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Abstract. In this paper, we study three stochastic two-species predator-prey models. We con-
struct stochastic models from deterministic models by introducing three different stochastic per-
turbations to the growth equations of the prey and predator populations. For the first model, we
obtain sufficient conditions for the stochastic model to be asymptotically stable in probability at
three different equilibrium points. In addition, using a suitable stochastic Lyapunov method, we
study the existence and uniqueness of the solution, the existence of positive recurrence and the
ultimate boundedness of the three stochastic systems under certain conditions. we also discuss
the global asymptotic stability of the equilibrium point and extinction of the last two stochastic
systems. Finally, we provide some numerical simulations to illustrate our mathematical results.
We show that stochastic models still retain the desirable stability property of their deterministic
counterparts if stochastic perturbations are relatively small.

1. Introduction

Predator-prey systems have been an important topic in mathematical biology due
to their universal existence and importance. As a result, interest in mathematical models
of interacting populations among species has grown rapidly [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
One of the well-known models is the Lotka-Volterra model, which describes the time
evolution of two interacting species: a prey population that grows with a constant birth
rate in the absence of a predator species, while the predator population decays with a
constant death rate without the presence of a prey species. And the population model
has the form {

dx(t) = x
(
a1−b1x− c1y

)
dt,

dy(t) = y
(
a2−b2y+ c2x

)
dt

(1)

where a1 > 0, b1 > 0, c1 > 0, a2 > 0, b2 > 0, c2 > 0. The biological meaning of each
parameter can be referred to [11]. And a2 > 0 indicates that the predator y has other
food source besides x . The functions x(t) and y(t) represent, respectively, the number
of prey and predator. Obviously, the model (1) has four equilibrium points: E0 = (0,0) ,
E1 = (x̂,0) , E2 = (0, ŷ) , E∗ = (x∗,y∗) , where x̂ = a1

b1
, ŷ = a2

b2
, x∗ = a1b2−a2c1

b1b2+c1c2
, y∗ =

Mathematics subject classification (2020): 60G15, 60H10.
Keywords and phrases: Asymptotic stability, extinction, ultimately boundedness, positive recurrence.
∗ Corresponding author.

c© � � , Zagreb
Paper JMI-17-71

1087

http://dx.doi.org/10.7153/jmi-2023-17-71


1088 G. WANG, J. LV AND X. ZOU

a2b1+a1c2
b1b2+c1c2

. And the parameters are hypothesized to be deterministic, which ignore the
environmental stochasticity.

However, population dynamics in the real world are often affected by some uncer-
tain factors, namely environmental noise [12,13]. Therefore, a large number of scholars
have introduced stochasticity into deterministic systems to analyze the role of stochas-
ticity in population dynamics [14, 15, 16, 17, 18, 19, 20]. In this paper, we consider the
following stochastic systems:

dX(t) = F
(
X(t)

)
dt +Gi(t)dB(t), i = 1,2,3,

where X(t) =
(

x(t)
y(t)

)
, B(t) =

(
B1(t)
B2(t)

)
, F(X(t)) =

(
x
(
a1−b1x− c1y

)
y
(
a2−b2y+ c2x

)) .

A stochastic perturbation can be proportional to the distance from its equilibrium
value [21,22]. Therefore, we assume that stochastic perturbation is directly proportional
to distance (x(t),y(t)) from value of (x∗,y∗) , we get

G1(X(t)) =
(

σ1
(
x(t)− x∗

)
0

0 σ2
(
y(t)− y∗

)) .

At the same time, motivated by the references [23, 24], we also assume that the
stochastic perturbation is proportional to the distance between (x(t),y(t)) and (x∗,y∗)
and (0,0) . We have

G2
(
X(t)

)
=
(

σ1x(t)
(
x(t)− x∗

)
0

0 σ2y(t)
(
y(t)− y∗

))

and

G3
(
X(t)

)
=
(

σ1x(t)
(
y(t)− y∗

)
0

0 σ2y(t)
(
x(t)− x∗

)) .

The main aims of this paper are to investigate how different types of stochasticities
have different effects when applied to the same deterministic model. The arrangements
of this paper are organized as follows: in Section 2, we establish the existence of the
unique positive global solution for the model with G1

(
X(t)

)
. In addition, we analyse

the stability of different equilibrium points and sufficient conditions for positive recur-
rence. Finally, we show that the system with G1

(
X(t)

)
is stochastically ultimately

bounded. Different results of the stochastic model with G2
(
X(t)

)
, like the existence

and uniqueness of the positive solutions and their boundedness, a set of sufficient con-
ditions for asymptotic stability of equilibrium point, extinction, existence of positive
recurrence, are presented in Section 3. In Section 4, we present the existence and
uniqueness of the solution and prove the global stability of the equilibrium point of the
system with G3

(
X(t)

)
. Then a Lyapunov function is performed to obtain the sufficient

conditions for extinction and the positive recurrence. Our analysis result reveals that the
system with G3

(
X(t)

)
is stochastically ultimately bounded. The last section, a number

of numerical simulation results of the systems are also given to illustrate the analytical
results obtained in Section 2, Section 3 and Section 4.

In conclusion, when the noise intensity is relatively weak, the positive equilib-
rium point of global asymptotic stability is still globally asymptotically stable. In other
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words, small stochastic perturbations do not change the stability of the positive equilib-
rium.

2. Analysis of model with G1
(
X(t)

)
THEOREM 1. Suppose that σ1 �

√
2b1
x∗ and σ2 �

√
2b2
y∗ . Then for the model with

G1
(
X(t)

)
, there exists a unique positive solution

(
x(t),y(t)

)T ∈ R2
+ = {(x,y) ∈ R2 |

x > 0,y > 0} for any initial value
(
x(0),y(0)

) ∈ R2
+ .

Proof. Since the coefficients of the model with G1
(
X(t)

)
are locally Lipschitz

continuous, for any given initial value
(
x(0),y(0)

) ∈ R2
+ , there is a unique maximal

local solution
(
x(t),y(t)

)
on t ∈ [0,τe) , where τe is the explosion time. To show the

solution is global, we need to show τe = ∞ . We choose a sufficiently large non-negative
number r0 such that both of x(0) and y(0) lie within the interval [ 1

r0
,r0] . For each

integer r � r0 , we define the stopping time

τr = inf

{
t ∈ [0,τe) | x /∈

(
1
r
,r

)
or y /∈

(
1
r
,r

)}

where inf∅ = ∞ . Clearly, τr is increasing as r → ∞ . Set limr→+∞ τr = τ∞ , whence
τ∞ � τe . If we can show that τ∞ = ∞ , then τe = ∞ . To complete the proof, we need
to show that τ∞ = ∞ . Motivated by [21, Theorem 2.1], let’s define a C2 -function
V : R2

+ → R+ by V (x,y) = (x− x∗ − x∗ ln x
x∗ )

1
c1

+(y− y∗ − y∗ ln y
y∗ )

1
c2

. Let r � r0 and
T > 0 be arbitrary. For 0 � t � τr ∧T , it follows from Itô formula that

dV =
1
2

(
x− x∗ y− y∗

)[( 1
c1

0
0 1

c2

)(−b1 −c1

c2 −b2

)
+
(−b1 c2

−c1 −b2

)( 1
c1

0
0 1

c2

)

+
(

σ1 0
0 σ2

)( 1
c1

0
0 1

c2

)(
x∗ 0
0 y∗

)(
σ1 0
0 σ2

)](
x− x∗
y− y∗

)
dt

+
(
x− x∗ y− y∗

)( 1
c1

0
0 1

c2

)(
σ1 0
0 σ2

)(
x− x∗
y− y∗

)(
dB1(t)
dB2(t)

)

where

LV =
1
2

(
x− x∗ y− y∗

)[( 1
c1

0
0 1

c2

)(−b1 −c1

c2 −b2

)
+
(−b1 c2

−c1 −b2

)( 1
c1

0
0 1

c2

)

+
(

σ1 0
0 σ2

)( 1
c1

0
0 1

c2

)(
x∗ 0
0 y∗

)(
σ1 0
0 σ2

)](
x− x∗
y− y∗

)

=
1
2

(
x− x∗ y− y∗

)( 1
c1

(σ2
1 x∗ −2b1) 0

0 1
c2

(σ2
2 y∗ −2b2)

)(
x− x∗
y− y∗

)
� 0.
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Therefore, we can get that

dV �
(
x− x∗ y− y∗

)( 1
c1

0
0 1

c2

)(
σ1 0
0 σ2

)(
x− x∗
y− y∗

)(
dB1(t)
dB2(t)

)
.

