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Abstract. The main result of this paper presents a series expansion of the generalized Mathieu
series Sm(r) with computable coefficients. This generalizes Elbert’s work from m = 1 to arbi-
trary m ∈ Z>0 , and provides a method for calculating the asymptotic formula of Sm(r) within
a given error. Moreover, this paper revises an integral representation for Sm(r) given by Cerone
and Lenard.

1. Introduction

Let μ ,r ∈ R>0 . The generalized Mathieu series is defined as

Sμ(r) =
∞

∑
n=1

2n
(n2 + r2)μ+1 .

When μ = 1, the classical Mathieu series S1(r) was first introduced by Math-
ieu in his work on elasticity of solid bodies [19]. Since then, Mathieu series have
been extensively applied in mathematics and physics. The Mathieu series and their
generalizations involve in the solution of the biharmonic equation in a rectangular
plate [24], the solution of some linear ordinary differential equations [4] and Fred-
holm integral equation with nondegenerate kernel [11]. Meanwhile, the Mathieu series
have close connection with Riemann zeta-function [6], Hurwitz zeta-function [7] and
the Schlomilch series [14]. More applications of the Mathieu series can be found in
reference [21, 22, 16, 15].

During the past decades, a number of research efforts are dedicated to the estima-
tion of Mathieu series. When μ = 1, Diananda [9] obtained that

1
r2 −

5
16r4 < S1(r) <

1
r2 − 1

(2r2 +2r+1)(8r2 +5r+3)
. (1)

This inequality improves the bound estimate of S1(r) given by [18, 3, 8], and implies
that there exists the following asymptotic representation for S1(r) as r tends to infinity.

S1(r) =
1
r2 +

c
r4 +O

(
1
r6

)
,
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where c is a constant with −5/16 < c < −1/16. Inspired by (1), Elbert [12] derived
the asymptotic expansion for S1(r) as follow

S1(r) ∼
∞

∑
i=0

(−1)i B2i

r2i+2 , (2)

where f (r) ∼ g(r) denotes limr→∞
f (r)
g(r) = 1, and Bi denotes the Bernoulli numbers.

B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, B6 = 1/42, . . . , B3 = B5 = . . . = 0.
Alzer et al. [1] obtained the bound estimate of S1(r) as follow

1
r2 +1/2ζ (3)

< S1(r) <
1

r2 +1/6
, (3)

and showed that 1/2ζ (3) and 1/6 are the best constants in the above kind of two-sided
inequality, where ζ (k) denotes the Riemann zeta-function. Lin [17] considered the tails
of S1(r) and obtained a slightly more accurate estimation than (3) when k � r > 2.

For m ∈ Z>0 , Diananda [10] estimated that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Sm(r) <
1

2m

{
1
m

+
m−2

2(m+2)
1
r2 +

m2 +5m+2
8(m+2)

1
r4

}
, for r > 0,

Sm(r) >
1

r2m+1

(
1− 1

4r2

)m

(
1+ 1

2r

)m − (
1− 1

2r

)m , for r > 1
2 ,

(4)

which implies that Sm can be bounded by the linear combination of r−i(i ∈ Z�2) .
Based on formula (4), researchers focus on the asymptotic expansions for Sm(r)

via r−i . Cerone [5] and Tomovski [25] estimated bounds for Sm(r) in terms of the
Gamma function respectively. Zastavnyi [27] proved an asymptotic relation for a more
general Mathieu series via Bernoulli polynomials and Gamma function. For Sm(r) , the
above Bernoulli polynomial can be reduced to Bernoulli number as r tends to infinity,
while the Gamma function still remains [27]. It should be noted that all of the above
asymptotic results for Sm(r) are based on the Gamma function.

When considering the expansions for Sm(r) via ri , it is easy to show that Sm(r)
has the Maclaurin expansion [6].

