FURTHER PROPERTIES OF 2-INNER PRODUCT SPACES

Abbas Alipour and Mohammad Hadi Akhbari

(Communicated by M. Sababheh)

Abstract

This paper aims to establish some results on the structure of fixed point sets for mappings in 2-inner product spaces. To this end, we employ some well-known techniques of 2-inner product spaces.

1. Introduction and preliminaries

The concept of 2-metric spaces, linear 2-normed spaces, and 2-inner product spaces was introduced by Gähler [6]. After that, several authors like White [17], Lewandowska [11, 12], Freese [5], and Diminnie [3], worked on possible applications of Metric Geometry, Functional Analysis, and Topology in these settings. Some other related results are also concerned in [2, 8, 10, 14].

Let \mathscr{X} be a linear space of dimension greater than one over the field $K=\mathbb{R}$ of real numbers or the field $K=\mathbb{C}$ of complex numbers and let $x, y, z \in \mathscr{X}$. Suppose that $\langle\cdot, \cdot \mid \cdot\rangle$ is a K-valued function defined on $\mathscr{X} \times \mathscr{X} \times \mathscr{X}$ satisfying the subsequent conditions:
(I1) $\langle x, x \mid z\rangle \geqslant 0$ and $\langle x, x \mid z\rangle=0$, if and only if x and z are linearly dependent;
(I2) $\langle x, x \mid z\rangle=\langle z, z \mid x\rangle$;
(I3) $\langle y, x \mid z\rangle=\overline{\langle x, y \mid z\rangle}$;
(I4) $\langle\alpha x, y \mid z\rangle=\alpha\langle x, y \mid z\rangle$ for any scalar $\alpha \in K$;
(I5) $\left\langle x+x^{\prime}, y \mid z\right\rangle=\langle x, y \mid z\rangle+\left\langle x^{\prime}, y \mid z\right\rangle$.
$\langle\cdot, \cdot \mid \cdot\rangle$ is called a 2-inner product on \mathscr{X} and $(\mathscr{X},\langle\cdot, \cdot \mid \cdot\rangle)$ is called a 2 -inner product space (or 2-pre-Hilbert space). Some basic properties of 2-inner product $\langle\cdot, \cdot \mid \cdot\rangle$ can be immediately obtained as follows:
(P1) $\langle 0, y \mid z\rangle=\langle x, 0 \mid z\rangle=\langle x, y \mid 0\rangle=0$;
(P2) $\langle x, \alpha y \mid z\rangle=\bar{\alpha}\langle x, y \mid z\rangle$ for any $\alpha \in K$;
(P3) $\langle x, y \mid \alpha z\rangle=|\alpha|^{2}\langle x, y \mid z\rangle$, for all $x, y, z \in \mathscr{X}$ and $\alpha \in K$.

By the above properties, we can prove the Cauchy-Schwarz inequality

$$
|\langle x, y \mid z\rangle|^{2} \leqslant\langle x, x \mid z\rangle\langle y, y \mid z\rangle
$$

The most common example for a linear 2 -inner product $\langle\cdot, \cdot \mid \cdot\rangle$ is defined on \mathscr{X} by

$$
\langle x, y \mid z\rangle:=\operatorname{det}\left[\begin{array}{ll}
\langle x, y\rangle & \langle x, z\rangle \\
\langle z, y\rangle & \langle z, z\rangle
\end{array}\right]
$$

for all $x, y, z \in \mathscr{X}$. In [3], it is shown that, in any given 2 -inner product space $(\mathscr{X},\langle\cdot, \cdot \mid \cdot\rangle)$, we can define a function

$$
\begin{equation*}
\|x, z\|=\sqrt{\langle x, x \mid z\rangle} \tag{1.1}
\end{equation*}
$$

for all $x, z \in \mathscr{X}$. It is easy to see that this function satisfies the following conditions:
(N1) $\|x, y\|=0$, if and only if x and y are linearly dependent;
(N2) $\|x, y\|=\|y, x\|$;
(N3) $\|\alpha x, y\|=|\alpha|\|x, y\|$ for any real number α;
(N4) $\|x, y+z\| \leqslant\|x, y\|+\|x, z\|$.
Any function $\|\cdot, \cdot\|$ defined on $\mathscr{X} \times \mathscr{X}$ and satisfying the above conditions is called a 2-norm on \mathscr{X} and $(\mathscr{X},\|\cdot, \cdot\|)$ is called linear 2-normed space.

Whenever a 2 -inner product space $(\mathscr{X},\langle\cdot, \cdot \mid \cdot\rangle)$ is given, we consider it as a linear 2-normed space $(\mathscr{X},\|\cdot, \cdot\|)$ with the 2 -norm represented by (1.1).

