
Journal of
Mathematical

Inequalities

Volume 17, Number 3 (2023), 1059–1074 doi:10.7153/jmi-2023-17-69

ON STRONG DEVIATION THEOREMS CONCERNING

ARRAY OF RANDOM VARIABLES WITH APPLICATIONS

YA-HUI ZHU, WEI-CAI PENG ∗ , YONG-JIN ZHANG AND ZHONG-ZHI WANG ∗

(Communicated by Z. S. Szewczak)

Abstract. In this paper, the concept of generalized relative entropy is firstly introduced as the
random measure between two probability measures μ and μ̃ , then a class of strong deviation
theorem (small deviation theorem) for array of dependent random variables is established. Based
on the strong deviation theorem and its corollaries, a kind of strong deviation theorems and strong
law of large numbers for row-wise negatively dependent random variables are obtained finally.

1. Introduction

The classical strong laws of large numbers (SLLNs) mainly deal with independent
random variables (r.v.’s). The investigation of limit theorems for dependent r.v.’s is ex-
tensive and episodic. The strong law of large numbers for various types of mixed or
associated random variables can be found, e.g. , in Lu and Lin ([10]). Conventionally,
some techniques such as measure theoretic techniques, moment inequality and martin-
gale method are used in developing the limit theorem of random sequences ([4]). In
the 1990s, a new proof of the SLLNs for Bernoulli sequences was given by Wen Liu
([8]) in the study of real number theory by constructing monotonically increasing func-
tions, and using the famous Lebesgue’s theorem on derivatives of monotonic functions
exist almost everywhere. Since then, the new method of studying limit theorems had
been developed by Liu, Yang and their collaborators. The main idea of this method
is first to construct the likelihood ratio or martingale with a parameter then to use the
likelihood ratio that converges almost everywhere or martingale convergence theorem
to prove that some limits exist almost everywhere. Using this approach, Liu and his
collaborators have successfully studied strong limit theorems for arbitrary random se-
quences, the SLLNs for nonhomogeneous Markov chains, nonhomogeneous Markov
chains indexed by a tree and Shannon-McMillan theorem, while the strong deviation
theorem (the strong limit theorem expressed by inequality) is the special result of this
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new method. We refer to the book of Liu ([9]) that contains classical results as well as
more interesting results on strong deviation theorems of dependent random variables.
The main focus of this work is to obtain some strong deviation theorems for sums of
array of row-wise negatively dependent random variables.

The rest of this paper is arranged as follows. In Section 2, we introduce notations
and some basic definitions and state a few elementary lemmas to be used in the proofs
if the main results. In Section 3 we give some strong deviation theorems for bounded
random variables and list some simple consequences. In section 4 we establish some
strong deviation theorems and strong law of large numbers for sub-Gaussian random
variables.

2. Definitions and technical lemmas

In this section we present some definitions and lemmas firstly to be used in the
proofs of our main results. Throughout this paper we deal with the fixed probability
space (Ω,F ,μ) . We first give some notations. Let N

+ be the set of positive integers
and R the set of real numbers. In the sequel we use the conventions that the symbol 1A

denotes the indicator function of set A , Eμ denotes the expectation under probability
measure μ and ω is a sample point.

Let ξ (ω)= {ξ n(ω)= (ξn1(ω), · · · ,ξnn(ω))}n∈N+ be a triangle array of absolutely
continuous random variables with the joint density functions of ξ n(ω)

pn(xn1, · · · ,xnn), n = 1,2, · · · .
Let μ̃ be an another probability measure on (Ω,F ) and assume that the joint

density functions of ξ n(ω) with respect to measure μ̃ are

qn(xn1, · · · ,xnn), n = 1,2, · · ·.
We call μ̃ the reference measure.

DEFINITION 1. Let ξ (ω) be a triangle array of absolutely continuous random
variables. Define

Rn(ω) =

{
qn(ξn1(ω),···,ξnn(ω))
pn(ξn1(ω),···,ξnn(ω)) if denominator > 0,

0 otherwise,
n = 1,2, · · · (1)

where ω is a sample point. In statistical terms, Rn(ω) is called the likelihood ratio,
which is of fundamental importance in the theory of testing the statistical hypotheses.

