# ON THE CONVEXITY OF SOME TRACE FUNCTIONS 

Guanghua Shi<br>(Communicated by M. Krnić)


#### Abstract

In this paper, we study the convexity of the trace function $A \rightarrow \operatorname{Tr} B^{*} f(A) B$. And we get an extension of the Peierls-Bogolyubov inequality and the joint convexity of the trace geometric mean.


## 1. Introduction

Throughout this paper, we write $\mathbf{M}_{n}$ to denote the $n \times n$ complex matrices, $\mathbf{H}_{n}$ the subset consisting of self-adjoint (Hermitain) matrices, $\mathbf{P}_{n}$ and $\mathbf{P}_{n}^{+}$the subset consisting of positive semidefinite matrices and positive definite matrices, respectively. We write $A \geqslant 0$ if $A$ is positive semidefinite and $A>0$ if $A$ is positive definite.

It is well known that, when $f$ is convex, the trace function $A \rightarrow \operatorname{Tr} f(A)$ is convex for self-adjoint matrices. Some related results can be found in [6, Introduction]. See also [7]. Several important concepts in operator theory and quantum information theory are closely related to the convexity of this type of trace functions. For example, the Schatten $p$-norms $\left(\operatorname{Tr}|A|^{p}\right)^{\frac{1}{p}},(p>1)$, the von Neumann entropy $-\operatorname{Tr} A \log A$, and the Peierls-Bogolyubov inequality [5, 1, 4].

The Peierls-Bogolyubov inequality plays a very important role in quantum information theory, especially in the calculation of the partition function. It states that

$$
\log \frac{\operatorname{Tr} \exp (A+B)}{\operatorname{Tr} \exp A} \geqslant \frac{\operatorname{Tr} \exp (A) B}{\operatorname{Tr} \exp A}
$$

It can also state the log-convexity of the trace function $\operatorname{Tr} \exp (A)$, i.e., the map

$$
A \rightarrow \log \operatorname{Tr} \exp (A)
$$

is convex on $\mathbf{H}_{n}$.
In [8], Hansen et al. studied the Peierls-Bogolyubov inequality for deformed exponentials. The deformed logarithm denoted $\log _{q}$ is defined by setting

$$
\log _{q} a=\left\{\begin{array}{ll}
\frac{a^{q-1}-1}{q-1} & q \neq 1, \\
\log a & q=1,
\end{array} \quad a>0\right.
$$

Mathematics subject classification (2020): 47A63, 94A17.
Keywords and phrases: Peierls-Bogolyubov inequality, trace geometric mean.

The deformed logarithm is also denoted by the $q$-logarithm. The deformed exponential function or the $q$-exponential is defined as the inverse function to the $q$-logarithm. It is denoted by $\exp _{q}$ and is given by the formula

$$
\exp _{q} a=\left\{\begin{array}{lll}
(a(q-1)+1)^{1 /(q-1)}, & a>-1 /(q-1), & q>1 \\
(a(q-1)+1)^{1 /(q-1)}, & a<-1 /(q-1), & q<1 \\
\exp a, & a \in \mathbb{R}, & q=1
\end{array}\right.
$$

In [8], the authors studied the convexity of the function

$$
f(A)=\log _{r} \operatorname{Tr} B^{*} \exp _{q}(A) B
$$

It has been proved that
(i) If $q \leqslant 0$ and $r \geqslant q$, then $f$ is convex.
(ii) If $\frac{3}{2} \leqslant q \leqslant 2$ and $r \geqslant q$, then $f$ is convex.
(iii) If $q \geqslant 2$ and $r \leqslant q$, then $f$ is concave.

We find there is a gap for $0 \leqslant q \leqslant \frac{3}{2}$ that has not been studied yet. In this paper, we tackle with this problem and complement the corresponding results. We will also study the convexity of the trace function $\exp _{q} \operatorname{Tr} H^{*} \log _{q} A H$.

Moreover, we study the joint convexity of the trace function

$$
(A, B) \rightarrow \operatorname{Tr} B^{\frac{1}{2}} f\left(B^{\frac{-1}{2}} A B^{\frac{-1}{2}}\right) B^{\frac{1}{2}}
$$

It enables us to consider the joint convexity of the trace geometric mean.

