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NUMERICAL RADIUS OF PRODUCTS OF SPECIAL MATRICES

MOHAMMAD ALAKHRASS

(Communicated by M. Krnić)

Abstract. The purpose of this note is to present upper bounds estimations for the numerical ra-
dius of a products and Hadamard products of special matrices, including sectorial and accretive-
dissipative matrices.

1. Introduction

Let Mn be the algebra of all n×n complex matrices. If X = [xi, j],Y = [yi, j]∈Mn ,
then their Hadamard product X ◦Y is the matrix [xi, jyi, j]. The cartesian decomposition
of X ∈ Mn is presented as

X = A+ iB, (1)

where A and B are the Hermitian matrices A = Re(X) = X+X∗
2 and B = Im(X) =

X−X∗
2i . A matrix X is said to be accretive (resp. dissipative) if in its cartesian de-

composition (1) the matrix A (resp. B) is positive definite. If both A and B , in the
decomposition (1), are positive definite, X is called accretive-dissipative.

The numerical range of X ∈ Mn is the compact convex subset of the complex
plane defined as follows:

W (X) = {〈Xx,x〉 : x ∈ C
n, ||x|| = 1},

where 〈·, ·〉 is the standard inner product on Cn and || · || is the Euclidean norm on Cn .
A very important result is that

σ(X) ⊂W (X),

where σ(X) is the spectrum of X .
For α ∈ [0,π/2) , let Sα be the sector defined in the complex plane by

Sα = {z ∈ C : Re(z) > 0, |Im(z)| � tan(α)Re(z)}.
A matrix X is called sectorial if W (X) ⊂ Sα . The smallest possible such α is called
the index of sectoriality.

For α ∈ [0,π/2) , let Ms
n,α be the class of all n×n matrices X with W (zX) ⊂ Sα

for some complex number z with |z| = 1.
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It is clear that X is accretive-dissipative if and only if W (e−π i/4X) ⊂ Sπ/4 , and
hence X ∈ Ms

n,α with α = π
4 . For more study of sectorial matrices see [1, 2, 3, 4, 10,

11, 12, 13] and the references therein.
A norm N on Mn is said to be unitarily invariant if it satisfies the property

N(UXV ) = N(X) for all X ∈Mn and all unitaries U,V ∈Mn, and it is said to be multi-
plicative if N(AB) � N(A)N(B) for all A,B∈Mn . Examples of such unitarily invariant

multiplicative norms are the Schatten p -norm defined by ||X ||p =
(

∑n
j=1 sp

j (X)
)p

, p �
1. When p = ∞ , this last norm is just the usual operator norm defined by ‖X‖ =
sup‖x‖=1 ‖Xx‖.

Associated with numerical range, the numerical radius of X is defined by

ω(X) = sup{|z| : z ∈W (X)}.

It is well known that ω(·) defines a norm on Mn which is equivalent to the usual
operator norm ‖ · ‖ . In fact we have

1
2
‖X‖ � ω(X) � ‖X‖; ∀X ∈ Mn. (2)

Moreover, if X ∈ Mn is normal then ω(X) = ‖X‖. Therefore, the inequalities in (2)
are sharp.

Obviously, ω(·) defines a weakly unitarily invariant norm on Mn ; that is it satis-
fies the property ω(UXU) = ω(X) for all X ∈ Mn and all unitary U ∈ Mn.

EXAMPLE 1.1. Let X =
(

0 2
0 0

)
and Y =

(
0 0
2 0

)
. Then ω(X) = ω(Y ) = 1 and

ω(XY ) = 4

Example 1.1 shows that ω(·) is not a multiplicative norm. However, the inequal-
ities in (2) implies that 4ω(·) is a multiplicative norm. That is for all X ,Y ∈ Mn ,
4ω(XY) � (4ω(X))(4ω(Y )) . Equivalently,

ω(XY ) � 4ω(X)ω(Y ); ∀X ,Y ∈ Mn. (3)

Obviously, Example 1.1 shows that the inequality (3) is sharp and the constant 4
is the best possible in (3).

The Hadamard product version of (3) can be written as

ω(X ◦Y ) � 2ω(X)ω(Y). (4)

That is, 2ω(·) is a multiplicative norm over the Hadamard product. See [7, p. 73].
The following example shows that the constant 2 is the best possible in (4).

EXAMPLE 1.2. Let X =Y =
(

0 2
0 0

)
Then ω(X) = ω(Y ) = 1 and ω(X ◦Y ) = 2.
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By considering special matrices X and Y , it is possible to obtain better estimations
than those in (3) and (4).