DEFINITION 2. Let Rn(ω) be defined as in (1) . Define

hμ̃
μ(ω) := − liminf

1
n

logRn(ω) (2)

with log0 = −∞ . hμ̃
μ(ω) is called the general relative entropy of probability measure

μ with respect to μ̃ .
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It will be shown in (13) that hμ̃
μ(ω) � 0 a.s. in general. Hence hμ̃

μ(ω) can be used
as a random measure of the deviation between the true joint density pn and the refer-
ence density qn . Roughly speaking, this deviation may be regarded as the difference
between μ and μ̃ . The smaller hμ̃

μ(ω) is, the smaller the deviation will be. The pur-
pose of this paper is to establish some strong limit theorem represented by inequalities
with random bounds for dependent random variables, by using the notion of general
relative entropy and the Borel-Cantelli lemma, and to extend the analytic technique
proposed by Liu ([8]) to the case of array of random variables.

REMARK 1. In general, the calculation of hμ̃
μ(ω) is a difficult problem, the fol-

lowing two examples show that it is easier to calculate in some special cases.

EXAMPLE 1. Let ξ (ω) = {ξn(ω)}n∈N+ be a sequence of i.i.d.r.v.′s whose prob-
ability density functions, under the probability measures μ and μ̃ respectively, are
given by f1(x) and f2(x) , then we have

hμ̃
μ(ω) = D(μ‖μ̃)

where D(μ‖μ̃) denotes the relative entropy between μ and μ̃ . In fact, according to
the definitions of hμ̃

μ(ω) and D(μ‖μ̃) we have

hμ̃
μ(ω) = − liminf

n

1
n

log

n
∏
k=1

f2(ξk(ω))

n
∏
k=1

f1(ξk(ω))

= limsup
n

1
n

n

∑
k=1

log

[
f1(ξk(ω))
f2(ξk(ω))

]
= D(μ‖μ̃) μ −a.s. (By the classcial SLLN).

EXAMPLE 2. Recall that a sequence of random variables ξ1(ω), · · · ,ξn(ω) are
said to be negatively dependent if, for every n ,

P{∩n
k=1[ξk(ω) � xk]} � Πn

k=1P[ξk(ω) � xk]

and
P{∩n

k=1[ξk(ω) > xk]} � Πn
k=1P[ξk(ω) > xk].

The notion of negatively dependent random variables was introduced by Lehmann ([7])
and developed by Joag-Dev and Proschan ([11]).

Let ξ (ω) = {ξ n(ω) = (ξn1(ω), · · · ,ξnn(ω))}n∈N+ be defined on probability space
(Ω,F ,μ) with joint density functions

pn(xn1, · · · ,xnn) n ∈ N
+

and the marginal density functions

p(xnk) 1 � k � n, n ∈ N
+.
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By the Kolomogrov’s measure extension theorem, there exists a measure μ̃ on (Ω,F )
such that the joint density function of ξ n(ω) is

Πn
k=1p(xnk)

i.e. ξ (ω) is rowwise independent under measure μ̃ . Hence, if ξ (ω) is rowwise nega-
tively dependent under measure μ then, for every n , we have

pn(xn1, · · · ,xnn) � Πn
k=1p(xnk).

We immediately deduce from the definition 2 that

hμ̃
μ(ω) = 0 μ −a.s.

The following lemma 1 is an important technical tool in the proof of our main
results.

LEMMA 1. Let {ξn(ω)}n∈N+ be a sequence of nonnegative r.v.′s with Eμξn(ω)�
1 , and let {σn(ω)}n∈N+ be a sequence of positive nondecreasing r.v.′s such that

1
σn(ω) = o( 1

logn ) μ −a.s. (as n → ∞). Then

limsup
n

1
σn(ω)

logξn(ω) � 0 μ −a.s. (3)

Proof. By Markov’s inequality, we have for any tn > 0, n = 1,2, · · ·

μ{ω : ξn(ω) � tn} � 1
tn

i.e.

μ
{

ω :
1

σn(ω)
logξn(ω) � 1

σn(ω)
logtn

}
� 1

tn
.