We can now integrate from 0 to τr ∧T and then take the expressions to get

EV
(
x(τr ∧T ),y(τr ∧T )

)
� V

(
x(0),y(0)

)
� K.

Note that for every ω ∈ τr � T , there is at least one of the x(τr,ω) , y(τr,ω) which is

equal either r or 1
r and hence V

(
x(τr),y(τr)

)
is no less than the smallest of

(
r− x∗ −

x∗ ln r
x∗

)
1
c1

,

(
r−y∗−y∗ ln r

y∗

)
1
c2

,

(
1
r −x∗−x∗ ln 1

rx∗

)
1
c1

and

(
1
r −y∗−y∗ ln 1

ry∗

)
1
c2

.

Consequently,

K � E
[
1{τr�T}(ω)V

(
x(τr,ω),y(τr ,ω)

)]
� P{τr � T}

[(
r− x∗ − x∗ ln

r
x∗

)
1
c1

∧
(

r− y∗ − y∗ ln
r
y∗

)
1
c2

∧
(

1
r
− x∗− x∗ ln

1
rx∗

)
1
c1

∧
(

1
r
− y∗− y∗ ln

1
ry∗

)
1
c2

]

where 1τr is the indicator function of τr . Letting r→∞ gives limr→+∞ P{τr � T}= 0.
Hence

P{τ∞ � T} = 0.

Since T > 0 is arbitrary, we must have P{τ∞ < ∞} = 0. So P{τ∞ = ∞} = 1 as re-
quired. �

The stochastic system can be centered at its positive equilibrium point by the fol-
lowing change in variables:

u1 = x− x∗, u2 = y− y∗.

The linearized counterpart of the nonlinear SDE system with G1
(
X(t)

)
about

(x∗,y∗) reads: {
du1 =

(
Âu1 + B̂u2

)
dt + σ1u1dB1(t),

du2 =
(
Ĉu1 + D̂u2

)
dt + σ1u2dB2(t)

(2)

where Â = a1 − 2b1x∗ − c1y∗ , B̂ = −c1x∗ , Ĉ = c2y∗ , D̂ = a2 − 2b2y∗ + c2x∗ . Note
that the stability of the zero solution of (2) is equivalent to the stability property of the
equilibrium solution (x∗,y∗) of system with G1

(
X(t)

)
. One can state the following

theorem for the stability of different equilibrium points of the model with G1
(
X(t)

)
.

THEOREM 2. (I) Equilibrium E1 = (x̂,0) is asymptotically mean square stable if

(i) a2 + a1c2
b1

− 3σ2
2

4 > 0 , (ii) σ1 �
√

2b1
x∗ and σ2 �

√
2b2
y∗ .
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(II) Equilibrium E2 = (0, ŷ) is asymptotically mean square stable if

(i) σ1 <
√
−2Â , Â < 0 , (ii) σ2 <

√
−2D̂, D̂ < 0 ,

(iii) σ1 �
√

2b1
x∗ and σ2 �

√
2b2
y∗ .

(III) Equilibrium E∗ = (x∗,y∗) is asymptotically mean square stable if

(i) σ1 <
√
−2Â , Â < 0 , (ii) σ2 <

√
−2D̂, D̂ < 0 ,

(iii) σ1 �
√

2b1
x∗ and σ2 �

√
2b2
y∗ .

Proof. For the axial equilibrium E1 = (x̂,0) , we have Â = −b1x̂ , B̂ = −c1x̂ , Ĉ =

0, D̂ = a2 + c2x̂ . Define the function V (u1,u2) = u
1
2
1 +u

−1
2

2 , then

LV =
1
2
u

−1
2

1 (−b1x̂u1− c1x̂u2)− 1
8

σ2
1 u

1
2
1 − 1

2
u

−3
2

2 (a2 + c2x̂)u2 +
3
8

σ2
2 u

−1
2

2

= −
(

1
2
b1x̂+

1
8

σ2
1

)
u

1
2
1 − 1

2
c1u

−1
2

1 u2− 1
2

(
a2 + c2x̂− 3

4
σ2

2

)
u

−1
2

2 .

Therefore LV is negative definite. The equilibrium solution (0,0) of the model (2)
is globally asymptotically stable. Hence the equilibrium solution E1 = (x̂,0) of the
model with G1

(
X(t)

)
is globally asymptotically stable.

We define a Lyapunov function V = 1
2(ω1u2

1 + ω2u2
2) , where ω1 and ω2 are pos-

itive real constants to determined. One can express V = 1
2

(
u1 u2

)
Q

(
u1

u2

)
, where

Q =
(

ω1 0
0 ω2

)
.

Let λ1(Q) and λ2(Q) be the smallest and largest eigenvalues of Q , respectively,
and then we have

1
2

λ1(Q) � V � 1
2

λ2(Q).

Define K1 = 1
2 λ1(Q) and K2 = 1

2λ2(Q) , so that the inequality K1 |u|2 � V � K2 |u|2
holds, where |u|2 = u2

1 +u2
2 . Meanwhile

LV =
(
Âu1 + B̂u2 Ĉu1 + D̂u2

)(ω1u1

ω2u2

)
+

1
2
Tr

(
σ2

1 u2
1ω1 0
0 σ2

2 u2
2ω2

)

=
(

Â+
σ2

1

2

)
ω1u

2
1 +
(

D̂+
σ2

2

2

)
ω2u

2
2 +(B̂ω1 + D̂ω2)u1u2

= −uTMu

where the symmetric matrix M is defined as

M =

⎛
⎜⎜⎝

−
(

Â+ σ2
1
2

)
ω1 − 1

2(B̂ω1 + Ĉω2)

− 1
2(B̂ω1 + Ĉω2) −

(
D̂+ σ2

2
2

)
ω2

⎞
⎟⎟⎠ .
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Now we choose ω1 and ω2 in such a manner that M becomes positive definite. Mean-
while, we will find some conditions so that all the principal minors of M become posi-
tive.

For the axial equilibrium E2 = (0, ŷ) , we obtain Â = a1− c1ŷ , B̂ = 0, Ĉ = c2ŷ >
0, D̂ = a2−2b2ŷ . Principal minors of M are

M11 = −
(

Â+
σ2

1

2

)
ω1 and M22 =

(
Â+

σ2
1

2

)(
D̂+

σ2
2

2

)
ω1ω2− Ĉ2ω2

2

4
.