Sm(r) = 2 ∑
n�0

(−1)n
(

m+n
n

)
ζ (2m+2n+1)r2n, for |r| < 1. (5)

Although (5) gave an expansion for Sm(r) , the exact values of the coefficients are hard
to calculate since there are infinite many ζ (s) be irrational number if s is odd [23].

Inspired by the previous works, the main purpose of this paper is to find the asymp-
totic expansion for Sm(r) with computable coefficients.

THEOREM 1.1. For m ∈ Z>0 , we have

Sm(r) ∼ 1
m!

∞

∑
i=0

(−1)i(i+m−1)!B2i

i!
· 1
r2m+2i .
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The asymptotic expansion in Theorem 1.1 eliminates the Gamma function. Thus,
it presents a explicit result for the series expansion of the generalized Mathieu series
with numerical coefficients, since the Bernoulli numbers in even subscripts are com-
putable. On the one hand, Theorem 1.1 generalizes Elbert’s work [12] from m = 1 to
m ∈ Z>0 , including (2) as a special case when m = 1. On the other hand, Theorem 1.1
provides a method for calculating the asymptotic formula of Sm(r) within a given error.
For example, as r tends to infinity, we have the following asymptotic formulae.

S1(r) =
1
r2 − 1

6r4 −
1

30r6 −
1

42r8 −
1

30r10 −
5

66r12 +o
(
r−14) ,

S2(r) =
1

2r4 −
1

6r6 −
1

20r8 −
1

21r10 −
1

12r12 −
5

22r14 +o
(
r−16

)
,

S3(r) =
1

3r6 −
1

6r8 −
1

15r10 −
5

63r12 −
1

6r14 −
35

66r16 +o
(
r−18) ,

S4(r) =
1

4r8 −
1

6r10 −
1

12r12 −
5

42r14 −
7

24r16 −
35

33r18 +o
(
r−20) ,

S5(r) =
1

5r10 −
1

6r12 −
1

10r14 −
1

6r16 −
7

15r18 −
21

11r20 +o
(
r−22) ,

S6(r) =
1

6r12 −
1

6r14 −
7

60r16 −
2

9r18 −
7

10r20 −
35

11r22 +o
(
r−24) ,

S7(r) =
1

7r14 −
1

6r16 −
2

15r18 −
2

7r20 −
1

r22 −
5

r24 +o
(
r−26

)
,

S8(r) =
1

8r16 −
1

6r18 −
3

20r20 −
5

14r22 −
11

8r24 −
15

2r26 +o
(
r−28) ,

S9(r) =
1

9r18 −
1

6r20 −
1

6r22 −
55

126r24 −
11

6r26 −
65

6r28 +o
(
r−30) ,

S10(r) =
1

10r20 −
1

6r22 −
11

60r24 −
11

21r26 −
143

60r28 −
91

6r30 +o
(
r−32) .

For m > 10 or higher order of the remainder, similar asymptotic formulae for Sm(r)
can be deduced by Theorem 1.1.

Integral representation is another important research directions of Mathieu series.
An integral representation for S1(r) was presented by Emersleben [13] as

S1(r) =
1
r

∫ ∞

0

x
ex −1

sin(rx)dx. (6)

Inspired by (6), Tomovski and Trenčevski [26] obtained the integral representation for
Sm(r) as follow

Sm(r) =
2

(2r)mm!

∫ ∞

0

tm

et −1
cos

(mπ
2

− rt
)

dt

−2
m

∑
k=2

[
(k−1)(2r)k−2m−1

k!(m− k+1)

(−(m+1)
m− k

)

×
∫ ∞

0

tk cos
[π

2 (2m− k+1)− rt
]

et −1
dt

]
. (7)
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Milovanović and Pogány [20] obtained that

Sm(r) =
π
m

∫ ∞

0

∑
[m

2 ]
j=0(−1) j

(m
2 j

)(
r2− x2 + 1

4

)m−2 j
x2 j[(

x2− r2 + 1
4

)2 + r2
]m · dx

cosh2 πx
. (8)

Cerone and Lenard [6, p. 3, Thm. 2.1] investigated further integral representation for
Sμ(r) in terms of Gamma function and Bessel function, where μ ∈ R>0 . Based on
this result, they [6, p. 6, Thm. 2.5] gave an explicit representation for Sm(r) , where
m ∈ Z>0 . However, there is a mistake in the proof of the second result for Sm(r) .