Put tn = n1+ε (ε > 0) and noting that ∑∞
n=1

1
n1+ε < ∞ , we have by the Borel-Cantelli

lemma that the event {
ω :

1
σn(ω)

logξn(ω) � 1
σn(ω)

logtn

}
occurs only finitely often with probability 1. Thus (3) follows since 1

σn(ω) logtn =
(1+ε) logn

σn(ω) → 0 μ −a.s. (as n → ∞) �

LEMMA 2. For |x| � 1 , we have
In case of 0 < λ < 1 ,

λ x � 1+ x logλ +
1

2λ
log2 λ . (4)

In case of 1 < λ < M,

λ x � 1+ x logλ +
M
2

log2 λ . (5)
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Proof. Let t = logλ x in the well known inequality et � 1+ t + 1
2 t

2e|t| t ∈ R , we
have

λ x � 1+ x logλ +
1
2
(logλ )2x2e|x logλ |,

then (4) and (5) follows. �

LEMMA 3. For 0 � x � 1 , and 0 < λ < ∞ , we have

λ x � 1+(λ −1)x. (6)

Proof. Apply the Jensen’s inequality, it follows that

logλ x = x logλ +(1− x) log1 � log(λx+1− x) = log[1+(λ −1)x],

which implies (6) holds. �

LEMMA 4. (see [2]) Let ξ1(ω),ξ2(ω), · · · ,ξn(ω) be negatively dependent ran-
dom variables.

(1) If f1, f2, · · · , fn is a sequence measurable functions which are all monotone in-
creasing (or all are monotone decreasing). Then f1(ξ1(ω)), f2(ξ2(ω)), · · · , fn(ξn(ω))
are negatively dependent random variables, too.

(2) Eμ(ξ1(ω) · · ·ξn(ω)) � Eμ(ξ1(ω)) · · ·Eμ(ξn(ω)) , provided the expectations
exist.

LEMMA 5. (see [1]) Let ξ (ω) be a centered random variable such that ξ (ω) �
1 μ −a.s. and Var(ξ (ω)) � v for some positive constant v. Then, for any positive λ ,

logEμ [exp(λ ξ (ω))] � 1
4

ϕ(v)λ 2 (7)

where

ϕ(v) =

{
1−v2

| logv| i f v < 1,

2v i f v � 1.

3. Strong deviation theorems

With the preliminary preparation,we can now state and prove the main conclusions
of this paper.

THEOREM 1. Let ξ (ω) = {ξ n(ω) = (ξn1(ω), · · · ,ξnn(ω))}n∈N+ be a triangle ar-
ray of random variables, and hμ̃

μ(ω) be defined as in (2). Let

{ fnk(xn1, · · · ,xnk),1 � k � n}n∈N+
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be an array of bounded ( | fnk| � c), real valued, multivariate Borel functions. De-

note ξ̃nk(ω) = fnk(ξn1(ω), · · · ,ξnk(ω)) , k = 1, · · · ,n, n ∈ N
+ , Sn(ω) :=

n
∑

k=1
ξ̃nk(ω)

and Tn(ω) :=
n
∑

k=1
Eμ̃(ξ̃nk(ω)|ξn1(ω), · · · ,ξn(k−1)(ω)) . Then

limsup
n

Sn(ω)−Tn(ω)
n

� c
√

2hμ̃
μ(ω) μ −a.s. (8)

liminf
n

Sn(ω)−Tn(ω)
n

� cτ(hμ̃
μ(ω)) μ −a.s. (9)

where τ(x) = sup0<λ<1

{
logλ
2λ + x

logλ ,x � 0
}

.

Proof. We assume without lose of generality that | fnk| � 1 (as long as the range
is bounded the restriction to [−1,1] is immaterial, as one can always rescala). Let
1 < λ < M be a constant and let, for every n ∈ N

+ , k = 1,2, · · · ,n ,

hnk(xn1, · · · ,xnk) =
λ fnk(xn1,···,xnk) ·qk(xnk|xn1, · · · ,xn(k−1))

1+ logλEμ̃(ξ̃nk(ω)|xn1, · · · ,xn(k−1))+ M
2 log2 λ

.