Positivity of the first principal minor M11 forces Â + σ2
1
2 < 0 and Â < 0. Since

Â+ σ2
1
2 is negative and ω1 , ω2 are chosen to be positive, we select ω1 = 1

(Â+
σ2
1
2 )(D̂+

σ2
2
2 )

and ω2 = 1
Ĉ2 . Note that ω2 is positive, and ω1 will be positive under the condition

σ2 <
√
−2D̂ with D̂ < 0. Hence M becomes positive definite if σ1 <

√
−2Â and

σ2 <
√
−2D̂ with Â < 0 and D̂ < 0.

For the interior equilibrium point E∗ = (x∗,y∗) , we have Â = −b1x∗ < 0, B̂ =
−c1x∗ < 0, Ĉ = c2x∗ > 0, D̂ = −b2y∗ < 0. Since Â < 0 and D̂ < 0, it is possible to
choose suitable values of ω1 and ω2 so that M becomes positive definite. We choose
ω1 = − 1

B̂
and ω2 = 1

Ĉ
. Then the corresponding principle minors of M become

M11 = −
(

Â+
σ2

1

2

)
ω1 and M22 =

(
Â+

σ2
1

2

)(
D̂+

σ2
2

2

)
ω1ω2.

One can easily observe that the first principle minor is positive if σ1 <
√
−2Â , and

the second principle minor will be positive when σ2 <
√
−2D̂ . Hence the positivity

of both principle minors imply the positive definiteness of M subject to the conditions

σ1 <
√
−2Â and σ2 <

√
−2D̂ with Â < 0 and D̂ < 0. Therefore, all eigenvalues of

M become positive. Thus, we have

LV < −λ (M) |u|2

where λ (M) is the smallest eigenvalues of M and λ (M) > 0. Therefore the equilib-
rium solution (0,0) of the (2) is globally asymptotically stable. Hence the equilib-
rium solutions E2 = (0, ŷ) and E∗ = (x∗,y∗) of the model with G1

(
X(t)

)
are globally

asymptotically stable.
For the equilibrium point E0 = (0,0) , the stochastic system reads:{

dx(t) = x
(
a1−b1x− c1y

)
dt + σ1xdB1(t),

dy(t) = y
(
a2−b2y+ c2x

)
dt + σ2ydB2(t).

And many scholars have studied it well (e.g. [5, 11, 25, 26, 27, 28, 29, 30]). �

THEOREM 3. Suppose that σ1 �
√

2b1
x∗ and σ2 �

√
2b2
y∗ hold. Then the solution(

x(t),y(t)
)

of the system with G1
(
X(t)

)
is positively recurrent.
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Proof. Define V (x,y) = (x−x∗−x∗ ln x
x∗ )

1
c1

+(y−y∗−y∗ ln y
y∗ )

1
c2

. D =
{
(x,y) ∈

R2
+ | 1

N � x � N, 1
N � y � N

}
. Applying Itô formula, we have

LV =
1
2

(
x− x∗ y− y∗

)[( 1
c1

0
0 1

c2

)(−b1 −c1

c2 −b2

)
+
(−b1 c2

−c1 −b2

)( 1
c1

0
0 1

c2

)

+
(

σ1 0
0 σ2

)( 1
c1

0
0 1

c2

)(
x∗ 0
0 y∗

)(
σ1 0
0 σ2

)](
x− x∗
y− y∗

)

=
1
2

(
x− x∗ y− y∗

)( 1
c1

(σ2
1 x∗ −2b1) 0

0 1
c2

(σ2
2 y∗ −2b2)

)(
x− x∗
y− y∗

)

= − 1
2c1

(2b1−σ2
1 x∗)(x− x∗)2− 1

2c2
(2b2−σ2

2 y∗)(y− y∗)2.

When (x,y) → (0,0) , we have

LV = − 1
2c1

(2b1−σ2
1 x∗)(x∗)2 − 1

2c2
(2b2−σ2

2 y∗)(y∗)2 < 0.

When x → 0 and y → +∞ , we get

LV = − 1
2c1

(2b1−σ2
1 x∗)(x∗)2 − 1

2c2
(2b2−σ2

2 y∗)(y− y∗)2 →−∞.

When x → +∞ and y → 0, we obtain

LV = − 1
2c1

(2b1−σ2
1 x∗)(x− x∗)2 − 1

2c2
(2b2−σ2

2 y∗)(y∗)2 →−∞.

When x → +∞ and y → +∞ , we deduce

LV = − 1
2c1

(2b1−σ2
1 x∗)(x− x∗)2− 1

2c2
(2b2−σ2

2 y∗)(y− y∗)2 →−∞.

Therefore, for (x,y) ∈ Dc , LV < 0. Using the similar proof of [Theorem 3.26] of
[31], it is a sufficient and necessary condition for positive recurrence. The proof is
complete. �

THEOREM 4. Suppose that σ1 �
√

2b1
x∗ and σ2 �

√
2b2
y∗ hold. The system with

G1
(
X(t)

)
is stochastically ultimately bounded for any initial value

(
x(0),y(0)

) ∈ R2
+ .

Proof. We first claim that there is a positive constant K = K(θ ) , which is inde-
pendent of the initial value

(
x(0),y(0)

)
, such that the solution X = (x,y) of the system

with G1
(
X(t)

)
has the property that

lim
t→+∞

supE |x|θ � K.
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Define V = xθ + c
c2

yθ , where c < min{b1,c1} . It follows from Itô formula that

dV =
[

θxθ (a1−b1x− c1y)− θ (1−θ )
2

σ2
1 (x− x∗)2xθ−2

+ θyθ (a2−b2y+ c2x)
c
c2

− θ (1−θ )
2

σ2
2 (y− y∗)2yθ−2 c

c2

]
dt

+ θσ1(x− x∗)xθ−1dB1(t)+
c
c2

θσ2(y− y∗)yθ−1dB2(t). (3)

Denote

LV = θxθ (a1−b1x− c1y)− θ (1−θ )
2

σ2
1 (x− x∗)2xθ−2

+ θyθ (a2−b2y+ c2x)
c
c2

− θ (1−θ )
2

σ2
2 (y− y∗)2yθ−2 c

c2

= θa1x
θ −θb1x

θ+1−θc1x
θ y− θ (1−θ )

2
σ2

1 (x− x∗)2xθ−2

+ θa2y
θ c
c2

−θb2y
θ+1 c

c2
+ θcyθx− θ (1−θ )

2
σ2

2 (y− y∗)2yθ−2 c
c2

� F −V

where

F = θa1x
θ −θb1x

θ+1−θc1x
θ y− θ (1−θ )

2
σ2

1 (x− x∗)2xθ−2 + θa2y
θ c
c2

−θb2y
θ+1 c

c2
+ θcyθx− θ (1−θ )

2
σ2

2 (y− y∗)2yθ−2 c
c2

+ xθ +
c
c2

yθ .

When x � y , we can get

F � −θc1x
θ yθ (y1−θ − x1−θ)−θb1x

1+θ −θb2y
1+θ c

c2
+ θa1x

θ + θa2y
θ c
c2

+ xθ +
c
c2

yθ − θ (1−θ )
2

σ2
1 (x− x∗)2xθ−2− θ (1−θ )

2
σ2

2 (y− y∗)2yθ−2 c
c2

.

Since the coefficient of the highest of x is −θb1 < 0 and the coefficient of the highest
of y is −θb2

c
c2

< 0, then there exists a constant K1 such F � K1 in R2
+ . When x > y ,

we can get

F � −θ (b1− c)x1+θ −θb2y
1+θ c

c2
−θc1x

θ y+ θa1x
θ + θa2y

θ c
c2

− θ (1−θ )
2

σ2
1 (x− x∗)2xθ−2− θ (1−θ )

2
σ2

2 (y− y∗)2yθ−2 c
c2

+ xθ +
c
c2

yθ .