## 2. Main results

### 2.1. The convexity of trace functions

Theorem 2.1. Let $B \in \mathbf{M}_{n}$. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a convex function, then the trace function

$$
\begin{equation*}
F(A)=\operatorname{Tr} B^{*} f(A) B \tag{2.1}
\end{equation*}
$$

is convex for $A \in \mathbf{H}_{n}$.

Proof. Let $\left\{P_{i}\right\}$ be a pairwise orthogonal family of minimal projections with $\sum_{i=1}^{n} P_{i}=I_{n}$. Let $\sum_{j} s_{j} Q_{j}$ be the spectral decomposition of a self-adjoint matrix $C$.

Then for positive definite matrix $K\left(=B B^{*}\right)$, we have $\operatorname{Tr} K P_{i}>0$ for $i=1, \ldots, n$. Thus

$$
\begin{align*}
\operatorname{Tr} K f(C) & =\sum_{j} f\left(s_{j}\right) \operatorname{Tr} K Q_{j}=\sum_{i}\left(\sum_{j} f\left(s_{j}\right) \operatorname{Tr} K Q_{j} P_{i}\right) \\
& =\sum_{i}\left[\frac{\sum_{j} f\left(s_{j}\right) \operatorname{Tr} K Q_{j} P_{i}}{\operatorname{Tr} K P_{i}} \operatorname{Tr} K P_{i}\right] \\
& \geqslant \sum_{i}\left(\operatorname{Tr} K P_{i}\right) f\left(\sum_{j} s_{j} \frac{\operatorname{Tr} K Q_{j} P_{i}}{\operatorname{Tr} K P_{i}}\right) \\
& =\sum_{i}\left(\operatorname{Tr} K P_{i}\right) f\left(\frac{\operatorname{Tr} K C P_{i}}{\operatorname{Tr} K P_{i}}\right) . \tag{2.2}
\end{align*}
$$

Now, assume $\sum_{i=1}^{n} \mu_{i} P_{i}$ is the spectral decomposition of the convex combination

$$
A=\lambda C_{1}+(1-\lambda) C_{2}
$$

It follows that

$$
\begin{aligned}
\operatorname{Tr} K f(A) & =\sum_{i} f\left(\mu_{i}\right) \operatorname{Tr} K P_{i} \\
& =\sum_{i}\left(\operatorname{Tr} K P_{i}\right) f\left(\frac{\operatorname{Tr} K A P_{i}}{\operatorname{Tr} K P_{i}}\right) \\
& =\sum_{i}\left(\operatorname{Tr} K P_{i}\right) f\left(\frac{\operatorname{Tr} K\left(\lambda C_{1}+(1-\lambda) C_{2}\right) P_{i}}{\operatorname{Tr} K P_{i}}\right) \\
& \leqslant \sum_{i}\left(\operatorname{Tr} K P_{i}\right)\left[\lambda f\left(\frac{\operatorname{Tr} K C_{1} P_{i}}{\operatorname{Tr} K P_{i}}\right)+(1-\lambda) f\left(\frac{\operatorname{Tr} K C_{2} P_{i}}{\operatorname{Tr} K P_{i}}\right)\right] \\
& \leqslant \lambda \operatorname{Tr} K f\left(C_{1}\right)+(1-\lambda) \operatorname{Tr} K f\left(C_{2}\right)
\end{aligned}
$$

where the first inequality follows from the convexity of $f$, and the second inequality follows from applying the inequality (2.2) twice. Hence we have that

$$
\begin{equation*}
\operatorname{Tr} K f\left(\lambda C_{1}+(1-\lambda) C_{2}\right) \leqslant \lambda \operatorname{Tr} K f\left(C_{1}\right)+(1-\lambda) \operatorname{Tr} K f\left(C_{2}\right) \tag{2.3}
\end{equation*}
$$

with $K$ positive definite.
For arbitrary matrix $B \in \mathbf{M}_{n}, K=B B^{*}$ is positive semidefinite. We set $K_{\varepsilon}=$ $K+\varepsilon I$ for an arbitrary $\varepsilon \in(0,1)$. Then $K_{\mathcal{\varepsilon}}$ is positive definite and satisfies

$$
\operatorname{Tr} K_{\varepsilon} f\left(\lambda C_{1}+(1-\lambda) C_{2}\right) \leqslant \lambda \operatorname{Tr} K_{\varepsilon} f\left(C_{1}\right)+(1-\lambda) \operatorname{Tr} K_{\varepsilon} f\left(C_{2}\right)
$$

Letting $\varepsilon \rightarrow 0$, we have the inequality (2.3) holds for positive semidefinite matrix $K$. Hence, we have $A \rightarrow \operatorname{Tr} B^{*} f(A) B$ is convex.