In this paper, we will explain the mistake in the proof of [6, p. 6, Thm. 2.5] and
present the modified explicit integral representation for Sm(r) .

THEOREM 1.2. For m ∈ Z>0 , we have

Sm(r) =
1

22m−2r2m−1m

m−1

∑
k=0

(−1)[
k+1
2 ] ·2k · (2m−k−2

m−1

) · rk

k!
Ak(r),

where

Ak(r) =

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

0

xk+1

ex −1
cos(rx)dx, for k is odd,

∫ ∞

0

xk+1

ex −1
sin(rx)dx, for k is even.

Theorem 1.2 is a generalization of (6) given by Emersleben [13]. This result sim-
plifies the integral representation (7) given by Tomovski and Trenčevski [26], and (8)
given by Milovanović and Pogány [20].

2. Preliminaries

Let k be a non-negative integer. For the simplicity of description, we denote

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fk(x) =
xk

ex −1
, for k > 0,

Fk(r) =
∫ ∞

0

x
ex −1

(rx)k cos(rx)dx, for k > 0,

Gk(r) =
∫ ∞

0

x
ex −1

(rx)k sin(rx)dx, for k � 0.

(9)

Bernoulli numbers satisfy the series expansion

fk(x) =
∞

∑
n=0

Bn
xn+k−1

n!
, for |x| < 2π . (10)
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By equation (10) and L’Hospital’s rule, we have

lim
x→0

fk(x) =

{
B0, for k = 1,

0, for k > 1,
and lim

x→∞
fk(x) = 0.

For i,k ∈ Z>0 , we have

lim
x→0

f (i)
k (x) =

⎧⎨
⎩

0, for 0 � i < k−1,

i!Bi−k+1
(i−k+1)! , for k−1 � i,

(11)

and

lim
x→∞

f (i)
k (x) = 0, (12)

where f (i)
k (x) denotes the i-th derivative of fk(x) .

Based on the notations above, we give the relationship between Bernoulli numbers
and integral representations involving trigonometric function.

LEMMA 2.1. For i,k ∈ Z>0 , we have

lim
r→∞

∫ ∞

0
f (i)
k (x)sin(rx)dx = 0,

lim
r→∞

∫ ∞

0
f (i)
k (x)cos(rx)dx = 0.

Proof. Equation (11) and (12) implies that∫ ∞

0
f (i)
k (x)dx < ∞, for i,k ∈ Z>0.

Then, Lemma 2.1 holds by the Riemann-Lebesgue lemma. �

LEMMA 2.2. Let k ∈ Z>0 and s =
[

k+2
2

]
. The integration Fk(r) has the asymp-

totic expansion

Fk(r) ∼

⎧⎪⎨
⎪⎩

(−1)s ∑∞
i=0(−1)i (k+2i)!B2i

(2i)!r2i+1 , for k is odd,

(−1)s ∑∞
i=0(−1)i (k+2i+1)!B2i+1

(2i+1)!r2i+2 , for k is even.

Proof. Recall the notation in (9), we have

Fk(r) = rk
∫ ∞

0
fk+1(x)cos(rx)dx. (13)

Integrating by parts in (13), we have

Fk(r) = −rk−1
∫ ∞

0
f ′k+1(x)sin(rx)dx.
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By Lemma 2.1, denote

Ik,1(r) = r3−kFk(r) = −r2
∫ ∞

0
f ′k+1(x)sin(rx)dx.

