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ON THE CONVEXITY OF SOME TRACE FUNCTIONS

GUANGHUA SHI

(Communicated by M. Krnić)

Abstract. In this paper, we study the convexity of the trace function A → Tr B∗ f (A)B . And
we get an extension of the Peierls-Bogolyubov inequality and the joint convexity of the trace
geometric mean.

1. Introduction

Throughout this paper, we write Mn to denote the n×n complex matrices, Hn the
subset consisting of self-adjoint (Hermitain) matrices, Pn and P+

n the subset consisting
of positive semidefinite matrices and positive definite matrices, respectively. We write
A � 0 if A is positive semidefinite and A > 0 if A is positive definite.

It is well known that, when f is convex, the trace function A → Tr f (A) is convex
for self-adjoint matrices. Some related results can be found in [6, Introduction]. See
also [7]. Several important concepts in operator theory and quantum information theory
are closely related to the convexity of this type of trace functions. For example, the

Schatten p -norms (Tr |A|p) 1
p , (p > 1), the von Neumann entropy −TrA logA , and the

Peierls-Bogolyubov inequality [5, 1, 4].
The Peierls-Bogolyubov inequality plays a very important role in quantum infor-

mation theory, especially in the calculation of the partition function. It states that

log
Tr exp(A+B)

Tr expA
� Tr exp(A)B

Tr expA
.

It can also state the log-convexity of the trace function Tr exp(A), i.e., the map

A → logTr exp(A)

is convex on Hn.
In [8], Hansen et al. studied the Peierls-Bogolyubov inequality for deformed ex-

ponentials. The deformed logarithm denoted logq is defined by setting

logq a =

⎧⎪⎨
⎪⎩

aq−1−1
q−1

q �= 1,

loga q = 1,

a > 0.
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The deformed logarithm is also denoted by the q -logarithm. The deformed exponential
function or the q -exponential is defined as the inverse function to the q -logarithm. It is
denoted by expq and is given by the formula

expq a =

⎧⎪⎪⎨
⎪⎪⎩

(a(q−1)+1)1/(q−1), a > −1/(q−1), q > 1,

(a(q−1)+1)1/(q−1), a < −1/(q−1), q < 1,

expa, a ∈ R, q = 1.

In [8], the authors studied the convexity of the function

f (A) = logr TrB∗ expq(A)B.

It has been proved that

(i) If q � 0 and r � q, then f is convex.

(ii) If 3
2 � q � 2 and r � q, then f is convex.

(iii) If q � 2 and r � q, then f is concave.

We find there is a gap for 0 � q � 3
2 that has not been studied yet. In this paper,

we tackle with this problem and complement the corresponding results. We will also
study the convexity of the trace function expq TrH∗ logq AH.

Moreover, we study the joint convexity of the trace function

(A,B) → TrB
1
2 f (B

−1
2 AB

−1
2 )B

1
2 .

It enables us to consider the joint convexity of the trace geometric mean.

2. Main results

2.1. The convexity of trace functions

THEOREM 2.1. Let B ∈ Mn. If f : R → R is a convex function, then the trace
function

F(A) = TrB∗ f (A)B (2.1)

is convex for A ∈ Hn.

Proof. Let {Pi} be a pairwise orthogonal family of minimal projections with
∑n

i=1 Pi = In. Let ∑ j s jQ j be the spectral decomposition of a self-adjoint matrix C.
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Then for positive definite matrix K(= BB∗), we have TrKPi > 0 for i = 1, . . . ,n. Thus

TrK f (C) = ∑
j

f (s j)TrKQj = ∑
i

(
∑
j

f (s j)TrKQjPi

)

= ∑
i

[
∑ j f (s j)TrKQjPi

TrKPi
TrKPi

]

� ∑
i
(TrKPi) f

(
∑
j

s j
TrKQjPi

TrKPi

)

= ∑
i
(TrKPi) f

(
TrKCPi

TrKPi

)
. (2.2)

Now, assume ∑n
i=1 μiPi is the spectral decomposition of the convex combination

A = λC1 +(1−λ )C2.

It follows that

TrK f (A) = ∑
i

f (μi)TrKPi

= ∑
i

(TrKPi) f

(
TrKAPi

TrKPi

)

= ∑
i
(TrKPi) f

(
TrK(λC1 +(1−λ )C2)Pi

TrKPi

)

� ∑
i
(TrKPi)

[
λ f

(
TrKC1Pi

TrKPi

)
+(1−λ ) f

(
TrKC2Pi

TrKPi

)]
� λTrK f (C1)+ (1−λ )TrK f (C2),

where the first inequality follows from the convexity of f , and the second inequality
follows from applying the inequality (2.2) twice. Hence we have that

TrK f (λC1 +(1−λ )C2) � λTrK f (C1)+ (1−λ )TrK f (C2), (2.3)

with K positive definite.
For arbitrary matrix B ∈ Mn, K = BB∗ is positive semidefinite. We set Kε =

K + εI for an arbitrary ε ∈ (0,1). Then Kε is positive definite and satisfies

TrKε f (λC1 +(1−λ )C2) � λTrKε f (C1)+ (1−λ )TrKε f (C2).