An operator A is said to be bounded, if there exists $M>0$ such that

$$
\|A x, y\| \leqslant M\|x, y\|,
$$

for every $x, y \in \mathscr{X}$ (we write $A \in \mathscr{B}(\mathscr{X})$).
Let $(\mathscr{X},\langle\cdot, \cdot \mid \cdot\rangle)$ be a 2 -inner product space, and $z \in \mathscr{X}$. A sequence $\left\{x_{n}, z\right\}$ in \mathscr{X} is a z-Cauchy sequence if

$$
\forall \varepsilon>0 \exists N>0 \text {, s.t } \forall m, n \geqslant N 0<\left\|x_{m}-x_{n}, z\right\|<\varepsilon .
$$

Meanwhile, \mathscr{X} is called z-Hilbert if every z-Cauchy sequence is converges in the semi normed $(\mathscr{X},\|\cdot, z\|)$.

2. Main properties

Let C be a nonempty closed convex subset of a 2 -inner product space. A mapping $A: C \rightarrow C$ is named non spreading if

$$
2\|A x-A y, z\|^{2} \leqslant\|A x-y, z\|^{2}+\|A y-x, z\|^{2}
$$

for all $x, y \in C$.
We say $A: C \rightarrow C$ is an asymptotic non-spreading mapping if there exists two functions $\alpha: C \rightarrow[0,2)$ and $\beta: C \rightarrow[0, k], k<2$, such that
(a) $2\|A x-A y, z\|^{2} \leqslant \alpha(x)\|A x-y, z\|^{2}+\beta(x)\|A y-x, z\|^{2}$, for all $x, y, z \in C$.
(b) $0<\alpha(x)+\beta(x) \leqslant 2$, for all $x \in C$.

It is required to remark that
(a') If $\alpha(x)=\beta(x)=1$, for all $x \in C$, then A is a non-spreading mapping.
(b') If $\alpha(x)=\frac{4}{3}$ and $\beta(x)=\frac{2}{3}$ for all $x \in C$, then A is a $A J-2$ mapping.
Let \mathscr{X} be a real 2-inner product space and C be a nonempty subset of \mathscr{X}. A mapping $A: C \rightarrow \mathscr{X}$ is named symmetric generalized hybrid if there exist $\alpha, \beta, \gamma, \delta \in$ \mathbb{R} such that

$$
\begin{aligned}
& \alpha\|A x-A y, z\|^{2}+\beta\left(\|x-A y, z\|^{2}+\|A x-y, z\|^{2}\right)+\gamma\|x-y, z\|^{2} \\
& +\delta\left(\|x-A x, z\|^{2}+\|y-A y, z\|^{2}\right) \leqslant 0
\end{aligned}
$$

for all $x, y, z \in \mathscr{X}$. Such mapping A is also called $(\alpha, \beta, \gamma, \delta)$-symmetric generalized hybrid.

THEOREM 2.1. Let C be a nonempty closed convex subset of a 2-inner product space $\mathscr{X} \times \mathscr{X}$. Let α, β be the same as in the above. Then $A: C \rightarrow C$ is an asymptotic non-spreading mapping if

$$
\begin{aligned}
& \|A x-A y, z\|^{2} \\
& \leqslant \frac{\alpha(x)-\beta(x)}{2-\beta(x)}\|A x-x, z\|^{2} \\
& \quad+\frac{\alpha(x)\|x-y, z\|}{2-\beta(x)} \frac{2\langle A x-x, \alpha(x)(x-y)+\beta(x)(A y-x) \mid z\rangle}{2-\beta(x)} .
\end{aligned}
$$

Proof. We have that for $x, y, z \in C$

$$
\begin{aligned}
2\|A x-A y, z\|^{2} \leqslant & \alpha(x)\|A x-y, z\|^{2}+\beta(x)\|A y-x, z\|^{2} \\
= & \alpha(x)\|A x-x, z\|^{2}+2 \alpha(x)\langle A x-x, x-y \mid z\rangle \\
& +\alpha(x)\|x-y, z\|^{2}+\beta(x)\|A y-A x, z\|^{2} \\
& +2 \beta(x)\langle A y-A x, A x-x \mid z\rangle+\beta(x)\|A x-x, z\|^{2} \\
= & (\alpha(x)+\beta(x))\|A x-x, z\|^{2}+\beta(x)\|A y-A x, z\|^{2} \\
& +\alpha(x)\|x-y, z\|^{2}+2 \alpha(x)\langle A x-x, x-y \mid z\rangle \\
& +2 \beta(x)\langle A y-x+x-A x, A x-x \mid z\rangle \\
= & (\alpha(x)-\beta(x))\|A x-x, z\|^{2}+\beta(x)\|A y-A x, z\|^{2} \\
& +\alpha(x)\|x-y, z\|^{2}+\langle A x-x, 2 \alpha(x)(x-y) \\
& +2 \beta(x) A y-x|z\rangle
\end{aligned}
$$

and this indicates the desired result.