Integrating twice by parts, we obtain

Ik,1(r) =
[
r f ′k+1(x)cos(rx)

]∞
0 − r

∫ ∞

0
f ′′k+1(x)cos(rx)dx

=

⎧⎨
⎩
−rB0 +

∫ ∞
0 f ′′′2 (x)sin(rx)dx, for k = 1,

∫ ∞
0 f ′′′k+1(x)sin(rx)dx, for k > 1.

Lemma 2.1 implies that

lim
r→∞

Ik,1(r) =

{
−r, for k = 1,

0, for k > 1.

First, we suppose k > 1 and let s =
[

k+2
2

]∈ Z>0 . Note that s is the largest integer
equal or less than k+2

2 . For 1 � t � s , we have

Ik,t(r) = r2t−k+1Fk(r) = (−1)t r2
∫ ∞

0
f (2t−1)
k+1 (x)sin(rx)dx.

The second equality holds by (11) and (12). For t = s , we obtain

Ik,s(r) = (−1)s−1
[
r f (2s−1)

k+1 (x)cos(rx)
]∞

0
− (−1)s−1r

∫ ∞

0
f (2s)
k+1 (x)cos(rx)dx

=

⎧⎪⎨
⎪⎩

(−1)s
[
r(2s−1)!B0−

∫ ∞
0 f (2s+1)

k+1 (x)sin(rx)dx
]
, for k is odd,

(−1)s
[
r(2s−1)!B1−

∫ ∞
0 f (2s+1)

k+1 (x)sin(rx)dx
]
, for k is even.

This implies,

Ik,s+1(r) =

⎧⎨
⎩

r2s−k+3Fk(r)+ (−1)s+1 · r3k!B0, for k is odd,

r2s−k+3Fk(r)+ (−1)s+1 · r3(k+1)!B1, for k is even,

= (−1)s+1r2
∫ ∞

0
f (2s+1)
k+1 (x)sin(rx)dx.

For t � s+1, we have

Ik,t(r) = r2t−k+1Fk(r)+ (−1)s+1r2t−2s+1gk,t(r)

= (−1)t r2
∫ ∞

0
f (2t−1)
k+1 (x)sin(rx)dx,
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where

gk,t(r) =

⎧⎪⎨
⎪⎩

k!B0− (k+2)!B2
2!r2

+ · · ·+(−1)t−s−1 (2t−3)!B(2t−k−3)
(2t−k−3)!r2t−k−3 , for k is odd,

(k+1)!B1− (k+3)!B3
3!r2

+ · · ·+(−1)t−s−1 (2t−3)!B(2t−k−3)
(2t−k−3)!r2t−k−4 , for k is even.

For t � s+1, we have

Ik,t(r) = (−1)t r2
∫ ∞

0
f (2t−1)
k+1 (x)sin(rx)dx

= (−1)t−1
[
r f (2t−1)

k+1 (x)cos(rx)
]∞

0
− (−1)t−1r

∫ ∞

0
f (2t)
k+1(x)cos(rx)dx

= (−1)t · r · (2t−1)!B2t−k−1

(2t− k−1)!
+(−1)t+1

∫ ∞

0
f (2t+1)
k+1 (x)sin(rx)dx. (14)

Equation (14) implies the error estimates

|Ik,t(r)| <
∣∣∣∣r · (2t−1)!B2t−k−1

(2t− k−1)!

∣∣∣∣+
∫ ∞

0

∣∣∣ f (2t+1)
k+1 (x)

∣∣∣dx

=
∣∣∣∣r · (2t−1)!B2t−k−1

(2t− k−1)!

∣∣∣∣+Mk,t ,

where Mk,t is a constant with respect to k and t . Hence, for t � s+1, we have

∣∣∣r2s−kFk(r)+ (−1)s+1gk,t(r)
∣∣∣ <

∣∣∣r · (2t−1)!B2t−k−1
(2t−k−1)!

∣∣∣+Mk,t

r2t−2s+1 ,

which implies

r2s−kFk(r) ∼ (−1)sgk,t(r).

When k is odd,

rFk(r) ∼ (−1)s
∞

∑
i=0

(−1)i (k+2i)!B2i

(2i)!r2i .

