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Abstract. Let (M ,τ) be a semi-finite von Neumann algebra, L0(M ) be the set of all τ -
measurable operators. We studied generalized singular numbers of 2×2 positive matrices with
entries in L0(M ) . We proved the equivalence of several inequalities associated with these gen-
eralized singular numbers and gave symmetric norm’s version of this results, i.e., we extend the
related inequalities of 2× 2 positive semi-definite block matrices in [1, 5] to the 2× 2 positive
matrices of τ -measurable operators case.

1. Introduction

We denote the space of all compact linear operators on a complex separable Hilbert
space H by K(H) . In [4], Bhatia and Kittaneh proved that if x,y ∈ K(H) are self-
adjoint and ±y � x , then

s j(y) � s j(x⊕ x), j = 1,2, · · · , (1)

where s j(z) ( j = 1,2, · · ·) is singular value of z∈K(H) and x⊕x for the block-diagonal

operator

(
x 0
0 x

)
defined on H⊕H . They also proved the following arithmetic-geome-

tric mean inequality for singular values (see [3]): if x,y ∈ K(H) , then

2s j(xy∗) � s j(x∗x+ y∗y), j = 1,2, · · · . (2)

Zhan [13] has proved that if x,y ∈ K(H) are positive, then

s j(x− y) � s j(x⊕ y), j = 1,2, · · · . (3)

Tao has proved in [11] that if x,y,z ∈ K(H) such that

(
x z
z∗ y

)
� 0, then

2s j(z) � s j(
(

x z
z∗ y

)
), j = 1,2, · · · . (4)
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Tao has showed that (2)–(4) are equivalent.

Audeh and Kittaneh proved in [1] that if x,y,z ∈ K(H) such that

(
x z
z∗ y

)
� 0,

then
s j(z) � s j(x⊕ y), j = 1,2, · · · . (5)

They obtained the following generalization of (1): if x,y ∈ K(H) are self-adjoint and
±y � x , then

2s j(y) � s j((x+ y)⊕ (x− y)), j = 1,2, · · · . (6)

They have proved that (1) and (5) are equivalent, and (4) and (6) are equivalent. Burqan

and Kittaneh [5] have proved that if x,y,z ∈ K(H) such that

(
x z
z∗ y

)
� 0, then

s j(z+ z∗) � s j((x+ y)⊕ (x+ y)), j = 1,2, · · · (7)

and this inequality is equivalent with (1). We recall that while the inequalities in [4,
11, 13] are formulated for matrices, they can be extended in a natural way to compact
operators on a complex separable Hilbert space (see [1]).

Let (M ,τ) be a semi-finite von Neumann algebra, L0(M ) be the set of all τ -
measurable operators, μt(x) be the generalized singular number of x ∈ L0(M ) . In [7],
Han and Shao generalized (1)–(4) for τ -measurable operators associated with M and
proved that the generalized singular numbers version of (2)–(4) are equivalent. In this
paper, we prove that if y ∈ L0(M ) is a self-adjoint operator, then

μt(y) � μt(y+⊕ y−), t > 0,

where y+, y− are the positive and negative parts of y , respectively. As application, we
extend (5)–(7) to the generalized singular number case. We also prove the equivalence
of the corresponding inequalities and some symmetric norm inequalities.

2. Preliminaries

Let L0(0,α) (0 < α � ∞) the space of all μ -measurable real-valued functions f
on (0,α) . We define the decreasing rearrangement function f ∗ : (0,α) �→ (0,α) for
f ∈ L0(0,α) by

f ∗(t) = inf{s > 0 : μ({ω ∈ (0,α) : | f (ω)| > s}) � t}, t � 0.

Let E be a Banach subspace of L0(0,α), simply called a Banach function space on
(0,α) in the sequel. E is said to be symmetric if, for f ∈ E and g ∈ L0(0,α) such that
g∗(t) � f ∗(t) for all t � 0, one has g ∈ E and ‖g‖E � ‖ f‖E (see [2, 8]).