THEOREM 2.2. Let $\mathscr{X} \times \mathscr{X}$ be a real 2 -inner product space, let C be a nonempty closed convex subset of \mathscr{X} and let A be an $(\alpha, \beta, \gamma, \delta)$-symmetric generalized hybrid mapping from C into itself such that the conditions
(i) $\alpha+2 \beta+\gamma \geqslant 0$
(ii) $\alpha+\beta+\delta>0$
(iii) $\delta \geqslant 0$
hold. Then A has a fixed point if and only if there exists $y \in C$ such that $\left\{A^{n} y: n \in\{0\right.$, $1, \ldots\}\}$ is bounded. In particular, a fixed point of A is unique in the case of $\alpha+2 \beta+$ $\gamma>0$ on the condition.

Proof. Assume that A has a fixed point y. Then $\left\{A^{n} y: n \in\{0,1, \ldots\}\right\}=\{y\}$ and hence $\left\{A^{n} y: n \in\{0,1, \ldots\}\right\}$ is bounded. Conversely, suppose that there exists $y \in$ C such that $\left\{A^{n} y: n \in\{0,1, \ldots\}\right\}$ is bounded. Since A is an $(\alpha, \beta, \gamma, \delta)$-symmetric generalized hybrid mapping of C into itself, we have that

$$
\begin{aligned}
& \alpha\left\|A x-A^{n+1} y, z\right\|^{2}+\beta\left(\left\|x-A^{n+1} y, z\right\|^{2}+\left\|A x-A^{n} y, z\right\|^{2}\right) \\
& \quad+\gamma\left\|x-A^{n} y, z\right\|^{2}+\delta\left(\|x-A x, z\|^{2}+\left\|A^{n} y-A^{n+1} y, z\right\|^{2}\right) \leqslant 0
\end{aligned}
$$

for all $n \in \mathbb{N} \cup\{0\}$ and $x \in C$. Since $\left\{A^{n} y\right\}$ is bounded, we can apply Banach limit μ to both sides of the inequality. Since $\mu_{n}\left\|A x-A^{n} y, z\right\|^{2}=\mu_{n}\left\|A x-A^{n+1} y, z\right\|^{2}$ and $\mu_{n}\left\|x-A^{n+1} y, z\right\|^{2}=\mu_{n}\left\|x-A^{n} y, z\right\|^{2}$, we have that

$$
\begin{aligned}
& (\alpha+\beta) \mu_{n}\left\|A x-A^{n} y, z\right\|^{2}+(\beta+\gamma) \mu_{n}\left\|x-A^{n} y, z\right\|^{2} \\
& \quad+\delta\left(\|x-A x, z\|^{2}+\mu_{n}\left\|A^{n} y-A^{n+1} y, z\right\|^{2}\right) \leqslant 0
\end{aligned}
$$

Also, since

$$
\mu_{n}\left\|A x-A^{n} y, z\right\|^{2}=\|A x-x, z\|^{2}+2 \mu_{n}\left(A x-x, x-A^{n}, z\right)+\mu_{n}\left\|x-A^{n} x, z\right\|^{2}
$$

we have that

$$
\begin{aligned}
& (\alpha+\beta+\delta)\|A x-x, z\|^{2}+2(\alpha+\beta) \mu_{n}\left(A x-x, x-A^{n} \mid z\right) \\
& \quad+(\alpha+2 \beta+\gamma) \mu_{n}\left\|x-A^{n} y, z\right\|^{2}+\delta \mu_{n}\left\|A^{n} x-A^{n+1} x, z\right\|^{2} \leqslant 0
\end{aligned}
$$

From (i) and (iii) we have

$$
\begin{equation*}
(\alpha+\beta+\delta)\|A x-x, z\|^{2}+2(\alpha+\beta) \mu_{n}\left(A x-x, x-A^{n}, z\right) \leqslant 0 \tag{2.1}
\end{equation*}
$$

Since there exists $p \in \mathscr{X}$ such that

$$
\mu_{n}\left(w, A^{n} y, z\right)=(w, p, z)
$$

for all $w \in \mathscr{X}$. We have from (2.1) that

$$
\begin{equation*}
(\alpha+\beta+\delta)\|A x-x, z\|^{2}+2(\alpha+\beta) \mu_{n}(A x-x, x-p, z) \leqslant 0 \tag{2.2}
\end{equation*}
$$

Since C is closed and convex, we have that

$$
p \in \overline{c o}\left\{A^{n} x: n \in \mathbb{N}\right\} \subset C
$$

Placing $x=p$ we receive from (2.2) that

$$
\begin{equation*}
(\alpha+\beta+\delta)\|A p-p, z\|^{2} \leqslant 0 \tag{2.3}
\end{equation*}
$$