Since the coefficient of the highest of x is −θ (b1 − c) < 0 and the coefficient of the
highest of y is −θb2

c
c2

< 0, then there exists a constant K2 such F � K2 in R2
+ .
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Therefore F � K′ , ∀(x,y) ∈ R2
+ , where F ′ = min{K1,K2} . Hence we have LV �

K′ −V . Substituting this into (3) yields

dV � (K′ −V)dt + θσ1(x− x∗)xθ−1dB1(t)+
c
c2

θσ2(y− y∗)yθ−1dB2(t). (4)

From (4) and once again by Itô formula, we obtain

d[etV ] = et(Vdt +dV) � K′etdt + etθσ1(x− x∗)xθ−1dB1(t)

+ et c
c2

θσ2(y− y∗)yθ−1dB2(t).

Taking expectation of both side of the above inequality, we get etEV �V
(
x(0),y(0)

)
+

K′et . This implies that
lim

t→+∞
supEV � K′.

On the other hand, we deduce |X |2 � 2max{x,y} . Thus |X |θ � 2
θ
2 max{xθ ,yθ} �

2
θ
2 V . We have

lim
t→+∞

supE |X |θ � 2
θ
2 K′ � K.

Then, for any ε > 0, let H = K2

ε2 . By Chebyshev’s inequality, we attain P{|X |> H} �
E(
√

|X |)√
H

. Hence

lim
t→+∞

supP{|X | > H} � K√
H

= ε.

This means
lim

t→+∞
supP{|X | � H} � 1− ε. �

3. Analysis of model with G2
(
X(t)

)
THEOREM 5. For any initial value

(
x(0),y(0)

) ∈ R2
+ , there exists a unique pos-

itive solution
(
x(t),y(t)

)T ∈ R2
+ = {(x,y) ∈ R2 | x > 0,y > 0} for the model with

G2
(
X(t)

)
on t � 0 and the solution will remain in R2

+ with probability 1 i.e.,
(
x(t),y(t)

)T
∈ R2

+ for all t � 0 .

Proof. Define a C2 -function V : R2
+ → R+ by V (x,y) = x

1
2 − 1

2 − 1
2 lnx+y

1
2 − 1

2 −
1
2 lny . By the famous Itô formula, we compute

LV =
1
2
x−1(x

1
2 −1)x(a1−b1x− c1y)+

1
2
x−2
(
− 1

2
x

1
2 +1

)
σ2

1 x2(x− x∗)2

2

+
1
2
y−1(y

1
2 −1)y(a2−b2y+ c2x)+

1
2
y−2
(
− 1

2
y

1
2 +1

)
σ2

2 y2(y− y∗)2

2
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=
1
2
(x

1
2 −1)(a1−b1x− c1y)+

1
4

(
− 1

2
x

1
2 +1

)
σ2

1 (x− x∗)2

+
1
2
(y

1
2 −1)(a2−b2y+ c2x)+

1
4

(
− 1

2
y

1
2 +1

)
σ2

2 (y− y∗)2

= −σ2
1

8
x

5
2 +

σ2
1

4
x2 +

(
σ2

1 x∗

4
− b1

2

)
x

3
2 +
(

b1

2
− σ2

1 x∗

2
− c2

2

)
x

+
(

a1

2
− σ2

1 (x∗)2

8

)
x

1
2 − σ2

2

8
y

5
2 +

σ2
2

4
y2 +

(
σ2

2 y∗

4
− b2

2

)
y

3
2

+
(

b2

2
− σ2

2 y∗

2
+

c2

2

)
y+
(

a2

2
− σ2

2 (y∗)2

8

)
y

1
2

+
c2

2
xy

1
2 − c1

2
x

1
2 y+

σ2
1 (x∗)2

4
+

σ2
2 (y∗)2

4
− a1

2
− a2

2
.

The coefficient of the highest term of x is −σ2
1
8 < 0 and the coefficient of the

highest term of y is −σ2
2
8 < 0, therefore there exists a constant K such that LV (x,y) �

K for all
(
x(t),y(t)

) ∈ R2
+ . By virtue of the similar proof of [Theorem 2.1] of [32], we

complete the proof. �

THEOREM 6. If σ2
1 < 2b1

x∗ and σ2
2 < 2b2

y∗ , then the equilibrium solution (x∗,y∗) of

the model with G2
(
X(t)

)
is globally asymptotically stable.

Proof. Define a C2 -function V : R2
+ → R+ by V (x,y) = x− x∗ − x∗ ln x

x∗ + (y−
y∗ − y∗ ln y

y∗ )
c1
c2

. In view of Itô formula, we get

LV = (x− x∗)(a1−b1x− c1y)+
σ2

1 x∗

2
(x− x∗)2

+(y− y∗)(a2−b2y+ c2x)
c1

c2
+

σ2
2 y∗

2
(y− y∗)2 c1

c2

= (x− x∗)
[−b1(x− x∗)− c1(y− y∗)

]
+

σ2
1 x∗

2
(x− x∗)2

+(y− y∗)
[
c2(x− x∗)−b2(y− y∗)

]c1

c2
+

σ2
2 y∗

2
(y− y∗)2 c1

c2

= −
(

b1− σ2
1 x∗

2

)
(x− x∗)2− c1

c2

(
b2− σ2

2 y∗

2

)
(y− y∗)2.

Therefore LV is negative definite. The equilibrium solution (x∗,y∗) of the model
G2
(
X(t)

)
is globally asymptotically stable. �

THEOREM 7. Suppose that b1 − x∗σ2
1

2 > 0 and b2 − y∗σ2
2

2 > 0 hold. Then the
solution

(
x(t),y(t)

)
of the system with G2

(
X(t)

)
is positively recurrent.



ASYMPTOTIC PROPERTIES OF STOCHASTIC PREY-PREDATOR MODELS 1097

Proof. Define V (x,y) = x−x∗−x∗ ln x
x∗ +(y−y∗−y∗ ln y

y∗ )
c1
c2

. D =
{
(x,y)∈ R2

+ |
1
N � x � N, 1

N � y � N
}

. Applying Itô formula, we get

LV = (x− x∗)(a1−b1x− c1y)+
σ2

1 x∗

2
(x− x∗)2

+(y− y∗)(a2−b2y+ c2x)
c1

c2
+

σ2
2 y∗

2
(y− y∗)2 c1

c2

= (x− x∗)
[−b1(x− x∗)− c1(y− y∗)

]
+

σ2
1 x∗

2
(x− x∗)2

+(y− y∗)
[
c2(x− x∗)−b2(y− y∗)

]c1

c2
+

σ2
2 y∗

2
(y− y∗)2 c1

c2

= −
(

b1− σ2
1 x∗

2

)
(x− x∗)2− c1

c2

(
b2− σ2

2 y∗

2

)
(y− y∗)2.

When (x,y) → (0,0) , we obtain

LV = −
(

b1− σ2
1 x∗

2

)
(x∗)2 − c1

c2

(
b2− σ2

2 y∗

2

)
(y∗)2 < 0.

When x → 0 and y → +∞ , we have

LV = −
(

b1− σ2
1 x∗

2

)
(x∗)2− c1

c2

(
b2− σ2

2 y∗

2

)
(y− y∗)2 →−∞.

When x → +∞ and y → 0, we deduce

LV = −
(

b1− σ2
1 x∗

2

)
(x− x∗)2 − c1

c2

(
b2− σ2

2 y∗

2

)
(y∗)2 →−∞.