Letting ε → 0, we have the inequality (2.3) holds for positive semidefinite matrix K.
Hence, we have A → TrB∗ f (A)B is convex. �

Now we consider the Jensen inequalities related to the trace function TrB∗ f (A)B .
In this part, we denote the set of n×m matrices by Mnm.
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THEOREM 2.2. Let f : R → R be convex. Then the following statements hold
and they are equivalent:

(i) For B ∈ Mn, F(A) = TrB∗ f (A)B is convex on Hn.

(ii) For Ai ∈ Hn, B ∈ Mm, and Hi ∈ Mnm, with ∑i H
∗
i Hi = Im,

TrB∗ f (∑
i

H∗
i AiHi)B � ∑

i

TrB∗H∗
i f (Ai)HiB.

(iii) For A ∈ Hn, and V ∈ Mnm,B ∈ Mm with V ∗V = Im,

TrB∗ f (V ∗AV )B � TrB∗V ∗ f (A)VB.

Proof. According to Theorem 2.1, we should only prove the equivalence.

(i) → (iii). Set Z =
(

A 0
0 M

)
, C =

(
B 0
0 0

)
, U =

(
V P
0 −V ∗

)
, W =

(
V −P
0 V ∗

)
,

where M ∈Hm and P = I−VV ∗. Note that V is isometry, and V ∗P = 0, PV = 0, then
U and W are unitary. By calculation,

U∗ZU =
(

V ∗AV V ∗AP
PAV PAP+VMV ∗

)
, W ∗ZW =

(
V ∗AV −V ∗AP
−PAV PAP+VMV ∗

)
,

1
2

(U∗ZU +W∗ZW ) =
(

V ∗AV 0
0 PAP+VMV ∗

)
.

Thus

TrB∗ f (V ∗AV )B

= Tr

(
B∗ 0
0 0

)
f

(
V ∗AV 0

0 PAP+VMV ∗

)(
B 0
0 0

)

= TrC∗ f

(
1
2

(U∗ZU +W∗ZW )
)

C

� 1
2
TrC∗ f (U∗ZU)C+

1
2
TrC∗ f (W ∗ZW )C

= TrC∗
(

1
2
U∗ f (Z)U +

1
2
W ∗ f (Z)W

)
C

= Tr

(
B∗ 0
0 0

)(
V ∗ f (A)V 0

0 P f (A)P+V f (M)V ∗

)(
B 0
0 0

)
= TrB∗V ∗ f (A)VB.

(iii) → (ii). Set

A =

⎡
⎢⎢⎢⎣

A1

A2
. . .

An

⎤
⎥⎥⎥⎦ , V =

⎡
⎢⎢⎢⎣

H1 0 · · · 0
H2 0 · · · 0
... 0 · · · 0

Hn 0 · · · 0

⎤
⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎣

B 0 · · · 0
0 0 · · · 0
... 0 · · · 0
0 0 · · · 0

⎤
⎥⎥⎥⎦ .
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Then

V ∗AV =

⎡
⎢⎢⎢⎣

∑i H
∗
i AiHi 0 · · · 0
0 0 · · · 0
... 0 · · · 0
0 0 · · · 0

⎤
⎥⎥⎥⎦ .

It follows that

TrB∗ f (∑
i

H∗
i AiHi)B = TrD∗ f (V ∗AV )D

� TrD∗V ∗ f (A)VD

= TrB∗
(

∑
i

H∗
i f (Ai)Hi

)
B

= ∑
i

TrB∗H∗
i f (Ai)HiB.

(ii) → (i) is easy to prove. We omit it. �

2.2. An extension of Peierls-Bogolyubov’s inequality

By Theorem 2.1, we know that the trace function A → Tr B∗ApB is concave for
0 < p � 1, and convex for p < 0, and p > 1. In [8], the authors obtained the following
proposition.

PROPOSITION 2.3. ([8, Proposition 1]) Let f be a real positive function defined
on P+

n and assume f is homogeneous of degree p �= 0.

(i) If f is convex and p > 0, then f 1/p is convex.

(ii) If f is convex and p < 0, then f 1/p is concave.

(iii) If f is convex and p < 0 and r > 0, then f r is convex.

(iv) If f is concave and p > 0, then f 1/p is concave.

(v) If f is concave and p < 0, then f 1/p is convex.

(vi) If f is concave and p > 0 and r < 0, then f r is convex.

According to Proposition 2.3, we have

PROPOSITION 2.4. Let B ∈ Mn be an arbitrary operator and consider the func-
tion

F(A) =
(
TrB∗ApB

)1/r

defined on positive definite matrices P+
n . Then

(i) F is concave for r � p < 0;
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(ii) F is convex for p < 0 and r > 0;

(iii) F is concave for 0 < p � 1 and r � p;

(iv) F is convex for 0 < p � 1 and r < 0;

(v) F is convex for p � 1 and 0 < r � p.