Let

Λ(1)
n (λ ,ω) =

{ ∏n
k=1 hnk(ξn1(ω),···,ξnk(ω))
pn(ξn1(ω),···,ξnn(ω)) if denominator > 0,

0 otherwise.
(10)

Note that

Eμ Λ(1)
n (λ ,ω)

=
∫

R

· · ·
∫

R

n
∏
k=1

hnk(xn1, · · · ,xnk)

pn(xn1, · · · ,xnn)
· pn(xn1, · · · ,xnn)dxn1 · · ·dxnn

=
∫

R

· · ·
∫

R

n−1

∏
k=1

hnk(xn1, · · · ,xnk)dxn1 · · ·dxn(n−1)

·
∫

λ fnn(xn1,···,xnn) ·qn(xnn|xn1, · · · ,xn(n−1))dxnn

1+ logλEμ̃(ξ̃nn(ω)|xn1, · · · ,xn(n−1))+ M
2 log2 λ

=
∫

R

· · ·
∫

R

n−1

∏
k=1

hnk(xn1, · · · ,xnk)dxn1 · · ·dxn(n−1)

· Eμ̃(λ ξ̃nn(ω)|(xn1, · · · ,xn(n−1))

1+ logλEμ̃(ξ̃nn(ω)|xn1, · · · ,xn(n−1))+ M
2 log2 λ

�
∫

R

· · ·
∫

R

n−1

∏
k=1

hnk(xn1, · · · ,xnk)dxn1 · · ·dxn(n−1) (by (5))

� 1.
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According to lemma 1, we have

limsup
n

1
n

logΛ(1)
n (λ ,ω) � 0 μ −a.s. (11)

Putting λ → 1+ in (11), we have

limsup
n

1
n

logRn(ω) � 0 μ −a.s. (12)

Thus, we have

hμ̃
μ(ω) � 0 μ −a.s. (13)

Noticing that

n

∏
k=1

hnk(ξn1(ω), · · · ,ξnk(ω))

=
n

∏
k=1

λ ξ̃nk(ω) ·qk(ξnk(ω)|ξn1(ω), · · · ,ξn(k−1)(ω))

1+ logλEμ̃(ξ̃nk(ω)|ξn1(ω), · · · ,ξn(k−1)(ω))+ M
2 log2 λ

= λ Sn(ω) ·
n

∏
k=1

qk(ξnk(ω)|ξn1(ω), · · · ,ξn(k−1)(ω))

1+ logλEμ̃(ξ̃nk(ω)|ξn1(ω), · · · ,ξn(k−1)(ω))+ M
2 log2 λ

. (14)

It follows from (10) and (14) that

logΛ(1)
n (λ ,ω) = logλ ·Sn(ω)−

n

∑
k=1

log

[
1+ logλ ·Eμ̃(ξ̃nk(ω)|ξn1(ω), · · · ,ξn(k−1)(ω))

+
M
2

log2 λ

]
+ logRn(ω). (15)

We have by (11) and (15)

limsup
n

1
n
{Sn(ω) logλ −

n

∑
k=1

log

[
1+ logλ ·Eμ̃(ξ̃nk(ω)|ξn1(ω), · · · ,ξn(k−1)(ω))

+
M
2

log2 λ

]
+ logRn(ω)} � 0 μ −a.s. (16)
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Let 1 < λ < M and M sufficiently large. Dividing the both sides of (16) by logλ , we
obtain by the property of the superior limit and the inequality 0 � log(1+x)� x (x � 0)

limsup
n

Sn(ω)−Tn(ω)
n

� limsup
n

1
n

[
n

∑
k=1

log[1+ logλ ·Eμ̃(ξ̃nk(ω)|ξn1(ω), · · · ,ξn(k−1)(ω))+ M
2 log2 λ ]

logλ

−Eμ̃(ξ̃nk(ω)|ξn1(ω), · · · ,ξn(k−1)(ω))

]
+

hμ̃
μ(ω)
logλ

� limsup
n

1
n

n

∑
k=1

[
logλ ·Eμ̃(ξ̃nk(ω)|ξn1(ω), · · · ,ξn(k−1)(ω))+ M

2 log2 λ
logλ

−Eμ̃(ξ̃nk(ω)|ξn1(ω), · · · ,ξn(k−1)(ω))

]
+

hμ̃
μ(ω)
logλ

� M
2

logλ +
hμ̃

μ(ω)
logλ

μ −a.s. (17)

i.e.

limsup
n

Sn(ω)−Tn(ω)
n

� M
2

logλ +
hμ̃

μ(ω)
logλ

:= g(λ ,hμ̃
μ) μ −a.s. (18)

where g(λ ,x) = M
2 logλ + x

logλ . It is easy to see that if x > 0, then g(λ ,x) as a function

of λ attains its smallest value gmin =
√

2Mx on the interval (1,+∞) , and g(λ ,0) is
increasing on the interval (1,+∞) and lim