If XY = YX , then
ω(XY ) � 2ω(X)ω(Y ). (5)

See [8, Theorem 2.5-2].
If X or Y is normal such that XY = YX , then

ω(XY ) � ω(X)ω(Y ). (6)

See [8, Corollary 2.5-6].
If X or Y is normal. Then

ω(X ◦Y ) � ω(X)ω(Y ). (7)

See [7, Corollary 4.2.17].
If A,B ∈ Mn and A = [ai j] is positive semidefinite, then

ω(A◦B) �
(

max
j

a j j

)
ω(B). (8)

See [5, Corollary 4] and [9, Proposition 4.1].
The purpose of this short note is to add more inequalities to the above list. More

precisely, we give estimations of the numerical radius of products or Hadamard prod-
ucts of sectorial matrices and related matrices such as accretive and dissipative matrices.

2. Main results

We start this section by the following two observations.

LEMMA 2.1. Let X ∈ Mn . If W (X) ⊂ Sα , then

‖X‖ � sec(α)‖Re(X)‖.
The above Lemma can be found in [1], [3] , [2] and [13].

REMARK 2.1. 1. We recall that ω(·) defines a self-adjoint norm on Mn , that
is it is a norm satisfies the properties ω(X∗) = ω(X) for all X ∈ Mn . Therefore,

ω (Re(X)) = ω
(

X +X∗

2

)

=
1
2

(ω (X +X∗))

� 1
2

(ω (X)+ ω (X∗))

=
1
2

(ω (X)+ ω (X))

= ω (X) .
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2. Let X ∈ Mn and let X = A+ iB be its cartesian decomposition. If W (X) ⊂ Sα ,
then for any v ∈ Cn with ||v|| = 1 〈Av , v〉,〈Bx , x〉 ∈ R and

〈Xv , v〉 = 〈Av , v〉+ i 〈Bv , v〉 ∈ Sα .

Therefore,
|〈Bv , v〉| � tan(α)〈Av , v〉.

Taking the supremum over all such v’s gives

ω(B) � tan(α)ω(A).

Now we are ready to state the first result.

THEOREM 2.1. Let X ∈ Ms
n,α1

and Y ∈ Ms
n,α2

, where α2,α2 ∈ [0,π/2) . Then

ω(XY ) � sec(α1)sec(α2)ω(X)ω(Y ).

Proof. Since X ∈ Ms
n,α1

and Y ∈ Ms
n,α2

, there are two complex numbers z,w ∈ C

with |z| = |w| = 1 such that W (zX) ⊂ Sα1 and W (wY ) ⊂ Sα2 .
Notice that

ω(XY ) � ||XY || ( by (2) ))

� ||X || ||Y ||
= ||zX || ||wY ||
� sec(α1)sec(α2)||Re (zX) | |||Re (wY ) || (by Lemma 2.1)

= sec(α1)sec(α2)ω(Re (zX)) ω (Re (wY ))
(since Re (zX)) and Re (wY ) are Hermitian )

� sec(α1)sec(α2)ω (zX) ω(wY ) (by Remark 2.1)

= sec(α1)sec(α2)ω (X) ω(Y ). �

We remark that if X ,Y ∈ M
s
n,α , Theorem 2.1 implies that

ω(XY ) � sec2(α)ω(X)ω(Y ). (9)

The inequality (9) presents a refinement of the inequality (3) when 0 � α � π
3 . A

particular case is when X and Y are accretive-dissipative as in the following result.

COROLLARY 2.1. If X ,Y ∈ Mn are accretive-dissipative, then

ω(XY ) � 2ω(X)ω(Y ).

Proof. The result follows from Theorem 2.1 and the fact that if X ,Y ∈ Mn are
accretive-dissipative then X ,Y ∈ M

s
n,α with α = π/4. �
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REMARK 2.2. 1. If X ∈ Mn is accretive, i.e. Re(X) > 0, then X is sectorial
with sectorial index

αX = tan−1(|λ1

(
(ReX)−1 Im(X))|

)
= ||(ReX)−1/2 (ImX)(ReX)−1/2 ||. (10)

See [4]. Therefor X ∈ Ms
n,α with α = αX .

2. If X ∈ Mn is dissipative, i.e. Im(X) > 0, then iX is accretive and hence X ∈
Ms

n,α with α = αX .

COROLLARY 2.2. If X ,Y ∈ Mn are accretive (or dissipative), then

ω(XY ) � (1+a2)ω(X)ω(Y ),

where
a = max{|λ1

(
(ReX)−1 ImX

)
|, |λ1

(
(ReY )−1 ImY

)
|}.

Proof. Since X ,Y ∈ Mn are accretive (or dissipative), we have X ∈ Ms
n,αX

and
Y ∈ Ms

n,αY
, where αX and αY are as in (10). By Theorem 2.1, we have

ω(XY ) � sec(αX )sec(αY )ω(X)ω(Y ).