Now we consider the Jensen inequalities related to the trace function $\operatorname{Tr} B^{*} f(A) B$. In this part, we denote the set of $n \times m$ matrices by $\mathbf{M}_{n m}$.

THEOREM 2.2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be convex. Then the following statements hold and they are equivalent:
(i) For $B \in \mathbf{M}_{n}, F(A)=\operatorname{Tr} B^{*} f(A) B$ is convex on $\mathbf{H}_{n}$.
(ii) For $A_{i} \in \mathbf{H}_{n}, B \in \mathbf{M}_{m}$, and $H_{i} \in \mathbf{M}_{n m}$, with $\sum_{i} H_{i}^{*} H_{i}=I_{m}$,

$$
\operatorname{Tr} B^{*} f\left(\sum_{i} H_{i}^{*} A_{i} H_{i}\right) B \leqslant \sum_{i} \operatorname{Tr} B^{*} H_{i}^{*} f\left(A_{i}\right) H_{i} B
$$

(iii) For $A \in \mathbf{H}_{n}$, and $V \in \mathbf{M}_{n m}, B \in \mathbf{M}_{m}$ with $V^{*} V=I_{m}$,

$$
\operatorname{Tr} B^{*} f\left(V^{*} A V\right) B \leqslant \operatorname{Tr} B^{*} V^{*} f(A) V B
$$

Proof. According to Theorem 2.1, we should only prove the equivalence.
$(i) \rightarrow($ iii $)$. Set $Z=\left(\begin{array}{cc}A & 0 \\ 0 & M\end{array}\right), C=\left(\begin{array}{cc}B & 0 \\ 0 & 0\end{array}\right), U=\left(\begin{array}{cc}V & P \\ 0 & -V^{*}\end{array}\right), W=\left(\begin{array}{cc}V & -P \\ 0 & V^{*}\end{array}\right)$, where $M \in \mathbf{H}_{m}$ and $P=I-V V^{*}$. Note that $V$ is isometry, and $V^{*} P=0, P V=0$, then $U$ and $W$ are unitary. By calculation,

$$
\begin{aligned}
U^{*} Z U= & \left(\begin{array}{cc}
V^{*} A V & V^{*} A P \\
P A V & P A P+V M V^{*}
\end{array}\right), \quad W^{*} Z W=\left(\begin{array}{cc}
V^{*} A V & -V^{*} A P \\
-P A V & P A P+V M V^{*}
\end{array}\right), \\
& \frac{1}{2}\left(U^{*} Z U+W^{*} Z W\right)=\left(\begin{array}{cc}
V^{*} A V & 0 \\
0 & P A P+V M V^{*}
\end{array}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \operatorname{Tr} B^{*} f\left(V^{*} A V\right) B \\
& =\operatorname{Tr}\left(\begin{array}{cc}
B^{*} & 0 \\
0 & 0
\end{array}\right) f\left(\begin{array}{cc}
V^{*} A V & 0 \\
0 & P A P+V M V^{*}
\end{array}\right)\left(\begin{array}{ll}
B & 0 \\
0 & 0
\end{array}\right) \\
& =\operatorname{Tr} C^{*} f\left(\frac{1}{2}\left(U^{*} Z U+W^{*} Z W\right)\right) C \\
& \leqslant \frac{1}{2} \operatorname{Tr} C^{*} f\left(U^{*} Z U\right) C+\frac{1}{2} \operatorname{Tr} C^{*} f\left(W^{*} Z W\right) C \\
& =\operatorname{Tr} C^{*}\left(\frac{1}{2} U^{*} f(Z) U+\frac{1}{2} W^{*} f(Z) W\right) C \\
& =\operatorname{Tr}\left(\begin{array}{cc}
B^{*} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
V^{*} f(A) V & 0 \\
0 & P f(A) P+V f(M) V^{*}
\end{array}\right)\left(\begin{array}{ll}
B & 0 \\
0 & 0
\end{array}\right) \\
& =\operatorname{Tr} B^{*} V^{*} f(A) V B \text {. }
\end{aligned}
$$