When x → +∞ and y → +∞ , we attain

LV = −
(

b1− σ2
1 x∗

2

)
(x− x∗)2 − c1

c2

(
b2− σ2

2 y∗

2

)
(y− y∗)2 →−∞.

Therefore, for (x,y) ∈ Dc , LV < 0. Using the similar proof of [Theorem 3.26]
of [31], it is a sufficient and necessary condition for positive recurrence. The proof is
complete. �

THEOREM 8. If a1− σ2
1 (x∗)2

2 < 0 and b1−σ2
1 x∗ > 0 . Then the species x(t) of the

model with G2
(
X(t)

)
will go to extinction almost surely. In addition, if a2− σ2

2 (y∗)2
2 < 0

and species y(t) goes extinct, given that species x(t) goes extinct.

Proof. Applying Itô formula, we have

d lnx =
(

a1−b1x− c1y− σ2
1 (x− x∗)2

2

)
dt + σ1(x− x∗)dB1(t)

�
(

a1−b1x+ σ2
1 x∗x− σ2

1 (x∗)2

2

)
dt− σ2

1 x2

2
dt + σ1xdB1(t)−σ1x

∗dB1(t).
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That is to say,

lnx(t) � lnx(0)+
∫ t

0

(
a1−b1x+ σ2

1 x∗x− σ2
1 (x∗)2

2

)
ds−

∫ t

0

σ2
1 x2

2
ds+M−M1 (5)

where M =
∫ t
0 σ1xdB1(s) and M1 =

∫ t
0 σ1x∗dB1(s) , whose quadratic variation is

〈M,M〉 =
∫ t

0
σ2

1 x2ds.

By virtue of the exponential martingale inequality, for any positive constant T , α , β ,
we obtain

P

{
sup

0�t�T

[
M− α

2
〈M,M〉

]
> β

}
� e−αβ .

Choose T = n , α = 1, β = 2lnn , we get

P

{
sup

0�t�T

[
M− 1

2
〈M,M〉

]
> 2lnn

}
� 1

n2 .

An application of Borel-Cantelli lemma yields that for almost all ω ∈ Ω , there is a
random integer n0 = n0(ω) such that for n � n0 ,

sup
0�t�T

[
M− 1

2
〈M,M〉

]
� 2lnn.

That is to say

M � 2lnn+
1
2
〈M,M〉 = 2lnn+

1
2

∫ t

0

σ2
1 x2

2
ds

for all 0 � t � n , n � n0 . Substituting the above inequality into (5) leads to

lnx(t)− lnx(0) �
(

a1− σ2
1 (x∗)2

2

)
t− (b1−σ2

1 x∗)
∫ t

0
xds+2lnn−M1.

In other words, we have already shown that for 0 < n−1 � t � n ,

lnx(t)− lnx(0)
t

�
(

a1− σ2
1 (x∗)2

2

)
− (b1−σ2

1 x∗)
1
t

∫ t

0
xds+

2lnn
n−1

− M1

t
. (6)

From the strong law of large number, we get

lim
t→+∞

M1

t
= 0. (7)

Substituting (7) into (6), we deduce

lim
t→+∞

sup
lnx
t

� a1− σ2
1 (x∗)2

2
− (b1−σ2

1 x∗)
1
t

∫ t

0
xds < 0.
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That is to say
lim

t→+∞
x(t) = 0.

Using Itô formula on the second equation of the model with G2
(
X(t)

)
, we have

d lny =
(

a2−b2y+ c2x− σ2
2 (y− y∗)2

2

)
dt + σ2(y− y∗)dB2(t)

�
(

a2 + c2x− σ2
2 (y∗)2

2

)
dt− σ2

2 y2

2
dt + σ2ydB2(t)−σ2y

∗dB2(t).

Using the similar method above, we can get

lny(t)− lny(0)
t

�
(

a2− σ2
2 (y∗)2

2

)
+

1
t

∫ t

0
c2xds− M2

t
(8)

where M2 =
∫ t
0 σ2y∗dB2(s) . From the strong law of large number, we obtain

lim
t→+∞

M2

t
= 0. (9)

Substituting (9) into (8) and using the fact that limt→+∞ x(t) = 0, we attain

lim
t→+∞

sup
lny
t

� a2− σ2
2 (y∗)2

2
< 0.

That is to say, under the premise of species x(t) extinction, species y(t) is also extinct

if a2− σ2
2 (y∗)2

2 < 0. We complete the proof. �

THEOREM 9. The system with G2
(
X(t)

)
is stochastically ultimately bounded for

any initial value
(
x(0),y(0)

) ∈ R2
+ .

Proof. We first claim that there is a positive constant K = K(θ ) , which is inde-
pendent of the initial value

(
x(0),y(0)

)
, such that the solution X = (x,y) of the system

with G2
(
X(t)

)
has the property that

lim
t→+∞

supE |x|θ � K.

Define V = xθ + yθ . It follows from Itô formula that

dV =
[

θxθ (a1−b1x− c1y)− θ (1−θ )
2

σ2
1 xθ (x− x∗)2 + θyθ (a2−b2y+ c2x)

− θ (1−θ )
2

σ2
2 yθ (y− y∗)2

]
dt + θσ1(x− x∗)xθ dB1(t)+ θσ2(y− y∗)yθ dB2(t).

(10)
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Denote

LV = θxθ (a1−b1x− c1y)− θ (1−θ )
2

σ2
1 xθ (x− x∗)2

+ θyθ (a2−b2y+ c2x)− θ (1−θ )
2

σ2
2 yθ (y− y∗)2

� θa1x
θ + θa2y

θ + θc2x
θ y− θ (1−θ )

2
σ2

1 xθ (x− x∗)2 − θ (1−θ )
2

σ2
2 yθ (y− y∗)2

� F −V

where

F = θa1x
θ + θa2y

θ + θc2x
θ y+ xθ + yθ

− θ (1−θ )
2

σ2
1 xθ (x− x∗)2 − θ (1−θ )

2
σ2

2 yθ (y− y∗)2.

Since the coefficient of the highest of x is − θ(1−θ)
2 < 0 and the coefficient of the

highest of y is − θ(1−θ)
2 < 0, then there exists a constant K′ such F � K′ in R2

+ .
Hence we have LV � K′ −V . Substituting this into (10) yields

dV � (K′ −V)dt + θσ1(x− x∗)xθ dB1(t)+ θσ2(y− y∗)yθ dB2(t). (11)

From (11) and once again by Itô formula, we get

d[etV ] = et(Vdt +dV) � K′etdt + etθσ1(x− x∗)xθ dB1(t)+ etθσ2(y− y∗)yθ dB2(t).

Taking expectation of both side of the above inequality, we get etEV �V
(
x(0),y(0)

)
+

K′et . This implies that

lim
t→+∞

supEV � K′.

On the other hand, we deduce |X |2 � 2max{x,y} . Thus |X |θ � 2
θ
2 max{xθ ,yθ} �

2
θ
2 V . We have

lim
t→+∞

supE |X |θ � 2
θ
2 K′ � K.

Then, for any ε > 0, let H = K2

ε2 . By Chebyshev’s inequality, we attain P{|X |> H} �
E(
√

|X |)√
H

. Hence

lim
t→+∞

supP{|X | > H} � K√
H

= ε.

This means

lim
t→+∞

supP{|X | � H} � 1− ε. �
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4. Analysis of model with G3
(
X(t)

)
THEOREM 10. For any initial value

(
x(0),y(0)

) ∈ R2
+ , there exists a unique pos-

itive solution
(
x(t),y(t)

)T ∈ R2
+ =

{
(x,y) ∈ R2 | x > 0,y > 0

}
for the model with

G3
(
X(t)

)
on t � 0 and the solution will remain in R2

+ with probability 1 i.e.,
(
x(t),y(t)

)T
∈ R2

+ for all t � 0 a.s.

