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SHARP BOUNDS ON THE HANKEL DETERMINANT OF THE

INVERSE FUNCTIONS FOR CERTAIN ANALYTIC FUNCTIONS

LEI SHI, MUHAMMAD ARIF ∗ , H. M. SRIVASTAVA AND MUHAMMAD IHSAN

(Communicated by M. Krnić)

Abstract. In most cases, the problem of finding bounds for the inverse function is much more
difficult than finding bounds for the function itself. Thus, there are relatively little sharp bounds
of Hankel determinant on the inverse functions. In the present paper, we introduce a subclass of
bounded turning function Rcar associated with a cardioid domain. The purpose of this article
is to investigate certain coefficient related problems on the inverse functions for f ∈ Rcar . The
bounds of some initial coefficients, the Fekete-Szegö type inequality and the estimation of Han-
kel determinants of second and third order are obtained. All of these bounds are proved to be
sharp.

1. Introduction and definitions

Before starting to investigate the main problems, we provide some elementary
function theories in literature. In this paper, the letters A and S are represented for
the classes of normalised analytic and univalent functions, respectively. These classes
are defined in the set-builder form of

A :=
{

f ∈ Π(D) : f (0) = f ′ (0)−1 = 0, z ∈ D
}

and
S := { f ∈ A : f is univalent in D} .

Here, Π(D) stands for the set of analytic functions defined in the region

D = {z : z ∈ C and |z| < 1} .

That is to say, if f ∈ A , then it can be expressed in the series expansion of

f (z) = z+
∞

∑
n=2

anz
n, z ∈ D. (1)

In 1916, the famous coefficient problem stated by Bieberbach in [5] contributed to this
field’s development as a viable new study subject. De Branges [7] solved this renowned
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conjecture in 1985 by establishing that if f ∈ S , then |an| � n for n � 2, with the
equality holds if f is a Koebe function or its rotation. The Koebe function is given by

K (z) =
z

(1− z)2
= z+

∞

∑
n=2

nzn.

From 1916 through 1985, several of the world’s most eminent intellectuals attempted
to validate or refute this claim. As a response, they found many sub-collections of S
that are linked to different image domains. The most fundamental, well-studied, and
elegant geometric interpretations of these subfamilies are the families of starlike S ∗
and convex K functions, which are stated as

S ∗ :=
{

f ∈ A : ℜ
z f ′ (z)
f (z)

> 0, z ∈ D

}
,

K :=
{

f ∈ A : ℜ
(z f ′ (z))′

f ′ (z)
> 0, z ∈ D

}
.

These functions are closely related to the class P defined in term of set-builder nota-
tion of

P := {p ∈ A : ℜp(z) > 0, z ∈ D} ,

where the function p has the series expansion of the form

p(z) = 1+
∞

∑
n=1

cnz
n, z ∈ D. (2)

Let α ∈ [0,1) . We denote by R(α) the subclass of functions f ∈ A such that

ℜ f ′(z) > α, z ∈ D. (3)

Functions in R(α) are called of bounded turning of order α and in R := R(0) of
bounded turning, see [10].

The theory of univalent functions with a firm basis from the family S is inter-
esting when geometric and analytic concerns are both taken into account. The 1/4-
theorem of Koebe ensures that for any univalent function f in D , its inverse f−1 exists
at least on a disc of radius 1/4 with the Taylor’s series representation

f−1 (w) := w+
∞

∑
n=2

Bnw
n, |w| < 1/4. (4)

Utilizing the representation f
(
f−1 (w)

)
= w, we obtain

B2 = −a2, (5)

B3 = −a3 +2a2
2, (6)

B4 = −a4 +5a2a3−5a3
2, (7)