$(i i i) \rightarrow(i i)$. Set

$$
A=\left[\begin{array}{llll}
A_{1} & & & \\
& A_{2} & & \\
& & \ddots & \\
& & & A_{n}
\end{array}\right], \quad V=\left[\begin{array}{cccc}
H_{1} & 0 & \cdots & 0 \\
H_{2} & 0 & \cdots & 0 \\
\vdots & 0 & \cdots & 0 \\
H_{n} & 0 & \cdots & 0
\end{array}\right], \quad D=\left[\begin{array}{cccc}
B & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0
\end{array}\right] .
$$

Then

$$
V^{*} A V=\left[\begin{array}{cccc}
\sum_{i} H_{i}^{*} A_{i} H_{i} & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & & \cdots & 0 \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

It follows that

$$
\begin{aligned}
\operatorname{Tr} B^{*} f\left(\sum_{i} H_{i}^{*} A_{i} H_{i}\right) B & =\operatorname{Tr} D^{*} f\left(V^{*} A V\right) D \\
& \leqslant \operatorname{Tr} D^{*} V^{*} f(A) V D \\
& =\operatorname{Tr} B^{*}\left(\sum_{i} H_{i}^{*} f\left(A_{i}\right) H_{i}\right) B \\
& =\sum_{i} \operatorname{Tr} B^{*} H_{i}^{*} f\left(A_{i}\right) H_{i} B
\end{aligned}
$$

$(i i) \rightarrow(i)$ is easy to prove. We omit it.

### 2.2. An extension of Peierls-Bogolyubov's inequality

By Theorem 2.1, we know that the trace function $A \rightarrow \operatorname{Tr} B^{*} A^{p} B$ is concave for $0<p \leqslant 1$, and convex for $p<0$, and $p>1$. In [8], the authors obtained the following proposition.

Proposition 2.3. ([8, Proposition 1]) Let $f$ be a real positive function defined on $\mathbf{P}_{n}^{+}$and assume $f$ is homogeneous of degree $p \neq 0$.
(i) If $f$ is convex and $p>0$, then $f^{1 / p}$ is convex.
(ii) If $f$ is convex and $p<0$, then $f^{1 / p}$ is concave.
(iii) If $f$ is convex and $p<0$ and $r>0$, then $f^{r}$ is convex.
(iv) If $f$ is concave and $p>0$, then $f^{1 / p}$ is concave.
(v) If $f$ is concave and $p<0$, then $f^{1 / p}$ is convex.
(vi) If $f$ is concave and $p>0$ and $r<0$, then $f^{r}$ is convex.

According to Proposition 2.3, we have
Proposition 2.4. Let $B \in \mathbf{M}_{n}$ be an arbitrary operator and consider the function

$$
F(A)=\left(\operatorname{Tr} B^{*} A^{p} B\right)^{1 / r}
$$

defined on positive definite matrices $\mathbf{P}_{n}^{+}$. Then
(i) $F$ is concave for $r \leqslant p<0$;
(ii) $F$ is convex for $p<0$ and $r>0$;
(iii) $F$ is concave for $0<p \leqslant 1$ and $r \geqslant p$;
(iv) $F$ is convex for $0<p \leqslant 1$ and $r<0$;
(v) $F$ is convex for $p \geqslant 1$ and $0<r \leqslant p$.

Note that (iii) and (iv) and the cases of $-1 \leqslant p<0$ and $1 \leqslant p \leqslant 2$ in $(i),(i i),(v)$ have already been discussed in [8]. And the cases of $p<-1$ in $(i),(i i)$, and the case of $p>2$ in $(v)$ are new.

Consider the function

$$
\begin{aligned}
F(A) & =\log _{r} \operatorname{Tr} B^{*} \exp _{q}(A) B \\
& =\frac{1}{r-1}\left(\left(\operatorname{Tr}\left(B^{*}(A(q-1)+1)^{\frac{1}{q-1}} B\right)\right)^{r-1}-1\right) .
\end{aligned}
$$

Let

$$
\frac{1}{q-1}=p, \quad \frac{1}{r-1}=r
$$

Then by Proposition 2.4, we have
THEOREM 2.5. Let $B$ be an arbitrary matrix and consider the function

$$
F(A)=\log _{r} \operatorname{Tr} B^{*} \exp _{q}(A) B
$$

defined on self-adjoint $A>-(q-1)^{-1}$.
(i) If $q<1$ and $r \geqslant q$, then $F$ is convex.
(ii) If $1<q \leqslant 2$ and $r \geqslant q$, then $F$ is convex.
(iii) If $q \geqslant 2$ and $r \leqslant q$, then $F$ is concave.