λ→1+
g(λ ,0) = 0. We have by the continuity of

g with respect to λ ,

inf
1<λ<∞

g(λ ,hμ̃
μ(ω)) =

√
2Mhμ̃

μ(ω). (19)

Putting M → 1+ , we obtain from (18) and (19)

limsup
n

Sn(ω)−Tn(ω)
n

�
√

2hμ̃
μ(ω) μ −a.s. (20)

Let 0 < λ < 1 be a constant and let, for every n ∈ N
+ , k = 1,2, · · · ,n ,

h′nk(xn1, · · · ,xnk) =
λ fnk(xn1,···,xnk) ·qk(xnk|xn1, · · · ,xn(k−1))

1+ logλEμ̃(ξ̃nk(ω)|xn1, · · · ,xn(k−1))+ 1
2λ log2 λ

.

Let

Λ(2)
n (λ ,ω) =

{ ∏n
k=1 h′nk(ξn1(ω),···,ξnk(ω))
pn(ξn1(ω),···,ξnn(ω)) if denominator > 0,

0 otherwise.
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It is not difficult to check that Eμ Λ(2)
n (λ ,ω)� 1, hence we have limsup

n

1
n logΛ(2)

n (λ ,ω)

� 0 μ −a.s.
Note that

logΛ(2)
n (λ ,ω) = logλSn(ω)−

n

∑
k=1

log

[
1+ logλEμ̃(ξ̃nk(ω)|ξn1(ω), · · · ,ξn(k−1)(ω))

+
1

2λ
log2 λ

]
+ logRn(ω).

Thus

limsup
n

1
n
{Sn(ω) logλ −

n

∑
k=1

log

[
1+ logλEμ̃(ξ̃nk(ω)|ξn1(ω), · · · ,ξn(k−1)(ω))

+
1

2λ
log2 λ

]
+ logRn(ω)} � 0 μ −a.s. (21)

Dividing the both sides of (21) by logλ , we obtain by the property of the inferior limit
and the inequality log(1+ x) � x (−1 < x < 0)

liminf
n

Sn(ω)−Tn(ω)
n

� liminf
n

1
n

n

∑
k=1

[
log[1+ logλEμ̃(ξ̃nk(ω)|ξn1(ω), · · · ,ξn(k−1)(ω))+ 1

2λ log2 λ ]
logλ

−Eμ̃(ξ̃nk(ω)|ξn1(ω), · · · ,ξn(k−1)(ω))]+
hμ̃

μ(ω)
logλ

� 1
2λ

logλ +
hμ̃

μ(ω)
logλ

:= h(λ ,hμ̃
μ(ω)) μ −a.s.

where h(λ ,x) = 1
2λ logλ + x

logλ . Let τ(x) = sup0<λ<1{h(λ ,x),x � 0} , it is obvious
that τ(x) � 0 and is monotonically decreasing with respect to x . Hence

liminf
n

Sn(ω)−Tn(ω)
n

� τ(hμ̃
μ(ω)) μ −a.s. (22)

The proof is completed. �

REMARK 2. Replacing the density function by probability mass function, Theo-
rem 1 also holds for discrete random variables.

As direct consequence and applications of Theorem 1, we have the following in-
teresting corollaries.
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COROLLARY 1. Under the conditions of Theorem 1, if μ = μ̃ or hμ̃
μ(ω) = 0 μ −

a.s. , then

lim
n

Sn(ω)−Tn(ω)
n

= 0 μ −a.s. (23)

Proof. This result is the direct consequence of Theorem 1 with μ = μ̃ or hμ̃
μ(ω) =

0 μ −a.s. . �

COROLLARY 2. (SLLN) Let ξ (ω) = {ξn(ω)}n∈N+ be a sequence of uniformly
bounded negatively dependent r.v.’s defined on (Ω,F ,μ) , then

lim
n

Σn
k=1ξk(ω)

n
= Eμξ1(ω) μ −a.s.

