the identity function f (z) = z . �
Finally, we give an example to illustrate the inequality (2.1) in Theorem 2.1.

EXAMPLE 2.1. Let f1 and f2 be given by (1.5) and (1.6), respectively. In view
of Theorem A, Theorem B and (1.2), we see that f1, f2 ∈S∗(1/2) , and the fourth-order
Hermitian Toeplitz determinants of f1 and f2 satisfy

0 � det(T4,1)( f1) =

∣∣∣∣∣∣∣∣
1 0 0 1/3
0 1 0 0
0 0 1 0

1/3 0 0 1

∣∣∣∣∣∣∣∣
=

8
9

� 1,

and

0 � det(T4,1)( f2) =

∣∣∣∣∣∣∣∣
1 0 −1/3 0
0 1 0 −1/3

−1/3 0 1 0
0 −1/3 0 1

∣∣∣∣∣∣∣∣
=

80
81

� 1,

respectively.
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[32] M. OBRADOVIĆ AND N. TUNESKI, Hermitian Toeplitz determinants for the class S of univalent

functions, Armen. J. Math. 13 (2021), paper no. 4, 10 pp.
[33] J. K. PRAJAPAT, D. BANSAL, A. SINGH AND A. K. MISHRA, Bounds on third Hankel determinant

for close-to-convex functions, Acta Univ. Sapientiae Math. 7 (2015), 210–219.
[34] B. RATH, K. S. KUMAR, D. V. KRISHNA AND A. LECKO, The sharp bound of the third Hankel

determinant for starlike functions of order 1/2 , Complex Anal. Oper. Theory 16 (2022), paper no. 65,
8 pp.

[35] M. RAZA AND S. N. MALIK, Upper bound of the third Hankel determinant for a class of analytic
functions related with Lemniscate of Bernoulli, J. Inequal. Appl. 2013 (2013), Article 412, 8 pp.

[36] M. S. ROBERTSON, On the theory of univalent functions, Ann. of Math. (2) 37 (1936), 374–408.
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