When k is even,

r2Fk(r) ∼ (−1)s
∞

∑
i=0

(−1)i (k+2i+1)!B2i+1

(2i+1)!r2i .

This proves Lemma 2.2 for k > 1.
For k = 1, suppose we have the relation

I1,t(r) = r2t−1
[
rF1(r)+B0− 3B2

r2 + · · ·+(−1)t
(2t−3)B2t−4

r2t−4

]

= (−1)t r2
∫ ∞

0
f (2t−1)
2 (x)sin(rx)dx, (15)
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for some t � 2. Then integration by parts yields again

I1,t(r) = (−1)t(2t−1)rB2t−2 +(−1)t+1
∫ ∞

0
f (2t+1)
2 (x)sin(rx)dx. (16)

Therefore

I1,t+1(r) = r2t+1
[
rF1(r)+B0− 3B2

r2 + · · ·+(−1)t+1 (2t−1)B2t−2

r2t−2

]

= (−1)t+1r2
∫ ∞

0
f (2t+1)
2 (x)sin(rx)dx.

Hence (15) is true for all t � 2. Relation (16) implies also the error estimate

|I1,t(r)| < |(2t−1)rB2t−2|+M1,t,

where M1,t is a constant with respect to t . Hence∣∣∣∣F1(r)+
B0

r
− 3B2

r3 + · · ·+(−1)t−2 (2t−3)rB2t−4

r2t−3

∣∣∣∣ <
|(2t−1)B2t−2|+M1,t

r2t .

This proves Lemma 2.2 for k = 1. �
Using a similar method, we can prove

LEMMA 2.3. Let k ∈ Z�0 and s =
[

k+1
2

]
. The integration Gk(r) has the asymp-

totic expansion

Gk(r) ∼

⎧⎪⎨
⎪⎩

(−1)s ∑∞
i=0(−1)i (k+2i+1)!B2i+1

(2i+1)!r2i+2 , for k is odd,

(−1)s ∑∞
i=0(−1)i (k+2i)!B2i

(2i)!r2i+1 , for k is even.

Proof. Integrating Gk(r) by parts, we have

Gk(r) = rk−1
∫ ∞

0
f ′k+1(x)cos(rx)dx.

Combining with Lemma 2.1 and integrating twice by parts, we have

Jk,1(r) = r3−kGk(r) = r2
∫ ∞

0
f ′k+1(x)cos(rx)dx

=
[
f ′′k+1(x)cos(rx)

]∞
0 −

∫ ∞

0
f ′′′k+1(x)cos(rx)dx,

and

lim
r→∞

Jk,1(r) = − lim
x→0

f ′′k+1(x) =

{
− 2B2−k

(2−k)! , for 0 � k � 2,

0, for 2 < k.
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First, we suppose k > 2. Let s =
[

k+1
2

] ∈ Z>0 . For 1 � t � s , we obtain

Jk,t(r) = r2t−k+1Gk(r) = (−1)t+1r2
∫ ∞

0
f (2t−1)
k+1 (x)cos(rx)dx. (17)

Equation (17) follows by (11) and (12). For t = s , we obtain

Jk,s(r) = (−1)s−1
[
f (2s)
k+1 (x)cos(rx)

]∞

0
− (−1)s−1

∫ ∞

0
f (2s+1)
k+1 (x)cos(rx)dx

=

⎧⎪⎨
⎪⎩

(−1)s
[
(k+1)!B1 +

∫ ∞
0 f (2s+1)

k+1 (x)cos(rx)dx
]
, for k is odd,

(−1)s
[
k!B0 +

∫ ∞
0 f (2s+1)

k+1 (x)cos(rx)dx
]
, for k is even.

This implies,

Jk,s+1(r) =

⎧⎨
⎩

r2s−k+3Gk(r)+ (−1)s+1 · r2(k+1)!B1, for k is odd,

r2s−k+3Gk(r)+ (−1)s+1 · r2k!B0, for k is even,

= (−1)sr2
∫ ∞

0
f (2s+1)
k+1 (x)cos(rx)dx.