Proof. Without loss of generality, we may assume that |ξn(ω)| � 1, n ∈ N
+ , and

let fnk = ξk(ω) , 1 � k � n , n ∈ N
+ . Let μ̃ be the reference measure on (Ω,F ) and

assume the ξ (ω) = {ξn(ω)}n∈N+ is independent under μ̃ . From example 2 we know
that hμ̃

μ(ω) = 0 a.s. , the proof is trivially follows. �

COROLLARY 3. Let ξ (ω)= {ξ n(ω)= (ξn1(ω), · · · ,ξnn(ω))}n∈N+ be an array of
rowwise negatively dependent random variables with the common distribution function
F(x) , and let fnk(x) = 1(−∞,x](ξnk(ω)) , 1 � k � n. Denote F̂n(x) = 1

n ∑n
k=1 fnk(x) =

1
n ∑n

k=1 1(−∞,x](ξnk(ω)), that is the empirical distribution function (edf) of ξ n(ω) . Then

lim
n

F̂n(x) = F(x) μ −a.s.

Proof. It follows from application of corollary 2 since Eμ fnk(x) = F(x) . �

COROLLARY 4. Let {Ank,1 � k � n}n∈N+ be an array of rowwise independent
events, if 1

∑n
k=1 μ(Ank)

= o( 1
logn) as n → ∞ . Then

lim
n

∑n
k=1 1Ank(ω)

∑n
k=1 μ(Ank)

= 1 μ −a.s.

Proof. Let λ > 0 be a constant, and let

Λ(3)
n (λ ,ω) =

n

∏
k=1

λ 1Ank
(ω)

1+(λ −1)μ(Ank)
, n = 1,2, · · · .

From lemma 3, it is easy to verify that Eμ Λ(3)
n (λ ,ω) � 1. Let σn := ∑n

k=1 μ(Ank) , we

have by lemma 1 that 1
σn

logΛ(3)
n (λ ,ω) � 0 μ −a.s. i.e.

limsup
n

1
σn

n

∑
k=1

1Ank(ω) logλ � 1
σn

n

∑
k=1

log [1+(λ −1)μ(Ank)] � (λ −1) μ−a.s. (24)
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Let λ > 1. Dividing the both sides of (24) by logλ , we have

limsup
n

1
σn

n

∑
k=1

1Ank(ω) � λ −1
logλ

μ −a.s.

Let λ → 1+ , by Hospital’s rule we have

limsup
n

1
σn

n

∑
k=1

1Ank(ω) � 1 μ −a.s.

The remainder of the argument is analogous to that in Theorem 1, hence the statement
is proved. �

4. Sub-gaussian random variables

In probability, Gaussian random variables are the easiest and most commonly used
distribution encountered. We shall now focus our attention on strong deviation theorem
and law of large numbers for sub-gaussian random variables.

Sub-gaussianity properties of random variables and random processes (see [3]) are
important features, since they allow us to derive results concerning, for instance, strong
law of large numbers (see [12]), large deviations inequalities, asymptotic behaviour of
particular processes of the behaviour of their supremum.

A random variables ξ (ω) is called Sub-Gaussian of its moment generating func-
tion is majorized by the moment generating function of a centered Gaussian random
variables with variance σ2 , i.e.

Eμ [exp(λ ξ (ω))] � Eμ [exp(η(ω)λ )] = exp

(
σ2λ 2

2

)
(25)

where η(ω) ∼ N(0,σ2) . In terms of cumulant generating function, this condition takes
the form logEμ exp(λ ξ (ω)) � σ2λ 2/2. The sub-Gaussian standard (norm) τμ(ξ (ω))
is defined as follows:

τμ(ξ (ω)) = inf

{
σ � 0 : ∀λ ∈ R logEμ [exp(λ ξ (ω))] � σ2λ 2

2

}
.

PROPOSITION 1. (see [5]) If ξ (ω) is sub-gaussian, then for λ > 0

μ(ξ (ω) > λ ) � exp

{
− λ 2

2[τ(ξ (ω))]2

}
.

PROPOSITION 2. (see [5]) If ξ1(ω), · · · ,ξn(ω) are negatively dependent (or ac-
ceptable), sub-gaussian random variables, then Σn

i=1ξi(ω) is sub-gaussian with
τ(Σn

i=1ξi(ω)) = {Σn
i=1[τ(ξi(ω))]2}1/2 .