We denote by M a semi-finite von Neumann algebra with a faithful normal semi-
finite trace τ and by L0(M ) the set of all τ -measurable operators. For x ∈ L0(M ) ,
we define the distribution function λ (x) of x by λt(x) = τ(e(t,∞)(|x|)) for t > 0, where
e(t,∞)(|x|) is the spectral projection of |x| in the interval (t,∞) , and define the general-
ized singular numbers μ(x) of x by μt(x) = inf{s > 0 : λs(x) � t} for t > 0. It is clear
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that μt(x) = 0, for all t � τ(1) . For further information about elementary properties of
the generalized singular numbers, we refer the reader to [6].

We recall that if M = Mn and τ is the standard trace, then

μt(x) = s j(x), t ∈ [ j−1, j), j = 1,2, · · · .
Recall that if x ∈ L0(M ) , then for any t > 0,

μt(x) = inf
{‖xe‖ : e is projection in M , τ(e⊥) � t

}
. (8)

Moreover, the infimum can be restricted to the family of all spectral projections of |x|
(see [6, proof of Proposition 2.2]).

We denote by M2(M ) the semifinite von Neumann algebra

M2(M ) =
{(

x1,1 x1,2

x2,1 x2,2

)
, xi, j ∈ M , i, j = 1,2

}

on Hilbert space H ⊕H with trace Tr⊗ τ .
Given a symmetric Banach function space E on (0,α) (τ(1) = α) . Let

E(M ,τ) = {x ∈ L0(M ) : ‖μ(x)‖E < ∞}, ‖x‖E = ‖μ(x)‖E .

Then (E(M ,τ),‖ · ‖E) is a Banach space. This space is called noncommutative sym-
metric space, and denoted by E(M ) for convenience. If 1 � p � ∞ and E = Lp(0,α) ,
then E(M ) = Lp(M ) , which are the usual noncommutative Lp -spaces associated with
(M ,τ) (see [10, 12]).

3. Main results

LEMMA 1. Let y ∈ L0(M ) be self-adjoint operator. Then

μt(y) � μt(y+⊕ y−), t > 0,

where y+, y− are the positive and negative parts of y , respectively.

Proof. It is clear that |y| = y+ + y−, y = y+ − y−, y+y− = 0, y−y+ = 0. Let
y+ =

∫ ∞
0 λdeλ (y+) (respectively, y− =

∫ ∞
0 λdeλ (y−)) be the spectral decomposition of

y+ (respectively, y− ). Then

y+⊕ y− =
∫ ∞

0
λdeλ (y+)⊕

∫ ∞

0
λdeλ (y−) =

∫ ∞

0
λd(eλ (y+)⊕ eλ (y−)). (9)

By (8) and (9), we get that for any ε > 0, there is a spectral projection e of y+ ⊕ y−
such that τ(e⊥) � t , μt(y+ ⊕ y−)+ ε > ‖(y+ ⊕ y−)e‖ and e = e1 ⊕ e2 , where e1 is a
spectral projection of y+ and e2 is a spectral projection of y− . Hence, e1⊥e2 , and so
f = e1 + e2 is a projection. Since

f⊥ = 1− f � 1− e1 +1− e2 = e⊥1 + e⊥2 ,
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we deduce that τ( f⊥) � t . Applying [6, Lemma 2.5]), we obtain that

μs(y) = μt(|y|) � ‖|y| f‖ = ‖(y+ + y−) f‖ = ‖y+e1 + y−e2‖
= ‖e1y+e1 + e2y−e2‖ = max{‖e1y+e1‖,‖e2y−e2‖}
= ‖e1y+e1 ⊕ e2y−e2‖ = ‖y+e1⊕ y−e2‖
= ‖(y+⊕ y−)(e1 ⊕ e2)‖
= ‖(y+⊕ y−)e‖ < μt(y+⊕ y−)+ ε.

The proof is complete since ε is arbitrary. �

LEMMA 2. Let x,y ∈ L0(M ) be self-adjoint operators such that ±y � x . Then

μt(y) � μt(x⊕ x), t > 0.

