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ON p-QUASI-n-HYPONORMAL OPERATORS

JUNLI SHEN, FEI ZUO AND HONGLIANG ZUO

(Communicated by M. Kian)

Abstract. An operator T € B(H) is called p-quasi-n-hyponormal if
T* (T*nTn)pT 2 T* (TnT*)l)pT

for a positive number 0 < p < 1 and a positive integer n, which is a further generalization of
normal operator. In this paper we introduce the class of p-quasi-n-hyponormal operators and
show its structural properties via Hansen inequality and Lowner-Heinz inequality. As important
applications, we obtain that every p-quasi-n-hyponormal operator has a scalar extension. In ad-
dition, we prove that if 7 is a quasiaffine transform of p-quasi-n-hyponormal, then T satisfies
Weyl’s theorem. Finally some examples are presented.

1. Introduction

Let B(H) denote the C*-algebra of all bounded linear operators on an infinite
dimensional separable Hilbert space H. If T € B(H), we shall write N(7) and R(T)
for the null space and the range space of T, and also, write ¢(T) and o(T) for the
spectrum and the Weyl spectrum of 7', respectively.

First we define the p-quasi-n-hyponormal operator as follows.

DEFINITION 1. An operator T € B(H) is called p-quasi-n-hyponormal if
for a positive number 0 < p < 1 and a positive integer n.

A p-quasi-n-hyponormal operator for a positive number 0 < p < 1 and a posi-
tive integer n is an extension of p-hyponormal operator, i.e., (T*T)? > (TT*)?, n-th
root of p-hyponormal operator, i.e., (T*"T")? > (T"T*")? and p-quasihyponormal
operator, i.e., T*(T*T)PT > T*(TT*)’T. A 1-hyponormal operator is called a hy-
ponormal operator and a % -hyponormal operator is called a semi-hyponormal operator,
which has been studied by many authors and it is known that hyponormal operators
have many interesting properties similar to those of normal operators (see [22]). A
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1-th root of p-hyponormal operator is called a p-hyponormal operator. A 1-quasi-n-
hyponormal operator is called a quasi-7-hyponormal operator (see [25]) and a p-quasi-
1-hyponormal operator is called a p-quasihyponormal operator (see [4]). A. Aluthge,
E. Ko, A.C. Arora and P. Arora introduced p-hyponormal, n-th root of p-hyponormal
and p-quasihyponormal operators, respectively (see [3, 4, 13]), and it is known that
these operators have many interesting properties (see [0, 7, 8, 13, 15, 17, 24]). It is
well-known that p-hyponormal operators are g-hyponormal if 0 < g < p, however, it
is not necessarily true that p-quasi- 1 -hyponormal operators are g-quasi- 1 -hyponormal
evenif 0 < g < p (see [21]). Itis clear that

normal = n-th root of p-hyponormal = p-quasi-n-hyponormal.

An operator T € B(H) is called scalar of order m if it possesses a spectral distri-
bution of order m, i.e., if there is a continuous unital morphism of topological algebras
@ : Cj'(C) — B(H) such that ®(z) = T, where z stands for the identity function on
C, and Cj'(C) stands for the space of compactly supported functions on C, contin-
uously differentiable of order m, 0 < m < oo. An operator is subscalar if it is similar
to the restriction of a scalar operator to an invariant subspace. An operator T € B(H)
is said to have property () if for every open subset U of C and for every sequence
fn:U — H of H-value analytic functions such that (7 —zI) f,(z) converges uniformly
to 0 in norm on compact subsets of U, f,(z) converges uniformly to 0 in norm on
compact subsets of U.

In 1984, Putinar [19] proved that every hyponormal operator has a scalar exten-
sion, which has been extended from hyponormal operators to p-hyponormal operators
[16], to p-quasihyponormal operators [14], to quasi-n-hyponormal operators [20], and
to k-th roots of p-hyponormal operators [13]. In Section 2, we show that every p-
quasi-n-hyponormal operator is subscalar. As a consequence, we prove that every p-
quasi-n-hyponormal operator with rich spectrum has a nontrivial invariant subspace.
Finally, we give some examples of p-quasi-n-hyponormal operator in Section 3.