Proof. Since the coefficients of the equation are locally Lipschitz continuous, then
for any given initial value

(
x(0),y(0)

)∈ R2
+ , there is a unique local solution

(
x(t),y(t)

)
on t ∈ [0,τe] , where τe is the explosion time. To show this solution is global, we only
need to show that τe = ∞ . Define the stopping times

τ+ = inf
{
t ∈ [0,τe] : P(x(t)) � 0 or P(y(t)) � 0

}
.

We have τ+ � τe . By the way, if τ+ = ∞ a.s., then τe = ∞ a.s.
Assume that τ+ < ∞ , then there exists a T > 0 such that P(τ+ < T ) > 0. Define

a C2 -function V : R2
+ → R+ by V (x,y) = x− x∗ − x∗ ln x

x∗ + (y− y∗ − y∗ ln y
y∗ )

c1
c2

. It
follows from Itô formula that

V̇ =
(

1− x∗

x

)
(a1−b1x− c1y)x+ θ

(
1− y∗

y

)(
a2−b2y+ c2x

)
y

= (x− x∗)(a1−b1x− c1y)+ θ (y− y∗)
(
a2−b2y+ c2x

)
(12)

where θ = c1
c2

.
At the equilibrium point we have{

a1−b1x∗ − c1y∗ = 0,

a2−b2y∗ + c2x∗ = 0.
(13)

Substituting (13) into (12), we get

V̇ = (x− x∗)
[−b1(x− x∗)− c1(y− y∗)

]
+

c1

c2
(y− y∗)

[−b2(y− y∗)+ c2(x− x∗)
]

= −b1(x− x∗)2 −b2
c1

c2
(y− y∗)2

which follows that V̇ � 0. Then V̇ = 0 holds, only, if x = x∗,y = y∗ . Therefore

dV =
[
V̇ +

1
2

σ2
1 x∗(y− y∗)2 +

1
2

σ2
2 y∗(x− x∗)2 c1

c2

]
dt

+ σ1(x− x∗)(y− y∗)dB1(t)+ σ(y− y∗)(x− x∗)
c1

c2
dB2(t).

Integrating and using the fact that V̇ � 0, we obtain

V
(
x(t),y(t)

)
� V

(
x(0),y(0)

)
+

1
2

∫ t

0

[
x∗σ2

1 (y− y∗)2 + y∗σ2
2 (x− x∗)2 c1

c2

]
ds

+
∫ t

0
σ1(x− x∗)(y− y∗)dB1(s)+

∫ t

0
σ(y− y∗)(x− x∗)

c1

c2
dB2(s). (14)
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Note that some components of
(
x(τ+),y(τ+)

)
equal 0. Thereby

lim
t→τ+

V
(
x(t),y(t)

)
= ∞.

Extending t to τ+ in (14), we get

∞ � V
(
x(0),y(0)

)
+

1
2

∫ τ+

0

[
x∗σ2

1 (y− y∗)2 + y∗σ2
2 (x− x∗)2 c1

c2

]
ds

+
∫ τ+

0
σ1(x− x∗)(y− y∗)dB1(s)+

∫ τ+

0
σ(y− y∗)(x− x∗)dB2(s) < ∞.

That contradicts our assumption, So τ+ = ∞ a.s. By virtue of the similar proof of
[Theorem 3.3] of [23], we complete the proof. �

THEOREM 11. If b1 − c1y∗σ2
2

2c2
> 0 and b2

c1
c2
− x∗σ2

1
2 > 0 , then the equilibrium so-

lution (x∗,y∗) of the model with G2
(
X(t)

)
is globally asymptotically stable.

Proof. Define a C2 -function V : R2
+ → R+ by V (x,y) = x− x∗ − x∗ ln x

x∗ + (y−
y∗ − y∗ ln y

y∗ )
c1
c2

. In view of Itô formula, we get

LV = (x− x∗)(a1 −b1x− c1y)+
σ2

2 y∗

2
(x− x∗)2 c1

c2

+(y− y∗)(a2−b2y+ c2x)
c1

c2
+

σ2
1 x∗

2
(y− y∗)2

= (x− x∗)
[−b1(x− x∗)− c1(y− y∗)

]
+

σ2
2 y∗

2
(x− x∗)2 c1

c2

+
σ2

1 x∗

2
(y− y∗)2 +(y− y∗)

[
c2(x− x∗)−b2(y− y∗)

]c1

c2

= −
(

b1− c1y∗σ2
2

2c2

)
(x− x∗)2 −

(
b2

c1

c2
− x∗σ2

1

2

)
(y− y∗)2.

Therefore LV is negative definite. The equilibrium solution (x∗,y∗) of the model
G3
(
X(t)

)
is globally asymptotically stable. �

THEOREM 12. If a1 − σ2
1 (y∗)2

2 < 0 and c1 − y∗σ2
1 > 0 . Then the species x(t) of

the model with G3
(
X(t)

)
will go to extinction almost surely. In addition, under the

premise of species x(t) extinction, species y(t) is also extinct if a2− σ2
2 (x∗)2

2 < 0 .

Proof. Applying Itô formula, we have

d lnx =
(

a1−b1x− c1y− σ2
1 (y− y∗)2

2

)
dt + σ1(y− y∗)dB1(t)

�
(

a1− c1y+ σ2
1 y∗y− σ2

1 (y∗)2

2

)
dt− σ2

1 y2

2
dt + σ1ydB1(t)−σ1y

∗dB1(t).
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That is to say,

lnx(t) � lnx(0)+
∫ t

0

(
a1−c1y+σ2

1 y∗y− σ2
1 (y∗)2

2

)
ds−

∫ t

0

σ2
1 xy2

2
ds+M−M1 (15)

where M =
∫ t
0 σ1ydB1(s) and M1 =

∫ t
0 σ1y∗dB1(s) , whose quadratic variation is

〈M,M〉 =
∫ t

0
σ2

1 y2ds.

By virtue of the exponential martingale inequality, for any positive constant T , α , β ,
we get

P

{
sup

0�t�T

[
M− α

2
〈M,M〉

]
> β

}
� e−αβ .

Choose T = n , α = 1, β = 2lnn , we obtain

P

{
sup

0�t�T

[
M− 1

2
〈M,M〉

]
> 2lnn

}
� 1

n2 .

An application of Borel-Cantelli lemma yields that for almost all ω ∈ Ω , there is a
random integer n0 = n0(ω) such that for n � n0 ,

sup
0�t�T

[
M− 1

2
〈M,M〉

]
� 2lnn.

That is to say

M � 2lnn+
1
2
〈M,M〉 = 2lnn+

1
2

∫ t

0

σ2
1 y2

2
ds

for all 0 � t � n , n � n0 . Substituting the above inequality into (15) leads to

lnx(t)− lnx(0) �
(

a1− σ2
1 (y∗)2

2

)
t− (c1−σ2

1 y∗)
∫ t

0
yds+2lnn−M1.

In other words, we have already shown that for 0 < n−1 � t � n ,

lnx(t)− lnx(0)
t

�
(

a1− σ2
1 (y∗)2

2

)
− (c1−σ2

1 y∗)
1
t

∫ t

0
yds+

2lnn
n−1

− M1

t
. (16)

From the strong law of large number, we deduce

lim
t→+∞

M1

t
= 0. (17)

Substituting (17) into (16), we attain

lim
t→+∞

sup
lnx
t

�
(

a1− σ2
1 (y∗)2

2

)
− (c1−σ2

1 y∗)
1
t

∫ t

0
yds < 0.
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That is to say
lim

t→+∞
x(t) = 0.