For t � s+1, we have

Jk,t(r) = r2t−k+1Gk(r)+ (−1)s+1r2t−2shk,t(r)

= (−1)t+1r2
∫ ∞

0
f (2t−1)
k+1 (x)cos(rx)dx

= (−1)t−1
[
f (2t)
k+1(x)cos(rx)

]∞

0
− (−1)t−1

∫ ∞

0
f (2t+1)
k+1 (x)cos(rx)dx

= (−1)t
(2t)!B2t−k

(2t− k)!
+(−1)t+2

∫ ∞

0
f (2t+1)
k+1 (x)cos(rx)dx, (18)

where

hk,t(r) =

⎧⎪⎨
⎪⎩

(k+1)!B1− (k+3)!B3
3!r2

+ · · ·+(−1)t−s−1 (2t−2)!B(2t−k−2)
(2t−k−2)!r2t−k−3 , for k is odd,

k!B0− (k+2)!B2
2!r2

+ · · ·+(−1)t−s−1 (2t−2)!B(2t−k−2)
(2t−k−2)!r2t−k−2 , for k is even.

Equation (18) implies the error estimates

|Jk,t(r)| <
∣∣∣∣(2t)!B2t−k

(2t− k)!

∣∣∣∣+
∫ ∞

0
f (2t+1)
k+1 (x)sin(rx)dx =

∣∣∣∣ (2t)!B2t−k

(2t− k)!

∣∣∣∣+Nk,t ,

where Nk,t is a constant with respect to k and t . Hence, for t � s+1, we have

∣∣∣r2s−k+1Gk(r)+ (−1)s+1hk,t(r)
∣∣∣ <

∣∣∣ (2t)!B2t−k
(2t−k)!

∣∣∣+Nk,t

r2t−2s ,
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which implies

r2s−k+1Gk(r) ∼ (−1)shk,t(r).

When k is odd,

r2Gk(r) ∼ (−1)s
∞

∑
i=0

(−1)i (k+2i+1)!B2i+1

(2i+1)!r2i .

When k is even,

rGk(r) ∼ (−1)s
∞

∑
i=0

(−1)i (k+2i)!B2i

(2i)!r2i .

This proves Lemma 2.3 for k > 2.
When k = 0, Elbert proved Lemma 2.3 in reference [12]. For k = 1, suppose we

have the relation

J1,t(r) = r2t
[
G1(r)+

2B1

r2 + · · ·+(−1)t
(2t−2)B2t−3

r2t−2

]

= (−1)t−1r2
∫ ∞

0
f (2t−1)
2 (x)cos(rx)dx (19)

for some t � 2. Then integration by parts yields again

J1,t(r) = (−1)t(2t)B2t−1 +(−1)t
∫ ∞

0
f (2t+1)
2 (x)cos(rx)dx. (20)

Therefore

J1,t+1(r) = r2t+2
[
G1(r)+

2B1

r2 + · · ·+(−1)t+1 2tB2t−1

r2t

]

= (−1)t r2
∫ ∞

0
f (2t+1)
2 (x)cos(rx)dx.

Hence (19) is true for all t � 2. Relation (20) implies also the error estimate

|J1,t(r)| < |2tB2t−1|+N1,t ,

where N1,t is a constant with respect to t . Hence∣∣∣∣G1(r)+
2B1

r2 + · · ·+(−1)t
(2t−2)B2t−3

r2t−2

∣∣∣∣ <
|2tB2t−1|+N1,t

r2t .