2. Main results

Before we state main theorems, we need several preliminary results.

LEMMA 1. (Hansen inequality [12]) If A,B € B(H) satisfy A>0 and || B ||<1,
then
(B*AB)® > B*A°B  forall &€ (0,1].

LEMMA 2. (Lowner-Heinz inequality [11]) A > B > 0 ensures A% > B for any
o €10,1].

LEMMA 3. Suppose that T € B(H) is a p-quasi-n-hyponormal operator and
R(T) is dense. Then T is an n-th root of p-hyponormal operator.
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Proof. Since T has dense range, R(T) = H. For Vy € H, there exists a sequence
{x}7_, in H such that T(x;) — y as k — eo. Since T is p-quasi-n-hyponormal, for
all positive integers k, a positive number 0 < p < 1 and a positive integer n

(T T")PTxy, Txe) = (T"T)PTxy, Taxy).

By the continuity of the inner product, for a positive number 0 < p < 1 and a positive in-
teger n, we have ((T*"T")Py, y) = ((T"T*")Py, y), and hence (T*"T")P = (T"T*")P.
Therefore T is n-th root of p-hyponormal. [

THEOREM 1. Suppose that T € B(H) is a p-quasi-n-hyponormal operator and
R(T) is not dense. Then

T=<é§) on H=RT)&N(T"),

where A is an n-th root of p-hyponormal operator and o(T) = c(A)U{0}.

Proof. The spectral inclusion relation is clear and it is sufficient to show that A is
n-th root of p-hyponormal. Let E be the orthogonal projection onto R(T'). Then

AQ
(O 0) =TE=ETE.

For Vy € H, there exists a sequence {x;}7"_, in H such that T(x;) — Ey as k — oo.
Since T is a p-quasi-n-hyponormal operator, we have

(T T™)P = (T"T*"™")P)Txy., Txg) = (T*(T™"T")P — (T"T*")P)Txy, x¢) > 0.
By the continuity of the inner product, we have
(E((T™"T") — (T"T*™")")Ey, y) = (T™"T")" - (T"T*")")Ey, Ey) > 0,
and hence E((T*"T")P — (T"T*")P)E > 0. Then

E(T™'T"PE < (ET™'T"E)? (by Lemma 1)
= (ET*---ET*TE---TE)"

- (A*"An)p O
o 0 0/’
and
E(T"T"E > E(T"PT™)’E (by Lemma 2)
- (AnA*n)p 0
o 0 0/
Hence
*NAN\D nA*n\p
(éA A%) 8) > E(T™"T")PE > E(T"T™")E > (f)A A™) 8)

i.e., A is an n-th root of p-hyponormal operator. [J]
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THEOREM 2. Suppose that T € B(H) is a p-quasi-n-hyponormal operator and
M is its invariant subspace. Then the restriction Ty of T to M is also a p-quasi-n-
hyponormal operator.

Proof. Let E be the orthogonal projection onto M. Then we can represent 7 as
the following 2 x 2 operator matrix with respect to the decomposition M & M=,

AB
= ( ! D) .
Put A=T|y. Then TE=ETE and A= (ETE)|y. Since T isa p-quasi-n-hyponormal

operator, we have
ET (T""T"PTE > ET*(T"T™)’TE.

Since
ET*(T*™"T")’TE = ET*E(T*"T")’ETE
< ET*(ET*"'T"E)’TE (by Lemma 1)
= ET*E(ET*"EET"E)’ETE

A*(A*AMYPA 0
0 0)

and
ET (T'"T"’TE =ET*E(T"T™")’ETE
>ET*E(T"ET"")PETE (by Lemma 2)
=ET"E(ET"EET™E)’ETE
B (A*(A”A*")PA o)
0 0/’

we have

*(A*nAn)pA 0 < *(AnA*n)pA O
0 0/~ 0 0/

This implies that A is a p-quasi-n-hyponormal operator. [J

For a Banach space X, let £(U,X) denote the Fréchet space of all infinite differ-
entiable X -value functions on U (see [10]). T is said to have property (), if every
open subset U in C the operator