B5 = −a5 +6a2a4−21a2
2a3 +3a2

3 +14a4
2. (8)
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In 1923, Löwner [24] developed the renowned parametric approach to obtain the Bieber-
bach conjecture for the third coefficient. In recent years, a great deal of interest had been
shown on the inverse function, where the relevant function f belongs to some specific
subfamilies of univalent functions. For instance, Krzyz et al. [16] determined the upper
bounds of the initial coefficient contained in the inverse function f−1 when f ∈S ∗ (α)
with 0 � α < 1. These findings were improved later by Kapoor and Mishra in [13].
Also, for the class S S ∗ (ξ ) (0 < ξ � 1) of strongly starlike function, Ali [2] inves-
tigated the sharp bounds of the first four initial coefficient along with sharp estimate of
Fekete-Szegö coefficient functional of the inverse function. For more contributions in
this specific direction, see the articles by Juneja and Rajasekaran [12], Ponnusamy et
al. [28], Silverman [33], and Sim and Thomas [34].

The Hankel determinant Hq,n ( f ) , for q,n ∈ N = {1,2, · · ·} , containing coeffi-
cients of the function f ∈ S

Hq,n ( f ) =

∣∣∣∣∣∣∣∣∣

an an+1 . . . an+q−1

an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣
,

was examined by Pommerenke [26, 27]. By varying the parameters q and n, we get
the determinants given by

H2,1 ( f ) = a3−a2
2, (9)

H2,2 ( f ) = a2a4−a2
3, (10)

H3,1 ( f ) = 2a2a3a4−a3
3−a2

4 +a3a5−a2
2a5. (11)

They are referred as first, second and third order Hankel determinants, respectively.
There are indeed a little works in the literature that address and investigate the sharp
bounds of Hankel determinants for functions in the general family S . The first con-
tributed sharp inequality for the function f ∈ S is |H2,n ( f )| � |ν|√n, where ν is
constant. This result is due to Hayman [11]. Further for the same class S , it was
obtained in [25] that

|H2,2 ( f )| � λ , 1 � λ � 11
3

,

|H3,1 ( f )| � μ ,
4
9

� μ � 32+
√

285
15

.

The problems of researching the Hankel determinants sharp bounds for a certain class
of complex valued functions has piqued the interest of many field specialists. The exact
bound of second Hankel determinant for the collection S ∗ (φ) of starlike functions
(Ma-Minda) was found in [23] , and further studied in [8] .

To obtain the bounds of |H3,1 ( f )| is significantly more difficult. Babalola [4]
studied third Hankel determinant for the families of K , S ∗ and R . For more refer-
ences in this field, see [6, 19, 29, 31, 35, 36, 37, 38]. In 2018, Kowalczyk et al. [17]
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and Lecko et al. [21] achieved sharp bounds of |H3,1 ( f )| for the collections K and
S ∗ ( 1

2

)
, respectively. The have obtained that

|H3,1 ( f )| �
{

4
135 , f ∈ K ,

1
9 , f ∈ S ∗ (

1
2

)
.

In 2022, the third Hankel determinant of starlike functions was proved to 4
9 , see [18].

In most cases, the problem of finding bounds for the inverse function is much more
difficult than finding bounds for the function itself. Thus, there are relatively little
sharp bounds of Hankel determinant on the inverse functions, see [3, 15, 32].

In [30], Kanika Sharma, Naveen Kumar Jain and V. Ravichandran introduced an
subclass of starlike functions S ∗

car defined by

S ∗
car :=

{
f ∈ A :

z f ′ (z)
f (z)

≺ 1+
4
3
z+

2
3
z2, z ∈ D

}
.

For function in this class, it means that z f ′(z)
f (z) lying in the region bounded by the cardioid

given by the equation

(9x2 +9y2−18x+5)2−16(9x2 +9y2−6x+1) = 0. (12)

Later, its properties were intensively studied in [1, 9, 22].
Motivated by the above works, we introduce a subclass of bounded turning func-

tions Rcar defined by

Rcar :=
{

f ∈ S : f ′ (z) ≺ 1+
4
3
z+

2
3
z2, z ∈ D

}
. (13)

The goal of this paper is to compute the sharp bounds of coefficient results, Fekete-
Szegö type problems, and Hankel determinants of second and third order for the inverse
functions of this class.

2. A set of lemmas

To prove our main results, we need the following Lemmas.