Proof. Let y+, y− be the positive and negative parts of y , respectively. Then

y+ = e[0,∞)(y)ye[0,∞)(y) � e[0,∞)(y)xe[0,∞)(y)
y− = e(−∞,0)(y)ye(−∞,0)(y) � e(−∞,0)(y)xe(−∞,0)(y).

Using Lemma 1 and [6, Lemma 2.5], we get that

μt(y) � μt(y+ ⊕ y−) � μt(e[0,∞)(y)xe[0,∞)(y)⊕ e(−∞,0)(y)xe(−∞,0)(y))
= μt((e[0,∞)(y)⊕ e(−∞,0)(y))(x⊕ x)(e[0,∞)(y)⊕ e(−∞,0)(y)))

� ‖(e[0,∞)(y)⊕ e(−∞,0)(y)‖2μt(x⊕ x)
� μt(x⊕ x). �

We will use the following result (see [9, Proposition 3]), for easy reference give
its proof.

LEMMA 3. Let x ∈ L0(M ) . Then

μt(x⊕ x∗) = μ t
2
(x), t > 0.

Proof. It is clear that |x⊕ x∗| = |x|⊕ |x∗| . Similar to the proof of Lemma 1, we
have that

e(t,∞)(|x|⊕ |x∗|) = e(t,∞)(|x|)⊕ e(t,∞)(|x∗|), t > 0.

Hence, λt(x⊕ x∗) = λt(x)+ λt(x∗) for any t > 0. As the map: s → λs(x⊕ x∗) is con-
tinuous from the right, it is obvious that λμt(x⊕x∗)(x⊕ x∗) � t for any t > 0. Therefore,
λμt(x⊕x∗)(x)+ λμt(x⊕x∗)(x∗) � t . It follows that λμt(x⊕x∗)(x) � t

2 or λμt(x⊕x∗)(x∗) � t
2 .

It implies that μ t
2
(x) � μt(x⊕ x∗) or μ t

2
(x∗) � μt(x⊕ x∗) . Since μ t

2
(x) = μ t

2
(x∗)

(see [6, Lemma 2.5]), we have that μ t
2
(x) � μt(x⊕ x∗) . Conversely, for ε > 0, we
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choose projections e1 and e2 such that τ(e⊥1 ) � t
2 , τ(e⊥2 ) � t

2 , ‖xe1‖< μ t
2
(x)+ε and

‖x∗e2‖ < μ t
2
(x)+ ε . Set e = e1 ⊕ e2 . Then τ(e⊥) � t and

μt(x⊕ x∗) � ‖(x⊕ x∗)e‖ = ‖xe1⊕ x∗e2‖ = max{‖xe1‖,‖x∗e2‖} < μ t
2
(x)+ ε.

Letting ε → 0, we obtain the desired result. �

THEOREM 1. Let x,y,∈ L0(M ) and

(
x z
z∗ y

)
� 0 . Then

μt(z) � μt(x⊕ y), t > 0.

Proof. Since

(
x z
z∗ y

)
� 0, we have that

0 �
(

1 0
0 −1

)(
x z
z∗ y

)(
1 0
0 −1

)
=

(
x −z

−z∗ y

)
.

It follows that ±
(

0 z
z∗ 0

)
� x⊕ y . By Lemma 2, we get

μt(
(

0 z
z∗ 0

)
) � μt((x⊕ y)⊕ (x⊕ y)), t > 0.

On the other hand,

(
0 z
z∗ 0

)(
0 1
1 0

)
=

(
z 0
0 z∗

)
. By [6, Lemma 2.5], it follows that

μt(
(

0 z
z∗ 0

)
) = μt(z⊕ z∗) . Hence, μt(z⊕ z∗) � μt((x⊕ y)⊕ (x⊕ y)) for any t > 0.

Using Lemma 3, we obtain desired result. �
We use a similar method in the proof of [1, Theorem 2.4] to obtain the following

result.