T2 &(U.X)—=&(U.X), f—(T-za)f
is a topological monomorphism, i.e., T} f, — 0 implies f,, — 0 for f,, € £(U,X). Now

we show that every p-quasi-n-hyponormal operator has a scalar extension, the follow-
ing lemmas are needed.
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LEMMA 4. ([16,Lemma 1]) For T € B(X), the following statements are equiva-
lent:

(i) T is subscalar;

(ii) T has property (f3)e.

LEMMA 5. ([13, Theorem 3.6]) Supposethat T is an n-th root of p-hyponormal
operator. Then T is subscalar of order 4n.

THEOREM 3. Suppose that T is a p-quasi-n-hyponormal operator. Then T is
subscalar.

Proof. Assume that R(T) is dense. Then by Lemma 3 T is an n-th root of p-
hyponormal operator, it is subscalar by [13, Theorem 3.6]. So we may assume that
T does not have dense range. Then by Theorem 1 the operator 7 can be decom-

posed as follow: T = 7(;1 7(;2 on H=R(T)®N(T*), where T is an n-th root of p-

hyponormal operator. Set o), (S) = {1 € 6(S) : S does not have property () at it }.
Recall from [5, Theorem 2.1] that given operators S and R, A € G(B)e(RS) S A e

. (T _ (LO\ (LT (T 0 (Lo
G(ﬁ)g(SR). Considering T = (0 0) = <0 0) (0 12> (O b),letB— (O O)’

hn\ ,_ (Ti0
0L) 0L
= 0(B), (EAB). Since E is invertible, A € O(B), (AB) = G(/})g(Tl @0)=>A¢e G(/})g(Tl) ,
hence T} does not have property (f8) and this contradicts the fact that 7; is subscalar.
Thus T has property ()¢, i.e., T is subscalar. [J

E= . Then T = BEA. Suppose A € 0(3),(T) < A € 0(p),(BEA)

COROLLARY 1. Suppose that T is a p-quasi-n-hyponormal operator. Then T
has Bishop’s property ().

Proof. Since the Bishop’s property (f3) is transmitted from an operator to its re-
strictions to closed invariant subspace, we are reduced by Theorem 3 to the case of
a scalar operator. Since every scalar operator has Bishop’s property () [19], T has
Bishop’s property (). O

COROLLARY 2. Suppose that T is a p-quasi-n-hyponormal operator. If o(T)
has nonempty interior in C, then T has a nontrivial invariant subspace.

Proof. 1t is known from [9, Theorem 1] that if 7 is subscalar and o(T) has
nonempty interior in C, then 7 has a nontrivial invariant subspace. Since T is a
p-quasi-n-hyponormal operator, 7 is subscalar, hence 7" has a nontrivial invariant
subspace. [

DEFINITION 2. An operator T € B(H) is said to belong to the class H(q) if there
exists a natural number g := g(A) such that

Ho(Al—T)=N(AI—T)forallA € C,
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where Ho(AI —T) :={x € H: lim [|(AI - T)"x||» = 0}.

THEOREM 4. [18] Every subscalar operatoris H(q).

Classical examples of subscalar operators are hyponormal operators. In this paper
we will show that other important classes of operators are H(q).

DEFINITION 3. Anoperator T € B(H) is said to be polaroid if every A € isoo(T)
is a pole of the resolvent of 7', where isoc(T') denotes the isolated points of the spec-
trum.

The condition of being polaroid may be characterized by means of the quasi-
nilpotent part.

THEOREM 5. [2] An operator T € B(H) is polaroid if and only if there exists a
natural number q := q(A) such that

Ho(AI—T) = N(AI—T)forall A € isoo(T).

Note that every H(q) operator is polaroid. By using Theorem 3 and Theorem 4,
we deduce the following corollaries.