LEMMA 1. (see [20]) Let p ∈ P be given by (2) . Then

2c2 = c2
1 + x

(
4− c2

1

)
, (14)

4c3 = c3
1 +2

(
4− c2

1

)
c1x− c1

(
4− c2

1

)
x2 +2

(
4− c2

1

)(
1−|x|2

)
δ , (15)

8c4 = c4
1 +(4− c2

1)x
[
c2
1

(
x2−3x+3

)
+4x

]−4(4− c2
1)(1−|x|2)

×
[
c1(x−1)δ + xδ 2 − (1−|δ |2)ρ

]
. (16)

for some x,δ ,ρ ∈ D = {z ∈ C : |z| � 1} .
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LEMMA 2. (see [14]) Let μ ∈ C . If p ∈ P is represented as (2) , then

|cn+k − μcnck| � 2max(1, |2μ −1|) , (17)

|cn| � 2, n � 1. (18)

3. Coefficient inequalities for the class Rcar

We start by calculating the first two initial coefficients bounds for f−1 ∈ Rcar.

THEOREM 1. Let f ∈ Rcar be the form of (1). Then

|B2| � 2
3

and |B3| � 2
3
. (19)

These bounds are sharp with the extremal functions given by

f (z) =
z∫

0

(
1+

4
3
t +

2
3
t2

)
dt = z+

2
3
z2 +

2
9
z3, (20)

whose inverse function can be written as

f−1(w) = w− 2
3
w2 +

2
3
w3− 20

27
w4 + · · · , |w| < 1

4
. (21)

Proof. From the definition of the class Rcar along with subordination principal,
there exist a Schwarz function ω such that

f ′ (z) = 1+
4
3

ω (z)+
2
3

(ω (z))2 := χ(z), z ∈ D.

Let

p(z) =
1+ ω (z)
1−ω (z)

= 1+ c1z+ c2z
2 + c3z

3 + · · · . (22)

Clearly, we have p ∈ P and

ω (z) =
p(z)−1
p(z)+1

=
c1z+ c2z2 + c3z3 + c4z4 + · · ·

2+ c1z+ c2z2 + c3z3 + c4z4 + · · · .

By simplifications and using the series expansion of ω , we get

χ(z) = 1+
2
3
c1z+

(
2
3
c2− 1

6
c2
1

)
z2 +

(
2
3
c3− 1

3
c1c2

)
z3 (23)

+
(

2
3
c4− 1

6
c2
2 +

1
24

c4
1−

1
3
c1c3

)
z4 + · · · .

Using (1), it is seen that

f ′ (z) = 1+2a2z+3a3z
2 +4a4z

3 +5a5z
4 + · · · . (24)
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By comparing (23) and (24) we get

a2 =
1
3
c1, (25)

a3 =
1
3

(
2
3
c2− 1

6
c2
1

)
, (26)

a4 =
1
4

(
2
3
c3− 1

3
c1c2

)
, (27)

a5 =
1
5

(
2
3
c4− 1

6
c2
2 +

1
24

c4
1−

1
3
c1c3

)
. (28)

Substituting (25), (26), (27) and (28) into (5), (6) , (7) and (8), we get

B2 = −1
3
c1, (29)

B3 = −2
9

(
c2− 5

4
c2
1

)
, (30)

B4 = −1
6

(
c3− 49

18
c1c2− 5

3
c3
1

)
, (31)

B5 = − 2
15

(
c4−3c1c3 − 49

36
c2
2 +

205
36

c2
1c2− 983

432
c4
1

)
. (32)

For the bounds of B2 and B3 , it follows directly from Lemma 2. This completes the
proof of Theorem 1. �

Now we examine the Fekete-Szegö type result for the inverse function of f ∈Rcar .

THEOREM 2. Let γ ∈ C . If f ∈ Rcar is in the form of (1) , then

∣∣B3− γB2
2

∣∣ � max

{
4
9
,
2
9
|3−2γ|

}
.