Applying Itô formula to the second formula of the model with G3
(
X(t)

)
, we have

d lny =
(

a2−b2y+ c2x− σ2
2 (x− x∗)2

2

)
dt + σ2(x− x∗)dB2(t)

�
(

a2 + c2x− x∗σ2
2 x− σ2

2 (x∗)2

2

)
dt− σ2

2 x2

2
dt + σ2xdB2(t)−σ2x

∗dB2(t).

Using the similar method above, we can get

lny(t)− lny(0)
t

�
(

a2− σ2
2 (x∗)2

2

)
+

1
t

∫ t

0
(c2− x∗σ2

2 )xds− M2

t
(18)

where M2 =
∫ t
0 σ2x∗dB2(s) . From the strong law of large number, we attain

lim
t→+∞

M2

t
= 0. (19)

Substituting (19) into (18) and using the fact that limt→+∞ x(t) = 0, we deduce

lim
t→+∞

sup
lny
t

� a2− σ2
2 (x∗)2

2
< 0.

That is to say, if a2− σ2
2 (x∗)2

2 < 0 and species y(t) goes extinct, given that species x(t)
goes extinct. �

THEOREM 13. Suppose that b1− c1y
∗σ2

2
2c2

> 0 and b2c1
c2

− x∗σ2
1

2 > 0 hold. Then the

solution
(
x(t),y(t)

)
of the system with G2

(
X(t)

)
is positively recurrent.

Proof. Define V (x,y) = x−x∗−x∗ ln x
x∗ +(y−y∗−y∗ ln y

y∗ )
c1
c2

. D =
{
(x,y)∈ R2

+ |
1
N � x � N, 1

N � y � N
}

. Applying Itô formula, we have

LV = (x− x∗)(a1 −b1x− c1y)+
σ2

2 y∗

2
(x− x∗)2 c1

c2

+(y− y∗)(a2−b2y+ c2x)
c1

c2
+

σ2
1 x∗

2
(y− y∗)2

= (x− x∗)
[−b1(x− x∗)− c1(y− y∗)

]
+

σ2
2 y∗

2
(x− x∗)2 c1

c2

+
σ2

1 x∗

2
(y− y∗)2 +(y− y∗)

[
c2(x− x∗)−b2(y− y∗)

]c1

c2

= −
(

b1− c1y∗σ2
2

2c2

)
(x− x∗)2 −

(
b2c1

c2
− x∗σ2

1

2

)
(y− y∗)2.
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When (x,y) → (0,0) , we have

LV = −
(

b1− c1y∗σ2
2

2c2

)
(x∗)2−

(
b2c1

c2
− x∗σ2

1

2

)
(y∗)2 < 0.

When x → 0 and y → +∞ , we get

LV = −
(

b1− c1y∗σ2
2

2c2

)
(x∗)2 −

(
b2c1

c2
− x∗σ2

1

2

)
(y− y∗)2 →−∞.

When x → +∞ and y → 0, we obtain

LV = −
(

b1− c1y∗σ2
2

2c2

)
(x− x∗)2−

(
b2c1

c2
− x∗σ2

1

2

)
(y∗)2 →−∞.

When x → +∞ and y → +∞ , we deduce

LV = −
(

b1− c1y∗σ2
2

2c2

)
(x− x∗)2−

(
b2c1

c2
− x∗σ2

1

2

)
(y− y∗)2 →−∞.

Therefore, for (x,y) ∈ Dc , LV < 0. Using the similar proof of [Theorem 3.26] of
[31], it is a sufficient and necessary condition for positive recurrence. The proof is
complete. �

THEOREM 14. The system with G3
(
X(t)

)
is stochastically ultimately bounded

for any initial value
(
x(0),y(0)

) ∈ R2
+ .

Proof. We first claim that there is a positive constant K = K(θ ) , which is inde-
pendent of the initial value

(
x(0),y(0)

)
, such that the solution X = (x,y) of the system

with G3
(
X(t)

)
has the property that

lim
t→+∞

supE |x|θ � K.

Define V = xθ + yθ . It follows from Itô formula that

dV =
[

θxθ (a1−b1x− c1y)− θ (1−θ )
2

σ2
1 xθ (y− y∗)2

+ θyθ (a2−b2y+ c2x)− θ (1−θ )
2

σ2
2 yθ (x− x∗)2

]
dt

+ θσ1(y− y∗)xθ dB1(t)+ θσ2(x− x∗)yθ dB2(t). (20)

Denote

LV = θxθ (a1−b1x− c1y)− θ (1−θ )
2

σ2
1 xθ (y− y∗)2

+ θyθ (a2−b2y+ c2x)− θ (1−θ )
2

σ2
2 yθ (x− x∗)2

� θa1x
θ + θa2y

θ + θc2xy
θ − θ (1−θ )

2
σ2

1 xθ (y− y∗)2 − θ (1−θ )
2

σ2
2 yθ (x− x∗)2

� F −V
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where

F = (θa1 +1)xθ +(θa2 + θc2x+1)yθ

− θ (1−θ )
2

σ2
1 xθ (y− y∗)2− θ (1−θ )

2
σ2

2 yθ (x− x∗)2.

Note that F is bounded in R2
+ , then there exists a constant K′ such F � K′ Hence we

have
LV � K′ −V.

Substituting this into model (20) yields

dV � (K′ −V)dt + θσ1(y− y∗)xθ dB1(t)+ θσ2(x− x∗)yθ dB2(t). (21)

From (21) and once again by Itô formula, we get

d[etV ] = et(Vdt +dV) � K′etdt + etθσ1(y− y∗)xθ dB1(t)+ etθσ2(x− x∗)yθ dB2(t).

Taking expectation of both side of the above inequality, we get etEV �V
(
x(0),y(0)

)
+

K′et . This implies that
lim

t→+∞
supEV � K′.

On the other hand, we deduce |X |2 � 2max{x,y} . Thus |X |θ � 2
θ
2 max{xθ ,yθ} �

2
θ
2 V . We have

lim
t→+∞

supE |X |θ � 2
θ
2 K′ � K.

Then, for any ε > 0, let H = K2

ε2 . By Chebyshev’s inequality, we attain P{|X |> H} �
E(
√

|X |)√
H

. Hence

lim
t→+∞

supP{|X | > H} � K√
H

= ε.

This means
lim

t→+∞
supP{|X | � H} � 1− ε. �

5. Numerical simulations

In this section we provide numerical simulation results to substantiate the analyti-
cal findings for the stochastic model system reported in the previous sections. We will
use Milstein’s Method to illustrate our results [33].

For the stochastic model with G1
(
X(t)

)
, we consider the following discretized

equations:⎧⎨
⎩

xk+1 = xk + xk
(
a1−b1xk − c1yk

)
Δt + σ1(xk − x∗)

√
Δtξk + σ2

1
2 (xk − x∗)2(ξ 2

k −1)Δt,

yk+1 = yk + yk
(
a2−b2yk + c2xk

)
Δt + σ2(yk − y∗)

√
Δtηk + σ2

2
2 (yk − y∗)2(η2

k −1)Δt.
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where ξk and ηk , k = 1,2, . . . ,n are two independent Gaussian random variables that
follow N(0,1) .