COROLLARY 3. Every p-quasi-n-hyponormal operator is H(q).

COROLLARY 4. Every p-quasi-n-hyponormal operator is polaroid.

Recall that an operator Y € B(H,,H,) is called a quasiaffinity if it has trivial kernel
and dense range. An operator S € B(H)) is said to be a quasiaffine transform of 7' €
B(H,) if there is a quasiaffinity ¥ € B(H;,H;) such that YS=TY.

COROLLARY 5. Suppose that T is a p-quasi-n-hyponormal operator. If S is a
quasiaffine transform of T, then S satisfies Weyl’s theorem (i.e., 0(S) — ®(S) = mo(S),
where my(S) ={A €is00(S): 0 < N(S—AI) < oo}).

Proof. If T is a p-quasi-n-hyponormal operator, then Hy(Al —T)=N(AI—T)4
for some integer g := g(A) > 0 and all A € C. Suppose US = TU with U injective
and x € Hy(AI—S). Then

(1 =)0l [# = [[U (A1 = )"l |7 < |[U]|7]|(A1 = 8)"x]] 7,
for which we obtain that Ux € Hy(AI —T) = N(AI—T)4. Hence
UAL—S)ix = (Al — T)?Ux =0,
and since U injective this implies that (A — S)% = 0. Consequently Hy(AI —S) =

N(AI—S)4 for some integer g := q(A) > 0 and all A € C. By [l, Theorem 3.10]
Weyl’s theorem holds for S§. [J
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3. Examples

Consider unilateral weighted shift operator as an infinite dimensional Hilbert space
operator. Recall that given a bounded sequence of positive numbers o : oy, 0, ...
(called weights), the unilateral weighted shift W, associated with ¢ is the operator
on H = I, defined by Wye,, := oy, forall n > 1, where {e,};_, is the canonical
orthonormal basis for ;. It is well known that Wy, is p-quasihyponormal if and only
if a is monotonically increasing (see [23, Example 2.3]).

LEMMA 6. W, belongs to p-quasi-n-hyponormal if and only if

000O0O--
a0 0 0 0---
0 w0 0 0--
We=10 0 50 0--- |>
000 ag0--

where
OOt -+ - Ok yn—1 < On Ol - - Ogon—1 (K=1,2,3,...).

Proof. By simple calculations,

Wo'Wo = (0705 ...o) & (05053 ... 050, 1) @ (0505 .. 043, 2) @ ..
and
n items
WIW" =00 @00(0fod...02) S (0503 ...02 ) D ...
Hence
Wo(Wo"We)PWo = of (05705 ..o ) @ 05 (057 0" ... 05) ...
@ar%(ajf-lajfﬁ"'a22rlz7)®a3+1(a35-2a35-3"‘a225+1)69"‘
and

n—1 items
——
W (WIWS P Wy = 0@ - B 0@ o2 (0" 05" ... o)
2p 2 2
o, (o570’ o ...

Thus Wy, belongs to p-quasi-n-hyponormal if and only if

OGO« Okin1 < O Okinsl - Ogson—1 (k=1,2,3,...). O

The following example provides an operator which is p-quasi-n-hyponormal for
all n > 2 but not p-quasihyponormal.



1054 J. SHEN, F. ZU0 AND H. Zuo
EXAMPLE 1. A p-quasi-n-hyponormal operator which is not p-quasihyponormal.

Proof. Let Wy, be a unilateral weighted shift operator with weights o, =2 (n#2)
and o = 1. Simple calculations show that W, is p-quasi-n-hyponormal, but Wy, is
non- p-quasihyponormal. [

Finally we give an example to show that the class of n-th root of p-hyponormal
operators is properly contained in the class of p-quasi-n-hyponormal operators. The
following lemma is needed.

LEMMA 7. Let K=" H,, and H,, = H. For given positive operators A and

m=1
B on H, and any fixed positive integer n, define the operator T =Ty g, on K as

T (x1,%2,x3,...) = (0,Ax],Axa, ..., AX;, BXy11,BXpy2,...).