This inequality is sharp and can be obtained from the extremal function defined by

f (z) =
z∫

0

(
1+

4
3
t2 +

2
3
t4

)
dt = z+

4
9
z3 +

2
15

z5. (33)

The inverse of f is given by

f−1(w) = w− 4
9
w3 +

62
135

w5 + · · · , |w| < 1
4
. (34)

Proof. From (29) and (30), we easily obtain that

∣∣B3− γB2
2

∣∣ =
2
9

∣∣∣∣c2 −
(

5
4
− 1

2
γ
)

c2
1

∣∣∣∣ .
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An application of (17) leads to

∣∣B3− γB2
2

∣∣ � max

{
4
9
,
2
9
|3−2γ|

}
.

This completes the proof. �
Putting γ = 1, we get the below inequality.

COROLLARY 1. If f ∈ Rcar is in the form of (1), then

∣∣B3−B2
2

∣∣ � 4
9
.

In the following we will discuss the second order Hankel determinant for the in-
verse function of f ∈ Rcar .

THEOREM 3. If f ∈ Rcar is in the form of (1), then

∣∣H2,2
(
f−1)∣∣ � 16

81
.

The inequality is sharp and can be obtained by the function defined by

f (z) = z+
4
9
z3 +

2
15

z5, z ∈ D. (35)

The inverse function is given by

f−1(w) = w− 4
9
w3 +

62
135

w5 + · · · , |w| < 1
4
. (36)

Proof. The determinant H2,2
(
f−1

)
can be described as

H2,2
(
f−1) = B2B4−B2

3.

From (29) , (30) and (31) , we have

∣∣H2,2
(
f−1)∣∣ =

1
324

∣∣5c4
1−9c2

1c2 +18c1c3 −16c2
2

∣∣ .
Let fθ (z) := e−iθ f (eiθ z),θ ∈ R . It is observed that

H2,2
(
f−1) = e4iθH2,2

(
f−1) .

Thus
∣∣H2,2

(
f−1

)∣∣ is rotation invariant for f ∈ Rcar , we may assume c1 = c ∈ [0,2] .
Using (14) and (15) to express c2 and c3 in terms of c1 = c , we obtain

∣∣H2,2
(
f−1)∣∣ =

1
324

∣∣∣∣c4− 9
2
c2x2 (

4− c2)− 7
2
c2x

(
4− c2)

+9c
(
4− c2)(

1−|x|2
)

δ −4x2 (
4− c2)2

∣∣∣∣.
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After implementing the triangle inequality and replacing |δ | � 1, |x| = t, we achieve

∣∣H2,2
(
f−1)∣∣ � 1

324

[
c4 +

9
2
c2t2

(
4− c2)+

7
2
c2t

(
4− c2)

+9c
(
4− c2)(

1− t2
)
+4t2

(
4− c2)2

]
=: Λ(c,t) .

Differentiating about the parameter t, we have

∂Λ
∂ t

=
1

324

[(
c2−18c+32

)(
4− c2) t +

7
2
c2 (

4− c2)] .

It is a straightforward task to illustrate that ∂Λ
∂ t � 0 on t ∈ [0,1] and hence Λ(c,t) �

Λ(c,1) . Setting t = 1 gives

∣∣H2,2
(
f−1)∣∣ � 1

324

[
c4 +8c2 (

4− c2)+4
(
4− c2)2

]
=: η (c) .

Also η ′ (c) � 0 shows that η (c) is decreasing on c ∈ [0,2] . Hence, the maximum
value of η is 64/324 achieved on c = 0. Therefore, we obtain

∣∣H2,2
(
f−1)∣∣ � 64

324
=

16
81

.

The proof is thus completed. �

4. Third Hankel determinant for the class Rcar

THEOREM 4. If f ∈ Rcar is described by (1), then

∣∣H3,1
(
f−1)∣∣ � 424

3645
.