This proves Lemma 2.3 for k = 1.
For k = 2, suppose we have the relation

J2,t(r) = r2t−1
[
G2(r)+

2B0

r
+ · · ·+(−1)t

(2t−2)(2t−3)B2t−4

r2t−3

]

= (−1)t−1r2
∫ ∞

0
f (2t−1)
3 (x)cos(rx)dx, (21)
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for some t � 2. Then integration by parts yields again

J2,t(r) = (−1)t(2t)(2t−1)B2t−2 +(−1)t
∫ ∞

0
f (2t+1)
3 (x)cos(rx)dx. (22)

Therefore

J2,t+1(r) = r2t+1
[
G2(r)+

2B0

r
+ · · ·+(−1)t+1 (2t)(2t−1)B2t−2

r2t−1

]

= (−1)t r2
∫ ∞

0
f (2t+1)
3 (x)cos(rx)dx.

Hence (21) is true for all t � 2. Relation (22) implies also the error estimate

|J2,t(r)| < |2t(2t−1)B2t−1|+N2,t ,

where N2,t is a constant with respect to t . Hence∣∣∣∣G2(r)+
2B0

r
+ · · ·+(−1)t

(2t−2)(2t−3)B2t−4

r2t−3

∣∣∣∣ <
|2t(2t−1)B2t−1|+N2,t

r2t−1 .

This proves Lemma 2.3 for k = 2. �

LEMMA 2.4. For m, i ∈ Z>0 , we have(
i+m

m

)
=

1
4m

m

∑
k=0

2k
(

k+2i
k

)(
2m− k

m

)
.

Proof. We shall prove Lemma 2.4 using the Gauss hypergeometric function, which
is defined by

2F1

[
a,b

c

∣∣∣∣ x

]
=

∞

∑
n=0

(a)n(b)n

(c)nn!
xn,

where (a)n denotes the Pochhammer symbol (or the shifted factorial):

(a)μ :=
Γ(a+ μ)

Γ(a)
=

{
1, if μ = 0; a ∈ C\ {0},
a(a+1) · · ·(a+n−1), if μ = n ∈ N; a ∈ C.

Note that (0)0 := 1. Then we have

m

∑
k=0

2k
(

k+2i
k

)(
2m− k

m

)
=

(
2m
m

)
2F1

[
−m,1+2i

−2m

∣∣∣∣ 2

]
. (23)

By Pfaff transform [2, p. 79, Eq. (2.3.14)], we have

2F1

[
−m,1+2i

−2m

∣∣∣∣ 2

]
=

(−2m−2i−1)m

(−2m)m
2F1

[
−m,1+2i

m+2i+2

∣∣∣∣ −1

]
. (24)
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By Euler transform [2, p. 68, Eq. (2.2.7)] and Kummer transform [2, p. 126, Cor. 3.1.2],
we have

2F1

[
−m,1+2i

m+2i+2

∣∣∣∣ −1

]
= 22m+1

2F1

[
2m+2i+2,1+m

m+2i+2

∣∣∣∣ −1

]

= 22m+1 Γ(m+2i+2)Γ(m+ i+2)
Γ(2m+2i+3)Γ(i+1)

. (25)

Combining equation (23)-(25), we have

m

∑
k=0

2k
(

k+2i
k

)(
2m− k

m

)
= 22m+1

(
2m
m

)
(−2m−2i−1)m(i+1)m+1

(−2m)m(m+2i+2)m+1

= 22m
(

i+m
m

)
.

This completes the proof of Lemma 2.4. �

3. Proof of Theorems

In this section, we prove Theorem 1.1 and 1.2.

Proof of Theorem 1.1. For m ∈ Z>0 , Cerone and Lenard [6, p. 5, Eq. (2.15)]
proved the integral representation as follow

Sm(r) =
1

2m−1r2m−1m!

√
π
2

∫ ∞

0

x
ex −1

(rx)m− 1
2 Jm− 1

2
(rx)dx,

where Jm(z) is the m-th order Bessel function of the first kind. By the properties of
Jm(z) , we can deduce that, for m is odd,

Sm(r) =
(−1)

m−1
2

2m−1r2m−1m!