Then the following assertions hold
(1) T belongs to n-th root of p-hyponormal if and only if

B2np >A2np’
B2np > (BA2n72B)p’
B2np > (32A2n74B2)p7 (31)

B > (B1A2B7 )P

@ii) T belongs to p-quasi-n-hyponormal if and only if

AB¥PA > AAP'PA,

BB>"PB > B(BA*'~?B)PB,

BB>"’B > B(B’A*"*B?)PB, (3.2)

BB>"’B > B(B"'A?B"~1)PB.

Proof. Since
T (x1,%2,x3,...) = (0,Ax1,Ax2, ..., AXy, BXyt1,Bxpi0,...),
we obtain
T*(x1,X2,%3,...) = (Axp,Ax3, ... ,AXyi1,BXpi2,BXpi3,...).

By simple calculations, the following equalities hold.

n items
,—/H
~1 2 4n—2
T"(x1,x2,x3,...) = (0,...,0,A"x;,BA" "xp,B°A" “xs,

n—1 n n .
e B T Ay B X1, B X, )
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*N n n—1 —2n2
T (x17x27x37'”) = (A anrlaA an+27An B Xn+3,
n—1
. ,AB x2naan2n+l ,an2n+2, .. )
Hence

(T*"T™)P (x1,X2,X3,...) = {A%Px, (A" 1B2A" 1)Pxy, (A" 2B*A"2)Px3,

L (AB*2A)Px, B*x, |, B*"Px, ., .. 3

nnems
(T"T*™)P (x1,%2,%3,...) = {0,.. 0A2"1’xn+1 (BA™2B)Px,,.5,
(B?A™*B)Pxy 13, (B 'A’B" )P x,,

2n 2 .
B x2,41,B P Xop 10, .}

T*(T*"T™)PT(x1,%2,%3,...) = {A(A" ' B?A" 1P Ax; , A(A"2B*A"2)P Axy,

2, 2np+2 2np+2 .
ABTPAXy, BT X1, B x40, ]

n 1 items
T*(T"T*")PT (x1,%2,%3,...) = {o .,0,AA*"P Ax,, B(BA**2B)"Bx,, 1,
.,B(B"'A’B"" ') Bxy,_,BB*"’Bx2,,BB*'""Bx2,1,...}.

Therefore, T is n-th root of p-hyponormal if and only if
B > A2

B > (BA™2B)P,
B > (B2AY4B)P,

B > (B"'A2B )P
Similarly, T is p-quasi-n-hyponormal if and only if
ABY'PA > AAPPA,
BB>"PB > B(BA>"~?B)"B,

BB2an > (B2A2n74B2)pB’

BB*""B > B(B" 'A’B""1yB. 0O

1055
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EXAMPLE 2. A %-quasi-n-hyponormal operator which is not n-th root of %-
hyponormal.

Proof. Let H be a two dimensional Hilbert space and p = % Take A and B as

1 11
A:<§0)7 B:G §>,
0 272
Then
1y 11
e (E0) (1)
00 373
we have

1

22
Bn _An — 2n+1
2

)

Hence T is not an n-th root of % -hyponormal operator.
On the other hand,

l 0 2)1_2 l
AB"-A"A= |2 2t 2
00 13

D= b —

l 2)17\/5 2)17\/5
2 on+l on+l
l 2)1_\/5 2)1_\/5
2 o+l o+l

DIl— 1=
SN——

D= B|—

l 2)171 _\/E 2)171 _\/E
2 2n 2n
l znfl _\/E znfl _\/E
2 n 2

<2nl_\/§ 2n71_ 2)

2"71—\/5 2n71_\/§
on

B— N —
SN——

D= | —

20,

I
w‘

I
IS
T
IS
\Y
o

142 pn—1y4 %% 4_Sﬂ 4_8\/§ %%
BB"—(B"ABB"))B= (11|, sava)lil
22 8 3 212
(4—¢§ 4—\5)
8

m‘
oo‘
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Thus T isa %-quasi-n-hyponormal operator. [
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