This inequality is sharp with the extremal function given by

f (z) = z+
4
9
z3 +

2
15

z5, z ∈ D, (37)

whose inverse function can be expressed as

f−1(w) = w− 4
9
w3 +

62
135

w5 + · · · , |w| < 1
4
. (38)

Proof. The determinant H3,1
(
f−1

)
can be expressed as

H3,1
(
f−1) = 2B2B3B4−B3

3−B2
4 +B3B5−B2

2B5.
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As
∣∣H3,1( f−1)

∣∣ is also rotation invariant for f ∈ Rcar , we still assume c1 = c ∈ [0,2] .
By the virtue of (29) , (30), (31) and (32) along with c1 = c, we get

H3,1
(
f−1) =

1
58320

(
199c6−912c4c2 +288c3c3 +1119c2c2

2−1296c2c4

+2196cc2c3−1712c3
2 +1728c2c4−1620c2

3

)
. (39)

Let b = 4−c2 . Using (14) , (15) and (16) along by straightforward algebraic computa-
tions, we have

H3,1
(
f−1) =

1
58320

{
432b2x3−214b3x3 −216c2bx2−54c4bx3 +18c4bx2

−30c4bx+
27
4

c2b2x4− 387
2

c2b2x3 −405b2
(
1−|x|2

)2
δ 2

+72c3b
(
1−|x|2

)
δ +216c3bx

(
1−|x|2

)
δ +216c2bx

(
1−|x|2

)
δ 2

−216c2b
(
1−|x|2

)(
1−|δ |2

)
ρ −27cb2x2

(
1−|x|2

)
δ

−432b2 |x|2
(
1−|x|2

)
δ 2 +171cb2x

(
1−|x|2

)
δ

+432b2x
(
1−|x|2

)(
1−|δ |2

)
ρ
}

.

It can be seen that

H3,1
(
f−1) =

1
58320

[
v1 (c,x)+ v2 (c,x)δ + v3 (c,x)δ 2 + Ψ(c,x,δ )ρ

]
,

where x,δ ,ρ ∈ D, and

v1 (c,x) =
(
4− c2)[(

4− c2)(
−424x3 +

41
2

c2x3 +
27
4

c2x4 +
423
4

c2x2
)

−216c2x2−54c4x3 +18c4x2 −30c4x

]
,

v2 (c,x) =
(
4− c2)(

1−|x|2
)[(

4− c2)(
171cx−27cx2)+216c3x+72c3] ,

v3 (c,x) =
(
4− c2)(

1−|x|2
)[(

4− c2)(−27 |x|2−405
)
+216c2x

]
,

Ψ(c,x,δ ) =
(
4− c2)(

1−|x|2
)(

1−|δ |2
)[−216c2 +432x

(
4− c2)] .

With the use of |x| = t, |δ | = y along with |ρ | � 1, we obtain

∣∣H3,1
(
f−1)∣∣ � 1

58320

[|v1 (c,x)|+ |v2 (c,x)|y+ |v3 (c,x)|y2 + |Ψ(c,x,δ )|] .

� 1
58320

Γ(c,t,y) , (40)
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where
Γ(c, t,y) = σ1 (c,t)+ σ2 (c,t)y+ σ3 (c,t)y2 + σ4 (c,t)

(
1− y2) , (41)

with

σ1 (c, t) =
(
4− c2)[(

4− c2)(
424t3 +

41
2

c2t3 +
27
4

c2t4 +
423
4

c2t2
)

+216c2t2 +54c4t3 +18c4t2 +30c4t

]
σ2 (c, t) =

(
4− c2)(

1− t2
)[(

4− c2)(
171ct +27ct2

)
+216c3t +72c3] ,

σ3 (c, t) =
(
4− c2)(

1− t2
)[(

4− c2)(
27t2 +405

)
+216c2t

]
,

σ4 (c, t) =
(
4− c2)(

1− t2
)[

216c2 +432t
(
4− c2)] .

For finding the upper bound of
∣∣H3,1

(
f−1

)∣∣ , we have to maximize Γ(c,t,y) in
the closed cuboid Ω := [0,2]× [0,1]× [0,1] . For this, we have to discuss the maxi-
mum values of Γ(c, t,y) in the interior of Ω and the boundary ∂Ω . By noting that
Γ(0,1,1) = 6784, we know

max
(c,t,y)∈Ω

{Γ(c,x,y)} � 6784. (42)

Actually, we aim to prove that

max
(c,t,y)∈Ω

{Γ(c,t,y)} = 6784. (43)

On the face c = 2,
Γ(2,t,y) ≡ 0, t,y ∈ [0,1] . (44)

On the face t = 1,

Γ(c,t,y) = 31c6−448c4−400c2 +6784 =: g1(c).