When $q=r$, and letting $q \rightarrow 1$, we have
THEOREM 2.6. Let $B$ be an arbitrary matrix, then the function

$$
F(A)=\log \operatorname{Tr} B^{*} \exp (A) B
$$

is convex.
That is, we have an extension of the Peierls-Bogoliubov inequality as
Corollary 2.7. Let $A, B \in \mathbf{H}_{n}$ be self-adjoint operators, and $C \in \mathbf{M}_{n}$. Then we have the following inequality

$$
\begin{equation*}
\log \frac{\operatorname{Tr} C^{*} \exp (A+B) C}{\operatorname{Tr} C^{*} \exp (A) C} \geqslant \frac{\operatorname{Tr} C^{*}(d \exp (A) B) C}{\operatorname{Tr} C^{*} \exp (A) C} \tag{2.4}
\end{equation*}
$$

where $d \exp (A)$ is the Fréchet derivative of the function $\exp (A)$.

Proof. Take self-adjoint matrices $A, B \in \mathbf{H}_{n}$ and define the function

$$
g(t)=\log \operatorname{Tr} C^{*} \exp (A+t B) C
$$

Since $g(t)$ is convex, we obtain the inequality

$$
g(1)-g(0) \geqslant g^{\prime}(0)
$$

Hence the inequality (2.4) follows.
Now we consider the concavity of another trace function related to exponential and logarithmic.

TheOrem 2.8. Let $\operatorname{Tr} H^{*} H=1$. Consider the trace function

$$
G(A)=\exp _{q} \operatorname{Tr} H^{*} \log _{q} A H
$$

We have
(i) If $q<1$, then $G$ is concave.
(ii) If $1<q \leqslant 2$, then $G$ is concave.
(iii) If $q \geqslant 2$, then $G$ is convex.

Proof. Since

$$
\begin{aligned}
\exp _{q} \operatorname{Tr} H^{*} \log _{q} A H & =\left[\left(\operatorname{Tr} H^{*} \frac{A^{q-1}-1}{q-1} H\right)(q-1)+1\right]^{\frac{1}{q-1}} \\
& =\left[\frac{\operatorname{Tr} H^{*} A^{q-1} H-\operatorname{Tr} H^{*} H}{q-1}(q-1)+1\right]^{\frac{1}{q-1}} \\
& =\left(\operatorname{Tr} H^{*} A^{q-1} H\right)^{\frac{1}{q-1}}
\end{aligned}
$$

by Proposition 2.4, we obtain the conclusions.
Letting $q \rightarrow 1$, we have

Corollary 2.9. Let $\operatorname{Tr} H^{*} H=1$. The trace function

$$
G(A)=\exp \operatorname{Tr} H^{*} \log A H
$$

is concave on self-adjoint matrices.

### 2.3. Trace geometric mean

Now we study the joint convexity of some trace functions.
THEOREM 2.10. Let $f$ be a convex function. Then the trace function

$$
(A, B) \rightarrow \operatorname{Tr} B^{\frac{1}{2}} f\left(B^{\frac{-1}{2}} A B^{\frac{-1}{2}}\right) B^{\frac{1}{2}}
$$

is jointly convex.

Proof. Let $\lambda \in(0,1), A=\lambda A_{1}+(1-\lambda) A_{2}, B=\lambda B_{1}+(1-\lambda) B_{2}$. And set $\left(\lambda B_{1}\right)^{\frac{1}{2}} B^{-\frac{1}{2}}=K_{1},\left[(1-\lambda) B_{2}\right]^{\frac{1}{2}} B^{-\frac{1}{2}}=K_{2}$. Then $K_{1}, K_{2}$ satisfy $K_{1}^{*} K_{1}+K_{2}^{*} K_{2}=I$. Since $f$ is convex, it follows from Theorem 2.2,