⎧⎨
⎩

m−1
2

∑
k=0

(−1)k(m+2k−1)!
(2k)!(m−2k−1)!22kGm−2k−1(r)

+

m−3
2

∑
k=0

(−1)k(m+2k)!
(2k+1)!(m−2k−2)!22k+1Fm−2k−2(r)

⎫⎬
⎭

=
1

22m−2r2m−1m!

⎧⎨
⎩

m−1
2

∑
k=0

(−1)k(2m−2k−2)! ·22k

(m−2k−1)!(2k)!
G2k(r)

−
m−3

2

∑
k=0

(−1)k(2m−2k−3)! ·22k+1

(m−2k−2)!(2k+1)!
F2k+1(r)

⎫⎬
⎭ . (26)
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For m is even, we have

Sm(r) =
(−1)

m
2

2m−1r2m−1m!

⎧⎨
⎩

m−2
2

∑
k=0

(−1)k(m+2k−1)!
(2k)!(m−2k−1)!22kFm−2k−1(r)

−
m−2

2

∑
k=0

(−1)k(m+2k)!
(2k+1)!(m−2k−2)!22k+1Gm−2k−2(r)

⎫⎬
⎭

=
−1

22m−2r2m−1m!

⎧⎨
⎩

m−2
2

∑
k=0

(−1)k(2m−2k−3)! ·22k+1

(m−2k−2)!(2k+1)!
F2k+1(r)

−
m−2

2

∑
k=0

(−1)k(2m−2k−2)! ·22k

(m−2k−1)!(2k)!
G2k(r)

⎫⎬
⎭ . (27)

Combining equation (26) and (27), for m ∈ Z>0 , we have

Sm(r) =
1

22m−2r2m−1m!

m−1

∑
k=0

(−1)[
k+1
2 ](2m− k−2)! ·2k

(m− k−1)! · k! Ak(r), (28)

where

Ak(r) =

{
Fk(r), for k is odd,

Gk(r), for k is even.

By Lemma 2.2, for k � 1 is odd, we have

Fk(r) ∼ (−1)
k+1
2

∞

∑
i=0

(−1)i (k+2i)!B2i

(2i)!r2i+1 .

By Lemma 2.3, for k � 0 is even, we have

Gk(r) ∼ (−1)
k
2

∞

∑
i=0

(−1)i (k+2i)!B2i

(2i)!r2i+1 .

By Lemma 2.4, for m ∈ Z>0 , we have

Sm(r) ∼ 1
22m−2r2m−1m!

m−1

∑
k=0

∞

∑
i=0

(−1)i ·2k · (2m− k−2)! · (k+2i)! ·B2i

(m− k−1)! · k! · (2i)! · r2i+1

∼ 1
22m−2 ·m

m−1

∑
k=0

∞

∑
i=0

(−1)i ·2k · (k+2i
k

) · (2m−k−2
m−1

) ·B2i

r2m+2i

∼ 1
m

∞

∑
i=0

(−1)i
(i+m−1

m−1

)
B2i

r2m+2i .



1126 X. LIN AND C. DENG

This proves Theorem 1.1. �

Proof of Theorem 1.2. Theorem 1.2 follows from equation (9) and (28). �

REMARK. Theorem 1.2 modified the integral representation given by [6, p. 6,
Thm. 2.5]. In reference [6, p. 5, Eq. (2.15)], Cerone and Lenard present an integral
representation for Sm(r) in terms of Bessel function, where m ∈ Z>0 . When further
simplified [6, p. 5, Eq. (2.15)] to [6, p. 6, Thm. 2.5], a mistake occurred in [6, p. 6,
Eq. (2.20)], which says

S(m−1)
1 (r) = (−1)m−1m!(2r)m−1Sm(r). (29)

Equation (29) is wrong when m � 3, since S′′1(r) = −4S2(r)+24r2S3(r).
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[22] T. K. POGÁNY, H. M. SRIVASTAVA, AND Ž. TOMOVSKI, Some families of Mathieu a-series and

alternating Mathieu a-series, Applied Mathematics and Computation, 173 (1): 69–108, February
2006.
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