Now the result follows by noting that

sec(αX ) = sec(tan−1(|λ1

(
(Re(X))−1 Im(X))|

)
) =

√
1+
(

λ1

(
(ReX)−1 ImX

))2
,

and

sec(αY ) = sec(tan−1(|λ1

(
(ReY )−1 ImY )|

)
) =

√
1+
(

λ1

(
(ReY )−1 ImY

))2
. �

Same proof method used to prove Theorem 2.1 can be used to prove the following
more general result.

THEOREM 2.2. Let Xj ∈ Ms
n,α j

, j = 1,2,3, . . . ,m. Then

ω

(
m

∏
j=1

Xj

)
�

m

∏
j=1

sec(α j)ω(Xj).

Consequently,

COROLLARY 2.3. If X1,X2, . . . ,Xm ∈ Mn are accretive-dissipative, then

ω

(
m

∏
j=1

Xj

)
� 2m/2

m

∏
j=1

ω(Xj).
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COROLLARY 2.4. If X1,X2, . . . ,Xm ∈ Mn are accretive (or dissipative), then

ω

(
m

∏
j=1

Xj

)
� (1+a2)m/2

m

∏
j=1

ω(Xj),

where

a = max
{
|λ1

(
(ReXj)−1 ImXj

)
|, j = 1,2, . . . ,m

}
.

In what follows, we present upper bounds for the numerical ranges of hadamard
products of special matrices. The following lemma is important in our analysis. It can
be found in [1, 2, 3].

LEMMA 2.2. Let T ∈ Mn . If W (T ) ⊂ Sα for some α ∈ [0,π/2) . Then

(
sec(α)Re(T ) T

T ∗ sec(α)Re(T )

)
� 0.

Now we estimate the numerical range for a Hadamard product of sectorial matri-
ces.

THEOREM 2.3. Let X ∈ Ms
n,α1

and Y ∈ Ms
n,α2

. Then

ω(X ◦Y) � sec(α1)sec(α2)ω(X)ω(Y ).

Proof. Since X ∈ Ms
n,α1

and Y ∈ Ms
n,α2

, there are two complex numbers z,w ∈ C

with |z| = |y| = 1 such that W (zX) ⊂ Sα1 and W (wY ) ⊂ Sα2 . Therefore, by Lemma
2.2, the following two block matrices(

sec(α1)Re(zX) zX
zX∗ sec(α1)Re(zX)

)
,

(
sec(α2)Re(wY ) wY

wY ∗ sec(α2)Re(wY )

)

are positive semidefinite. Hence(
sec(α1)sec(α2)Re(zX)◦Re(wY ) zw(X ◦Y )

zw(X ◦Y )∗ sec(α1)sec(α2)Re(zX)◦Re(wY )

)

is also positive semidefinite. Since || · || is a Lieb function, we have

||X ◦Y || = ||zw(X ◦Y ) || � sec(α1)sec(α2)||Re(zX)◦Re(wY )||.

Recall that a Lieb function L is a continuous function defined on Mn , which is increas-
ing on the cone of positive matrices. It satisfies the property that for any matrices A and
B in Mn , the inequality |L(A∗B)|2 � L(A∗A)L(B∗B) holds. For more details, please
refer to page 270 in [6].
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Now, observe that

ω(X ◦Y ) � ||X ◦Y ||
� sec(α1)sec(α2)||Re(zX)◦Re(wY )||
= sec(α1)sec(α2)ω(Re(zX)◦Re(wY ))
� sec(α1)sec(α2)ω(Re(zX))ω(Re(wY )) (by (7)) (11)

� sec(α1)sec(α2)ω(zX)ω(wY ) (by Remark 2.1)
= sec(α1)sec(α2)|z|ω(X)|w|ω(Y )
= sec(α1)sec(α2)ω(X)ω(Y ). �

REMARK 2.3. 1. If X ,Y ∈ Ms
n,α , then

ω(X ◦Y ) � sec2(α)ω(X)ω(Y ). (12)

It is clear that inequality (12) presents a refinement of inequality (4) for 0 � α <
π
4 . In particular if X and Y are accretive-dissipative, then both (12) and (4) give
the same estimation.

2. If X ,Y ∈ Mn are accretive (or dissipative), then (12) implies that

ω(X ◦Y) � (1+a2)ω(X)ω(Y ),

where
a = max{|λ1

(
(ReX)−1 ImX

)
|, |λ1

(
(ReY )−1 ImY

)
|}.

The argument used to prove Theorem 2.3 can be easily modified to prove the
following more general result.

THEOREM 2.4. Let Xj ∈ Ms
n,α1

, j = 1,2, . . . ,m. Then

ω(X1 ◦ . . .◦Xm) �
m

∏
j=1

sec(α j)ω(Xj).