Differentiating g1 with respect to c, we have

∂g1

∂c
= 186c5−1792c3−800c.

Since the only solution of the equation ∂g1
∂c = 0 lies in [0,2] is c = 0, we obtain that g1

gets its maximum valve 6784 on c = 0. Hence, we assume that c ∈ [0,2) and t ∈ [0,1)
in the following.

Let (c, t,y) ∈ [0,2)× [0,1)× (0,1) . By differentiating partially (41) about y , we
have

∂Γ
∂y

=
(
4− c2)(1− t2)

{
54(t−1)

[(
4− c2) (t−15)+8c2]y

+9c
[
t
(
4− c2)(3t +19)+8c2 (3t +1)

]}
.
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Solving ∂Γ
∂y = 0 gives

y =
c
[
t
(
4− c2

)
(3t +19)+8c2 (3t +1)

]
6(1− t) [(4− c2)(t−15)+8c2]

= y0.

If y0 should belong to (0,1) , then it is possible only if

8c3 (3t +1)+ ct
(
4− c2)(3t +19)+6(1− t)

(
4− c2)(15− t) < 48c2 (1− t) (45)

and

c2 >
4(15− t)

23− t
. (46)

For the existence of such critical points, we must find solutions that meet both inequal-
ities (45) and (46) .

Let φ(t) = 4(15−t)
23−t . Then clearly φ ′(t) < 0 in (0,1) . So φ(t) is decreasing over

(0,1) . Hence c2 > 28
11 and some basic calculations indicates that (45) can not be true

for all t ∈ [ 2
5 ,1

)
. Thus, Γ(c,t,y) has no critical points in [0,2)×[ 2

5 ,1
)×(0,1) . There-

fore, for any critical point (c,t,y) of Γ with y ∈ (0,1) , it must also satisfy t ∈ (0, 2
5 ) ,

which further leads to c2 > 292
103 .

Let (c, t,y) be a critical point and 0 < y < 1. Using 1− t2 � 1, it is observed that

σ1(c,t) � σ1

(
c,

2
5

)
=: ϑ1(c) (47)

and

σ j(c,t) � 25
21

σ j

(
c,

2
5

)
=: ϑ j(c), j = 2,3,4. (48)

Then we have

Γ(c, t,y) � ϑ1(c)+ ϑ2(c)y+ ϑ3(c)y2 + ϑ4(c)
(
1− y2) =: Ξ(c,y). (49)

As ϑ3(c)−ϑ4(c) � 0 for c2 > 292
103 , it follows that

∂Ξ
∂y

= ϑ2(c)+2 [ϑ3(c)−ϑ4(c)]y � ϑ2(c)+2 [ϑ3(c)−ϑ4(c)] � 0. (50)

Hence, we get Ξ(c,y) � Ξ(c,1) =: g2(c) . It is calculated that g2 has a maximum value
2824.34 at c ≈ 1.5954. As the maximum value of Γ only possibly obtained in the
critical points or on the boundary ∂Ω , we conclude that Γ can not be achieved its
maximum value in [0,2)× [0,1)× (0,1) .

On the face y = 0,

Γ(c, t,0) = σ1 (c,t)+ σ4 (c,t)

=
(
4− c2)2

[
27
4

c2t4 +
(

41
2

c2−8

)
t3 +

423
4

c2t2 +432t

]
+

(
4− c2)(

54c4t3 +18c4t2 +30c4t +216c2) =: Q(c,t).
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For c2 > 16
41 , we have 41

2 c2 − 8 � 0. Then Q(c,t) � Q(c,1) =: g3(c) . Since g3 at-
tains its maximum value 6561.52 on c ≈ 0.6247, we have Q(c,t) < 6784 for (c,t) ∈(√

16
41 ,2

)
× (0,1) . For c2 � 16

41 , using t � 1 it is found that

Q(c,t) �
(
4− c2)2

[
225
2

c2 +432t +
(

41
2

c2−8

)
t3

]
+

(
4− c2)(

102c4 +216c2) =: K(c,t).