$$
\begin{aligned}
& \operatorname{Tr} B^{\frac{1}{2}} f\left(B^{\frac{-1}{2}} A B^{\frac{-1}{2}}\right) B^{\frac{1}{2}} \\
= & \operatorname{Tr} B^{\frac{1}{2}} f\left(K_{1}^{*} B_{1}^{-\frac{1}{2}} A_{1} B_{1}^{-\frac{1}{2}} K_{1}+K_{2}^{*} B_{2}^{-\frac{1}{2}} A_{2} B_{2}^{-\frac{1}{2}} K_{2}\right) B^{\frac{1}{2}} \\
\leqslant & \operatorname{Tr} B^{\frac{1}{2}} K_{1}^{*} f\left(B_{1}^{-\frac{1}{2}} A_{1} B_{1}^{-\frac{1}{2}}\right) K_{1} B^{\frac{1}{2}}+\operatorname{Tr} B^{\frac{1}{2}} K_{2}^{*} f\left(B_{2}^{-\frac{1}{2}} A_{2} B_{2}^{-\frac{1}{2}}\right) K_{2} B^{\frac{1}{2}} \\
= & \lambda \operatorname{Tr} B_{1}^{\frac{1}{2}} f\left(B_{1}^{-\frac{1}{2}} A_{1} B_{1}^{-\frac{1}{2}}\right) B_{1}^{\frac{1}{2}}+(1-\lambda) \operatorname{Tr} B_{2}^{\frac{1}{2}} f\left(B_{2}^{-\frac{1}{2}} A_{2} B_{2}^{-\frac{1}{2}}\right) B_{2}^{\frac{1}{2}} .
\end{aligned}
$$

Now we consider the jointly convexity of the trace geometric mean

$$
\begin{equation*}
\hat{Q}_{\alpha}(A, B)=\operatorname{Tr} B^{\frac{1}{2}}\left(B^{\frac{-1}{2}} A B^{\frac{-1}{2}}\right)^{\alpha} B^{\frac{1}{2}} \tag{2.5}
\end{equation*}
$$

From Theorem 2.10, we have the following corollary.
Corollary 2.11. The trace geometric mean $\hat{Q}_{\alpha}(A, B)$ is jointly convex for $\alpha \geqslant$ 1 and $\alpha<0$, and is jointly concave for $\alpha \in(0,1)$.

Note that the operator geometric mean $G(A, B)=B^{\frac{1}{2}}\left(B^{\frac{-1}{2}} A B^{\frac{-1}{2}}\right)^{\alpha} B^{\frac{1}{2}}$ is jointly concave for $\alpha \in(0,1)$, and jointly convex for $1 \leqslant \alpha \leqslant 2$ and $-1 \leqslant \alpha<0$. See [3].

Acknowledgements. The author acknowledges support from National Natural Science Foundation of China, Grant No: 12001477, and the Natural Science Foundation of Jiangsu Province for Youth, Grant No: BK20190874.

Conflicts of Interest. The author declare no conflict of interest.

## REFERENCES

[1] N. Bebiano, J. da Providencia, Jr. and R. Lemos, Matrix inequalities in statistical mechanics, Linear Algebr. Appl., 2004, 376: 265-273.
[2] R. Bhatia, Positive Definite Matrcies, Princeton University Press, Princeton, 2007.
[3] E. A. Carlen, E. H. Lieb, Some trace inequalities for exponential and logarithmic functions, Bull. Math. Sci., 2019, 9 (02): 1950008.
[4] S. Furuichi, K. Yanagi and K. Kuriyama, Fundamental properties of Tsallis relative entropy, J. Math. Phys., 2004, 45: 4868-4877.
[5] K. Huang, Statistical mechanics, Wiley, New York, 1987.
[6] E. H. Lieb, G. K. Pedersen, Convex multivariable trace functions, Reviews in Mathematical Physics, 2002, 14 (7 and 8): 631-648.
[7] D. Petz, A survey of certain trace inequalities, Banach Center Publications, 1994, 30: 287-298.
[8] F. Hansen, J. Liang, G. Shi, Peierls-Bogolyubov's inequality for deformed exponentials, Entropy, 2017, 19, 271.
(Received March 11, 2023)
Guanghua Shi
School of Mathematical Sciences Yangzhou University Yangzhou, Jiangsu, China
e-mail: sghkanting@yzu.edu.cn