Note that (iii) and (iv) and the cases of −1 � p < 0 and 1 � p � 2 in (i),(ii),(v)
have already been discussed in [8]. And the cases of p < −1 in (i),(ii), and the case
of p > 2 in (v) are new.

Consider the function

F(A) = logr TrB∗ expq(A)B

=
1

r−1

((
Tr (B∗(A(q−1)+1)

1
q−1 B)

)r−1
−1

)
.

Let
1

q−1
= p,

1
r−1

= r.

Then by Proposition 2.4, we have

THEOREM 2.5. Let B be an arbitrary matrix and consider the function

F(A) = logr TrB∗ expq(A)B

defined on self-adjoint A > −(q−1)−1.

(i) If q < 1 and r � q, then F is convex.

(ii) If 1 < q � 2 and r � q, then F is convex.

(iii) If q � 2 and r � q, then F is concave.

When q = r, and letting q → 1, we have

THEOREM 2.6. Let B be an arbitrary matrix, then the function

F(A) = logTrB∗ exp(A)B

is convex.

That is, we have an extension of the Peierls-Bogoliubov inequality as

COROLLARY 2.7. Let A,B∈Hn be self-adjoint operators, and C ∈Mn. Then we
have the following inequality

log
TrC∗ exp(A+B)C

TrC∗ exp(A)C
� TrC∗(d exp(A)B)C

TrC∗ exp(A)C
, (2.4)

where d exp(A) is the Fréchet derivative of the function exp(A).
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Proof. Take self-adjoint matrices A,B ∈ Hn and define the function

g(t) = logTrC∗ exp(A+ tB)C.

Since g(t) is convex, we obtain the inequality

g(1)−g(0) � g′(0).

Hence the inequality (2.4) follows. �

Now we consider the concavity of another trace function related to exponential
and logarithmic.

THEOREM 2.8. Let TrH∗H = 1. Consider the trace function

G(A) = expq TrH∗ logq AH.

We have

(i) If q < 1, then G is concave.

(ii) If 1 < q � 2, then G is concave.

(iii) If q � 2, then G is convex.

Proof. Since

expq TrH∗ logq AH =
[(

TrH∗Aq−1−1
q−1

H

)
(q−1)+1

] 1
q−1

=
[
TrH∗Aq−1H−TrH∗H

q−1
(q−1)+1

] 1
q−1

=
(
TrH∗Aq−1H

) 1
q−1 ,

by Proposition 2.4, we obtain the conclusions. �

Letting q → 1, we have

COROLLARY 2.9. Let TrH∗H = 1. The trace function

G(A) = expTrH∗ logAH

is concave on self-adjoint matrices.
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2.3. Trace geometric mean

Now we study the joint convexity of some trace functions.

THEOREM 2.10. Let f be a convex function. Then the trace function

(A,B) → TrB
1
2 f (B

−1
2 AB

−1
2 )B

1
2

is jointly convex.

Proof. Let λ ∈ (0,1), A = λA1 + (1− λ )A2, B = λB1 + (1− λ )B2. And set

(λB1)
1
2 B− 1

2 = K1, [(1− λ )B2]
1
2 B− 1

2 = K2. Then K1,K2 satisfy K∗
1K1 + K∗

2K2 = I.
Since f is convex, it follows from Theorem 2.2,

TrB
1
2 f (B

−1
2 AB

−1
2 )B

1
2

= TrB
1
2 f (K∗

1 B
− 1

2
1 A1B

− 1
2

1 K1 +K∗
2B

− 1
2

2 A2B
− 1

2
2 K2)B

1
2

� TrB
1
2 K∗

1 f (B− 1
2

1 A1B
− 1

2
1 )K1B

1
2 +TrB

1
2 K∗

2 f (B− 1
2

2 A2B
− 1

2
2 )K2B

1
2

= λTrB
1
2
1 f (B− 1

2
1 A1B

− 1
2

1 )B
1
2
1 +(1−λ )TrB

1
2
2 f (B− 1

2
2 A2B

− 1
2

2 )B
1
2
2 . �

Now we consider the jointly convexity of the trace geometric mean

Q̂α(A,B) = TrB
1
2 (B

−1
2 AB

−1
2 )αB

1
2 . (2.5)

From Theorem 2.10, we have the following corollary.

COROLLARY 2.11. The trace geometric mean Q̂α(A,B) is jointly convex for α �
1 and α < 0, and is jointly concave for α ∈ (0,1).

Note that the operator geometric mean G(A,B) = B
1
2 (B

−1
2 AB

−1
2 )αB

1
2 is jointly

concave for α ∈ (0,1), and jointly convex for 1 � α � 2 and −1 � α < 0. See [3].
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