In fig: 1, to ensure that σ1 �
√

2b1
x∗ and σ2 �

√
2b2
y∗ hold, we select σ1 = 0.02 and

σ2 = 0.02, then we obtain the existence and uniqueness of the solution for the model
with G1

(
X(t)

)
. In Theorem 2, after computing the bounds of the noise intensities√

−2Â = 0.3216 and
√
−2D̂ = 0.3613, we choose σ1 = 0.3 and σ2 = 0.3. Then the

stability of equilibrium points E2 and E∗ are drawn in fig: 3 and fig: 4 respectively.
For the axial equilibrium point E1 , we choose σ1 = 0.15 and σ2 = 0.15, the fig: 2
shows that the axial equilibrium point E1 is stable. The positive recurrence conditions
prescribed in Theorem 3 are sufficient conditions, we choose σ1 = 0.2 and σ2 = 0.2 to

ensure that σ1 �
√

2b1
x∗ and σ2 �

√
2b2
y∗ are established, which can be seen in the fig:

5. fig: 6 shows that the system with G1
(
X(t)

)
is stochastically ultimately bounded.

Figure 1: The existence and uniqueness of
solution of the system with G1

(
X(t)

) Figure 2: Globally asymptotically stability of
the system with G1

(
X(t)

)
at point E1

Figure 3: Globally asymptotic stability of
the system with G1

(
X(t)

)
at point E2

Figure 4: Globally asymptotic stability of the
system with G1

(
X(t)

)
at point E∗
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Figure 5: The positive recurrence of the
system with G1

(
X(t)

) Figure 6: The stochastic ultimate boun-
dedness of the system with G1

(
X(t)

)

Consider the discretized equations for model with G2
(
X(t)

)
:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xk+1 = xk + xk
(
a1−b1xk − c1yk

)
Δt

+σ1xk(xk − x∗)
√

Δtξk + σ2
1
2 [xk(xk − x∗)]2(ξ 2

k −1)Δt,

yk+1 = yk + yk
(
a2−b2yk + c2xk

)
Δt

+σ2yk(yk − y∗)
√

Δtηk + σ2
2
2 [yk(yk − y∗)]2(η2

k −1)Δt

where ξk and ηk , k = 1,2, . . . ,n are two independent Gaussian random variables that
follow N(0,1) .

In view of Theorem 5, if we choose σ1 = 0.8, σ2 = 0.8, then the solution of the
model with G2

(
X(t)

)
exists and is unique. To guarantee the conditions σ2

1 < 2b1x∗

and σ2
2 < 2b2y∗ are satisfied, we let σ1 = 0.25 and σ2 = 0.25. Hence the asymptotic

stability are obtained. fig: 8 confirms the conclusion. In fig: 9, we choose σ1 = 0.15,

σ2 = 0.1. Then it is easy to obtain b1 − x∗σ2
1

2 > 0 and b2 − y∗σ2
2

2 > 0. If we choose

σ1 = 1.6, then the first conditions a1 − σ2
1 (x∗)2

2 < 0 and b1 −σ2
1 x∗ > 0 of Theorem 8

will be valid. As a result, prey population goes to extinction and extinction time for this

simulation is 125. Again for σ2 = 1.4, second condition a2− σ2
2 (y∗)2

2 < 0 of Theorem
8 is valid and as a result predator population goes to extinction as depicted in fig: 10.
Fig: 11 shows that the system with G2

(
X(t)

)
is stochastically ultimately bounded.

Let us now turn to model with G3
(
X(t)

)
, consider the discretized equations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xk+1 = xk + xk
(
a1−b1xk − c1yk

)
Δt

+σ1xk(yk − y∗)
√

Δtξk + σ2
1
2 [xk(yk − y∗)]2(ξ 2

k −1)Δt,

yk+1 = yk + yk
(
a2−b2yk + c2xk

)
Δt

+σ2yk(xk − x∗)
√

Δtηk + σ2
2
2 [yk(xk − x∗)]2(η2

k −1)Δt

where ξk and ηk , k = 1,2, . . . ,n are two independent Gaussian random variables that
follow N(0,1) .
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Figure 7: The existence and uniqueness of
solution of the system with G2

(
X(t)

) Figure 8: Globally asymptotic stability of the
system with G2

(
X(t)

)

Figure 9: The positive recurrence of the
system with G2

(
X(t)

) Figure 10: The extinction of the system with
G2
(
X(t)

)

Figure 11: The stochastic ultimate bounded-
ness of the system with G2

(
X(t)

) Figure 12: The existence and uniqueness of
solution of the system with G3

(
X(t)

)

For numerical simulation of the Theorem 10, we choose the parameters σ1 = 0.04
and σ2 = 0.035. We use different values of σ1 and σ2 in order to understand their
role on the dynamics. fig: 12 shows that the solution of the model with G3

(
X(t)

)
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exists and is unique. To demonstrate the the environmental effect on the equilibrium
(x∗,y∗) of the model with G3

(
X(t)

)
, we consider the environmental forcing intensities

as σ1 = 0.9 and σ2 = 1.2 so that this values satisfy the conditions b1− c1y
∗σ2

2
2c2

> 0 and

b2
c1
c2
− x∗σ2

1
2 > 0. fig: 13 confirms this. fig: 16 shows that the system with G3

(
X(t)

)
is stochastically ultimately bounded. If we choose σ1 = 1.25, then the first conditions

a1 − σ2
1 (y∗)2

2 < 0 and c1 − y∗σ2
1 > 0 of Theorem 12 will be valid. As a result, prey

population goes to extinction and extinction time for this simulation is 125. Again for

σ2 = 1.6, second condition a2 − σ2
2 (y∗)2

2 < 0 of Theorem 12 is valid and as a result
predator population goes to extinction as depicted in fig: 14. Finally, we choose σ1 =
1.1 and σ2 = 1.5 such that both conditions required for positive recurrence are satisfied.

Figure 13: Globally asymptotic stability of
the system with G3

(
X(t)

) Figure 14: The extinction of the system with
G3
(
X(t)

)

Figure 15: The positive recurrence of the
system with G3

(
X(t)

) Figure 16: The stochastic ultimate bounded-
ness of the system with G3

(
X(t)

)
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perturbations and Lévy jumps, Communications in Nonlinear Science and Numerical Simulation., 78,
(2019), 104851.

[28] L. ZU, D. Q. JIANG, D. O’REGAN AND B. GE, Periodic solution for a non-autonomous Lotka-
Volterra predator-prey model with random perturbation, Journal of Mathematical Analysis and Appli-
cations., 430, (2015), 428–437.

[29] R. RUDNICKI AND K. PICHOR, Influence of stochastic perturbation on prey-predator systems, Math-
ematical Biosciences., 206, (2007), 108–119.

[30] Q. LIU AND Q. M. CHEN, Asymptotic behavior of a stochastic non-autonomous predator-prey system
with jumps, Applied Mathematics and Computation., 217, (2015), 418–428.

[31] G. G. YIN AND C. ZHU, Hybrid switching diffusions: properties and applications, Springer, New
York, 2010.

[32] X. R. MAO, G. MARION AND E. RENSHAW, Environmental brownian noise suppresses explosions
in population dynamics, Stochastic Process and their Applications., 97, (2002), 95–110.

[33] D. J. HIGHAM, An algorithmic introduction to numerical simulation of stochastic differential equa-
tions, Siam Review., 43, (2001), 526–546.

(Received December 19, 2022) Guangbin Wang
Department of Mathematics

Harbin Institute of Technology (Weihai)
Weihai 264209, P. R. China

Jingliang Lv
Department of Mathematics

Harbin Institute of Technology (Weihai)
Weihai 264209, P. R. China
e-mail: ljl3188@163.com

Xiaoling Zou
Department of Mathematics

Harbin Institute of Technology (Weihai)
Weihai 264209, P. R. China

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