It is seen that ∂K
∂ t � 0 for t ∈ [0,1) , thus we have K(c,t) � K(c,1) =: g4(c) . As g4

gains its maximum value 6784 on c = 0, we conclude that Γ has no point attains its
value larger than 6784 on the face y = 0.

On the face y = 1,

Γ(c, t,1) = σ1 (c,t)+ σ2 (c,t)+ σ3 (c,t)

=
(
4− c2)2

[
27
4

(
c2−4c−4

)
t4 +

(
41
2

c2−171c+424

)
t3

+
(

423
4

c2 +27c−378

)
t2 +171ct +405

]
+

(
4− c2) [72c3 +

(
30c2 +216

)
c2t +18

(
c2−4c+12

)
c2t2

+54c2(
c2−4

)
t3].

For t < 2
3 , using c2 −4c−4 � 0 and c2−4 � 0, it is noted that

Γ(c, t,1) �
(
4− c2)2

[(
41
2

c2−171c+424

)
t3 +

(
423
4

c2 +27c−378

)
t2

+171ct +405

]
+

(
4− c2)[

72c3 +
(
30c2 +216

)
c2t

+18
(
c2−4c+12

)
c2t2

]
:= L(c,t).

From 41
2 c2−171c+424� 0 and c2−4c+12� 0, using t < 2

3 and t3 � 2
3 t

2 we deduce
that

L(c, t) �
(
4− c2)2

W (c,t)+4
(
4− c2)(

7c2 +10c+60
)
c2,

where

W (c, t) =
1
12

(
1433c2−1044c−1144

)
t2 +171ct +405. (51)

If c > 4
3 , we get 1433c2−1044c−1144� 0. It follows that W (c,t) �W

(
c, 2

3

)
, which

yields to

L(c, t) �
(
4− c2)2

W

(
c,

2
3

)
+4

(
4− c2)(

7c2 +10c+60
)
c2 =: g5(c).
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A basic calculation shows that g5 has a maximum value about 4108.39 for c ∈ (
4
3 ,2

)
.

If 1 � c � 4
3 , we have 1433c2−1044c−1144� 12. Then

W (c,t) � t2 +171ct +405 � 4
9

+114c+405. (52)

Hence, we get

L(c, t) �
(
4− c2)2

(
4
9

+114c+405

)
+4

(
4− c2)(

7c2 +10c+60
)
c2 =: g6(c),

while g6 achieves its maximum value 5599 for c∈ [
1, 4

3

]
. If c < 1, we know 1433c2−

1044c−1144� −755. It follows that

W (c, t) � −755
12

t2 +171ct +405 � 405+
87723
755

c2 � 405+117c2, (53)

where the second inequality is obtained by observing that the symmetric axis x0 =
1026
755 c ∈ [

0, 2
3

)
. Hence, we obtain

L(c, t) �
(
4− c2)2 (

405+117c2)+4
(
4− c2)(

7c2 +10c+60
)
c2 := g7(c).

A basic calculation indicates that g7 has a maximum value 6480 on c = 0. Combining
the above case, we deduce that L(c,t) < 6784 for all (c, t) ∈ [0,2)× [

0, 2
3

)
. For t � 2

3 ,

it is not hard to be seen that ∂L
∂ t � 0 for all c∈ [0,2) . Therefore, we know that L(c,x) �

L(c,1) := g8(c) . As g8 attains its maximum value 6784 on c = 0, we conclude that
L(c,t) � 6784 for all [0,2)× (0,1) . From all of the preceding cases, we established
that

Γ(c,t,y) � 6784, [0,2]× [0,1]× [0.1] .

Hence, from (40) , we have

∣∣H3,1
(
f−1)∣∣ � 1

58320
[Γ(c,t,y)] � 6784

58320
=

424
3645

.

The proof is thus completed. �
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