Consequently,

COROLLARY 2.5. If X1,X2, . . . ,Xm ∈ Mn are accretive-dissipative, then

ω (X1 ◦ . . .◦Xm) � 2m/2
m

∏
j=1

ω(Xj).

COROLLARY 2.6. If X1,X2, . . . ,Xm ∈ Mn are accretive (or dissipative), then

ω (X1 ◦ . . .◦Xm) � (1+a2)m/2
m

∏
j=1

ω(Xj),

where
a = max

{
|λ1

(
(ReXj)

−1 ImXj

)
|, j = 1,2, . . . ,m

}
.
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In the following result we give an estimation for ω(X ◦Y ) in terms of the diagonal
entries of X and Y .

THEOREM 2.5. Let X = [xi j] ∈ M
s
n,α1

and Y = [yi j] ∈ M
s
n,α2

. Then

ω(X ◦Y) � sec(α1)sec(α2)min

{
max

j
|x j j| ω(Y ),max

j
|y j j| ω(X)

}
.

Proof. Since X ∈ Ms
n,α1

and Y ∈ Ms
n,α2

, the inequality before (11) implies that

ω(X ◦Y ) � sec(α1)sec(α2)ω(Re(zX)◦Re(wY )),

for some z,w∈C with |z|= |w|= 1. Since Re(zX) is positive semidefinite, (8) implies
that

ω(Re(zX)◦Re(wY )) � max
j

Re(zx j j)ω (Re(wY )) .

Now, we have

ω(X ◦Y) = sec(α1)sec(α2)ω(Re(zX)◦Re(wY ))
� sec(α1)sec(α2)max

j
Re(zx j j)ω (Re(wY ))

� sec(α1)sec(α2)max
j

|zx j j|ω (wY )

= sec(α1)sec(α2)max
j

|x j j|ω (Y ) .

Hence,
ω(X ◦Y) � sec(α1)sec(α2)max

j
|x j j|ω (Y ) . (13)

Similarly, we have

ω(X ◦Y) � sec(α1)sec(α2)max
j

|y j j|ω (X) . (14)

The result follows by combining (13) and (14). �

COROLLARY 2.7. If X = [xi j],Y = [yi j] ∈ Mn are accretive-dissipative, then

ω(X ◦Y ) � 2min{max
j

|x j j| ω(Y ),max
j

|y j j| ω(X)}.

COROLLARY 2.8. If X ,Y ∈ Mn are accretive (or dissipative), then

ω(X ◦Y ) � (1+a2)min

{
max

j
|x j j| ω(Y ),max

j
|y j j| ω(X)

}
,

where
a = max{|λ1

(
(ReX)−1 ImX

)
|, |λ1

(
(ReY )−1 ImY

)
|}.
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Another upper bound for the numerical radius of a Hadamard product of two sec-
torial matrices can be obtained as follows.

THEOREM 2.6. Let X ∈ Ms
n,α1

and Y ∈ Ms
n,α2

. Then

ω(X ◦Y ) � min{(1+ tanα1)ω(Re X)ω(Y ),(1+ tanα2)ω(X)ω(ReY )} .

Consequently,
ω(X ◦Y ) � (1+ tanα)ω(X)ω(Y ),

where α = max{α1,α1} .

Proof. The second inequality follows from the the first one and fact that ω(ReX)�
ω(X)∀X ∈ Mn . To prove the first inequality, let X = A+ iB be the cartesian decompo-
sition of X . Then

ω(X ◦Y) = ω((A+ iB)◦Y)
= ω(A◦Y + iB◦Y)
� ω(A◦Y)+ ω(B◦Y)
� ω(A)ω(Y )+ ω(B)ω(Y) by (7)

� ω(A)ω(Y )+ tan(α1)ω(A)ω(Y ) (by part 2 of Remark 2.1)

� (1+ tanα1)ω(A)ω(Y )
= (1+ tanα1)ω(Re(X))ω(Y ).

Hence,
ω(X ◦Y) � (1+ tanα1)ω(ReX)ω(Y ). (15)

Similarly, one can show that

ω(X ◦Y) � (1+ tanα2)ω(ReY )ω(X). (16)

The result follows by combining (15) and (16). �

COROLLARY 2.9. Let X ,Y ∈ Ms
n,α . Then

ω(X ◦Y) � (1+ tanα)min{(ω(ReX)ω(Y ),ω(X)ω(ReY )} .

Consequently,
ω(X ◦Y ) � (1+ tanα)ω(X)ω(Y ). (17)

Finally, we remark that inequality (17) presents an improvement to (4) for 0 �
α < π

4 .
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