THEOREM 2. Let x,y ∈ L0(M ) be self-adjoint operators such that ±y � x . Then

2μt(y) � μt((x+ y)⊕ (x− y)) � 2μt(x⊕ x), t > 0.

Proof. Since 1√
2

(
1 1
−1 1

)
is a unitary operator in M2(M ) and

(
x+ y 0

0 x− y

)
�

0, we deduce that

0 � 1√
2

(
1 −1
1 1

)(
x+ y 0

0 x− y

)
1√
2

(
1 1
−1 1

)
=

(
x y
y x

)
.

Hence, μt(
(

x y
y x

)
) = μt(

(
x+ y 0

0 x− y

)
) . By [7, Lemma 3.3], we have that

2μt(y) � μt(
(

x y
y x

)
) = μt((x+ y)⊕ (x− y)), t > 0.
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On the other hand, 0 � (x+y)⊕(x−y) = x⊕x+y⊕(−y)� 2(x⊕x) , and so the second
inequality holds. �

COROLLARY 1. Let x,y ∈ L0(M ) be self-adjoint operators. Then

μt(x+ y) � μt((x+ + y+)⊕ (x−+ y−)), t > 0.

Proof. It is clear that ±x � |x| , ±y � |y| and ±(x+y) � |x|+ |y| . By Theorem 2,
we get that

μt(x+ y) � 1
2

μt(((|x|+ |y|)+ (x+ y))⊕ ((|x|+ |y|)− (x+ y)))

=
1
2

μt((2(x+ + y+))⊕ (2(x−+ y−)))

= μt((x+ + y+)⊕ (x−+ y−)), t > 0. �

THEOREM 3. The following statements are equivalent:

(i) If x,y ∈ L0(M ) are positive operators, then

μt(x− y) � μt(x⊕ y), t > 0.

(ii) If x,y ∈ L0(M ) , then

2μt(xy∗) � μt(x∗x+ y∗y), t > 0.

(iii) If x,y,z ∈ L0(M ) and

(
x z
z∗ y

)
� 0 , then

2μt(z) � μt(
(

x z
z∗ y

)
), t > 0.

(iv) If x,y ∈ L0(M ) are self-adjoint operators such that ±y � x , then

2μt(y) � μt((x+ y)⊕ (x− y)), t > 0.

(v) If x,y ∈ L0(M ) are self-adjoint operators, then

μt(x+ y) � μt((x+ + y+)⊕ (x− + y−)), t > 0.

Proof. It is known from [7] that (i), (ii) and (iii) are equivalent.
(iii) ⇒ (iv) follows from the proof of Theorem 2.
(iv) ⇒ (v) follows from the proof of Corollary 1.
(v) ⇒ (i) If x,y ∈ L0(M ) are positive operators, then by (v), we have that

μt(x− y) = μt(x+(−y)) � μt((x+ +(−y)+)⊕ (x−+(−y)−))
= μt((x+0)⊕ (0+ y)) = μt(x⊕ y), t > 0. �
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THEOREM 4. Let E be a symmetric Banach function space on (0,α) . Then the
following statements are equivalent:

(i) If y ∈ E(M ) is a self-adjoint operator, then

‖y‖E � ‖y+⊕ y−‖E .

(ii) If x,y ∈ E(M ) are positive operators, then

‖x− y‖E � ‖x⊕ y‖E.

(iii) If x,y ∈ E(M ) are self-adjoint operators such that ±y � x , then

2‖y‖E � ‖(x+ y)⊕ (x− y)‖E.

(iv) If x,y ∈ E(M ) are self-adjoint operators, then

‖x− y‖E � ‖(x+ + y+)⊕ (x−+ y−)‖E .

Proof. (i) ⇒ (ii) If x,y are positive operators, then x− y � x and −(x− y) � y .
Let e1 = e[0,∞)(x− y) and e2 = e(−∞,0)(x− y) . Then (x− y)+ = e1(x− y)e1 � e1xe1 ,
(x− y)− = e2(x− y)e2 � e2ye2 . Hence, by (i),

‖x− y‖E � ‖(x− y)+⊕ (x− y)−‖E � ‖e1xe1⊕ e2ye2‖E

= ‖(e1⊕ e2)(x⊕ y)(e1⊕ e2)‖E � ‖x⊕ y‖E.