PROPOSITION 3. (see [5]) If ξ (ω) is bounded ( |ξ (ω)| � C ) and Eμ ξ (ω) = 0,
then ξ (ω) is sub-gaussian with τ(ξ (ω)) =

√
2C .
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THEOREM 2. Let ξ (ω) = {ξ n(ω) = (ξn1(ω), · · · ,ξnn(ω))}n∈N+ be a triangle ar-
ray of arbitrarily dependent random variables. Further, assume that ξ (ω) be a trian-
gle array of rowwise negatively dependent (see [6]) random variables under probability
measure μ̃ , and hμ̃

μ(ω) be defined as in (2). If, in addition, ∑n
k=1[τμ̃(ξnk(ω))]2 � Cn

for all n where C is any positive constant. Then

−
√

2Chμ̃
μ(ω) � liminf

n

Sn(ω)
n

� limsup
n

Sn(ω)
n

�
√

2Chμ̃
μ(ω) μ −a.s. (26)

here and in the following Sn(ω) denotes ∑n
k=1 ξnk(ω) .

Proof. Let λ ∈ R be a real constant and let, for every n ∈ N
+ , k = 1,2, · · · ,n ,

hn(xn1, · · · ,xnn) =
exp[λ (xn1 + · · ·+ xnn)] ·qn(xn1, · · · ,xnn)

∏n
k=1 Eμ̃eλ ξnk(ω)

.

Let

Λ(4)
n (λ ,ω) =

{
hn(ξn1(ω),···,ξnn(ω))
pn(ξn1(ω),···,ξnn(ω)) if denominator > 0,

0 otherwise.
(27)

Note that

Eμ Λ(4)
n (λ ,ω)

=
∫

R

· · ·
∫

R

hn(xn1, · · · ,xnn)
pn(xn1, · · · ,xnn)

· pn(xn1, · · · ,xnn)dxn1 · · ·dxnn

=
∫

R

· · ·
∫

R

hn(xn1, · · · ,xn(n−1))dxn1 · · ·dxn(n−1)

=
Eμ̃ [eλSn(ω)]

∏n
k=1 Eμ̃eλ ξnk(ω)

� 1 (by negative dependence)

which implies

limsup
n

1
n

logΛ(4)
n (λ ,ω) � 0 μ −a.s. (28)

Noticing that

logΛ(4)
n (λ ,ω) = λSn(ω)−

n

∑
k=1

logEμ̃(eλ ξnk(ω))+ logRn(ω). (29)

We have by (28) and (29)

limsup
n

1
n
{λSn(ω)−

n

∑
k=1

logEμ̃(eλ ξnk(ω))+ logRn(ω)} � 0 μ −a.s. (30)
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Put λ > 0, we have by (30) that

limsup
n

Sn(ω)
n

� limsup
n

λ
2n

n

∑
k=1

[
τμ̃(ξnk(ω))

]2 +
hμ̃

μ(ω)
λ

� C
2

λ +
hμ̃

μ(ω)
λ

μ −a.s.

i.e.

limsup
n

Sn(ω)
n

� C
2

λ +
hμ̃

μ(ω)
λ

:= g(λ ,hμ̃
μ) μ −a.s.

where g(λ ,x) = C
2 λ + x

λ . It is easy to see that if x > 0, then g(λ ,x) as a function of λ
attains its smallest value gmin =

√
2Cx on the interval (0,+∞) , and lim

λ→0+
g(λ ,0) = 0.

Therefore

limsup
n

Sn(ω)
n

�
√

2Chμ̃
μ(ω) μ −a.s.

Putting λ < 0, we have by the same way that

liminf
n

Sn(ω)
n

� −
√

2Chμ̃
μ(ω) μ −a.s.

concluding the proof of the theorem. �

COROLLARY 5. Let ξ (ω) = {ξ n(ω) = (ξn1(ω), · · · ,ξnn(ω))}n∈N+ be a triangle
array of arbitrarily dependent random variables. Furthermore, assume that ξ (ω) is
a triangle array of rowwise negatively dependent (see [6]) centered random variables
under probability measure μ̃ such that ξnk(ω) � 1 and Var(ξnk(ω)) � v, 1 � k � n,
n ∈ N

+ for some positive constant v, and hμ̃
μ(ω) is defined as in (2). Then

limsup
n

Sn(ω)
n

�
√

ϕ(v)hμ̃
μ(ω) μ −a.s.

where Sn(ω) := ∑n
k=1 ξnk(ω) and

ϕ(v) =

{
1−v2

| logv| i f v < 1,

2v i f v � 1.

The proof of this corollary can be completed by the method analogous to that used
above.

REMARK 3. It is obvious that if the condition of ξnk(ω)� 1 is replaced by ξnk(ω)
� −1 in Corollary 5, we can easily establish the following inequality

liminf
n

Sn(ω)
n

� −
√

ϕ(v)hμ̃
μ(ω) μ −a.s.
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THEOREM 3. Let ξ (ω) = {ξ n(ω) = (ξn1(ω), · · · ,ξnn(ω))}n∈N+ be a triangle ar-
ray of rowwise negatively dependent (or acceptable r.v.’s). If ∑n

i=1[τ(ξni(ω))]2 �Cn2−d

for all n where C and d are any positive constants, then

lim
n

Sn(ω)
n

= 0 μ −a.s.

Proof. Let ε > 0 be given. By Proposition 1,

μ(|Sn(ω)| > nε) = μ(Sn(ω) > nε)+ μ(−Sn(ω) > nε)

� 2exp

{
− ε2n2

2∑n
i=1[τ(ξni(ω))]2

}
� 2exp

[
−ε2nd/2C

]
for each n . Thus

∞

∑
n=1

μ(|Sn(ω)| > nε) � 2
∞

∑
n=1

exp(−ε2nd/2C) < ∞.

The first Borel-Cantelli lemma completes the proof. �

COROLLARY 6. Let ξ (ω) = {ξ n(ω) = (ξn1(ω), · · · ,ξnn(ω))}n∈N+ be a triangle
array of rowwise negatively dependent (or acceptable r.v.’s) which are bounded by a
constant C . Then for δ > 1

2 ,

lim
n

1
n

n

∑
i=1

(ξni(ω)−Eμξni(ω)) = 0 μ −a.s.

Proof. It is obvious |ξni(ω)−Eμξni(ω)| � 2C , and Proposition 3 provides the
sub-gaussian property. Note that, for any ε > 0,

μ(|
n

∑
i=1

(ξni(ω)−Eμξni(ω))| > nδ ε) � 2exp

[
−ε2n2δ−1

16C2

]
for each n , and which completes the proof. �

THEOREM 4. Let ξ (ω) = {ξ n(ω) = (ξn1(ω), · · · ,ξnn(ω))}n∈N+ be a triangle ar-
ray of rowwise negatively dependent random variables such that Eμ ξni(ω) = 0 for all
1 � i � 1,n ∈ N

+ . If
∞

∑
n=1

n

∑
i=1

Eμ |ξni(ω)|2pq

iq
< ∞ (31)

where q is some positive constant and p is some constant,1 < p � 2 . Then,

lim
n

1
n

n

∑
i=1

ξni(ω) = 0 μ −a.s. (32)
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Proof. First, let ηni(ω) = ξni(ω)1[|ξni(ω)|�i1/2p] , 1 � i � n , n ∈ N
+ . Note that

∞

∑
n=1

μ(
n

∑
i=1

ξni(ω) �=
n

∑
i=1

ηni(ω)) �
∞

∑
n=1

n

∑
i=1

μ(ξni(ω) �= ηni(ω))

=
∞

∑
n=1

n

∑
i=1

μ(|ξni(ω)| > i
1
2p )

�
∞

∑
n=1

n

∑
i=1

Eμ |ξni(ω)|2pq

iq
< ∞.

Hence,

μ

{
lim
n

1
n

n

∑
i=1

ξni(ω) = lim
n

1
n

n

∑
i=1

ηni(ω)

}
= 1.

Noticing that Eμξni(ω) = 0 for all 1 � i � n , n ∈ N
+ , we have by (31) that

1
n

n

∑
i=1

Eμηni(ω) → 0 (as n → ∞). (33)

Since ηni(ω)−Eμηni(ω) is sub-gaussian with τ(ηni(ω)−Eμηni(ω)) � 2
√

2i
1
2p , we

have for any ε > 0

∞

∑
n=1

n

∑
i=1

μ [|
n

∑
i=1

(ηni(ω)−Eμηni(ω))| > nε] �
∞

∑
n=1

exp

[
− n2ε2

16Σn
i=1i

1
p

]

�
∞

∑
n=1

exp

[
−n1− 1

p ε2

16

]
< ∞. (34)

(32) follows immediately from (33) and (34). �
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