(ii) ⇒(iii) If x,y are self-adjoint operators such that ±y � x , then x− y � 0 and
x+ y � 0. By (ii), we get (iii).

(iii) ⇒ (iv) We use the method in the proof of Corollary 1 to prove (iv).
(iv) ⇒ (i) If y is a self-adjoint operator, then by (iv), we have that

‖y‖E = ‖y−0‖E � ‖(y+ +0)⊕ (y−+0) = ‖y+⊕ y−‖E . �

Using a similar method in the proof of [5, Theorem 3.2], we obtain that

THEOREM 5. Let x,y,z,a,b ∈ L0(M ) . If

(
x z
z∗ y

)
� 0 , then

μt(a∗zb+b∗z∗a) � μt((a∗xa+b∗yb)⊕ (a∗xa+b∗yb)), t > 0.

Consequently,

μt(z+ z∗) � μt((x+ y)⊕ (x+ y)), t > 0.
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Proof. Since

(
a∗xa+b∗z∗a+a∗zb+b∗yb 0

0 0

)
=

(
a 0
b 0

)∗(
x z
z∗ y

)(
a 0
b 0

)
� 0

and
(

a∗xa−b∗z∗a−a∗zb+b∗yb 0
0 0

)
=

(
a 0
−b 0

)∗(
x z
z∗ y

)(
a 0
−b 0

)
� 0,

we have that ±(b∗z∗a+a∗zb) � a∗xa+b∗yb . By Lemma 2, we get

μt(b∗z∗a+a∗zb) � μt((a∗xa+b∗yb)⊕ (a∗xa+b∗yb)), t > 0.

Taking a = 1 and b = 1, we obtain the second result. �

THEOREM 6. The following statements are equivalent:

(i) If x,y ∈ L0(M ) are self-adjoint operators such that ±y � x , then

μt(y) � μt(x⊕ x), t > 0.

(ii) If x,y,z,a,b ∈ L0(M ) and

(
x z
z∗ y

)
� 0 , then

μt(a∗zb+b∗z∗a) � μt((a∗xa+b∗yb)⊕ (a∗xa+b∗yb)), t > 0.

(iii) If x,y,z ∈ L0(M ) and

(
x z
z∗ y

)
� 0 , then

μt(z+ z∗) � μt((x+ y)⊕ (x+ y)), t > 0.

(iv) If x,y,∈ L0(M ) and

(
x z
z∗ y

)
� 0 , then

μt(z) � μt(x⊕ y), t > 0.

Proof. (i) ⇒ (ii) and (ii) ⇒ (iii) follow from the proof of Theorem 5.

(iii) ⇒ (i) From the proof of Theorem 2, we know that

(
x y
y x

)
� 0. By (iii), we

obtain (i).
(i) ⇒ (iv) flows from the proof of Theorem 1.

(iv) ⇒ (i) Since

(
x y
y x

)
� 0, by (iv), we get (i). �

Similarly to Theorem 4, we use the method in the proof of Theorem 6 to obtain
the following result.



POSITIVE MATRIX OF τ MEASURABLE OPERATORS 1015

THEOREM 7. Let E be a symmetric Banach function space on (0,α) . Then the
following statements are equivalent:

(i) If x,y ∈ E(M ) are self-adjoint operators such that ±y � x , then

‖y‖E � ‖x⊕ x‖E.

(ii) If x,y,z ∈ E(M ) , a,b ∈ M and

(
x z
z∗ y

)
� 0 , then

‖a∗zb+b∗z∗a‖ � ‖(a∗xa+b∗yb)⊕ (a∗xa+b∗yb)‖.

(iii) If x,y,z ∈ E(M ) and

(
x z
z∗ y

)
� 0 , then

‖z+ z∗‖ � ‖(x+ y)⊕ (x+ y)‖.
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