We have from (ii) that $\|A p-p, b\|^{2} \leqslant 0$. This means that p is a fixed point in A.
New assume that $\alpha+2 \beta+\gamma>0$. Let p_{1} and p_{2} be fixed points of A. Then we have that

$$
\begin{aligned}
& \alpha\left\|A p_{1}-A p_{2}, z\right\|^{2}+\beta\left(\left\|p_{1}-A p_{2}, z\right\|^{2}+\left\|A p_{1}-p_{2}, z\right\|^{2}\right) \\
& \quad+\gamma\left\|p_{1}-p_{2}, z\right\|^{2}+\delta\left(\left\|p_{1}-A p_{1}, z\right\|^{2}+\left\|p_{2}-A p_{2}, z\right\|^{2}\right) \leqslant 0
\end{aligned}
$$

and hence $(\alpha+2 \beta+\gamma)\left\|p_{1}-p_{2}, z\right\|^{2} \leqslant 0$. We have from $\alpha+2 \beta+\gamma>0$ that $p_{1}=p_{2}$. Consequently, a fixed point of A is unique. This completes the proof.

Corollary 2.3. Let $\mathscr{X} \times \mathscr{X}$ be a real 2 -inner product space, let C be a nonempty closed convex subset of \mathscr{X} and let A be an $(\alpha, \beta, \gamma, \delta)$-symmetric generalized hybrid mapping from C into itself such that the conditions

1. $\alpha+2 \beta+\gamma \geqslant 0$
2. $\alpha+\beta+\delta>0$
3. $\delta \geqslant 0$
hold. Then A has a fixed. In particular, a fixed point of A is unique in the case of $\alpha+2 \beta+\gamma>0$ on the condition.

The next theorem is the generalization of the Banach contraction principle in the 2-inner product space, involving four rational square terms in the inequality.

THEOREM 2.4. Let $A: \mathscr{X} \rightarrow \mathscr{X}$ be a self-mapping satisfying the following condition

$$
\begin{aligned}
\|A x-A y, z\|^{2} \leqslant & a_{1} \frac{\|y-A y, z\|^{2}\left(1+\|x-A x, z\|^{2}\right)}{1+\|x-y, z\|^{2}} \\
& +a_{2} \frac{\|x-A x, z\|^{2}\left(1+\|y-A y, z\|^{2}\right)}{1+\|x-y, z\|^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& +a_{3} \frac{\|x-A y, z\|^{2}\left(1+\|y-A x, z\|^{2}\right)}{1+\|x-y, z\|^{2}} \\
& +a_{4} \frac{\|y-A x, z\|^{2}\left(1+\|x-A y, z\|^{2}\right)}{1+\|x-y, z\|^{2}} \\
& +a_{5}\|x-y, z\|^{2}
\end{aligned}
$$

for all $x, y, z \in \mathscr{X}$ and $x \neq y$, where $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ are non negative reals with $a_{1}+$ $a_{2}+a_{3}+4 a_{4}+a_{5}<1$. Therefore, A has a unique fixed point in \mathscr{X}.

Proof. For some $x_{0} \in \mathscr{X}$, we define a sequence $\left\{x_{n}\right\}$ of iterates of A as follows

$$
x_{1}=A x_{0}, z, x_{2}=A x_{1}, z, x_{3}=A x_{2}, z, \ldots, x_{n+1}=A x_{n}, z
$$

for $n \in\{0,1, \ldots\}$.
Now, we demonstrate that $\left\{x_{n}, z\right\}$ is a z-Cauchy sequence in $\mathscr{X} \times \mathscr{X}$. For this, consider

$$
\left\|x_{n+1}-x_{n}, z\right\|^{2}=\left\|A x_{n}-A x_{n-1}, z\right\|^{2}
$$

Then by utilizing the assumption, we have

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}, z\right\|^{2} \leqslant & a_{1} \frac{\left\|x_{n-1}-A x_{n-1}, z\right\|^{2}\left(1+\left\|x_{n}-A x_{n}, z\right\|^{2}\right)}{1+\left\|x_{n}-x_{n-1}, z\right\|^{2}} \\
& +a_{2} \frac{\left\|x_{n}-A x_{n}, z\right\|^{2}\left(1+\left\|x_{n-1}-A x_{n-1}, z\right\|^{2}\right)}{1+\left\|x_{n}-x_{n-1}, z\right\|^{2}} \\
& +a_{3} \frac{\left\|x_{n}-A x_{n-1}, z\right\|^{2}\left(1+\left\|x_{n-1}-A x_{n}, z\right\|^{2}\right)}{1+\left\|x_{n}-x_{n-1}, z\right\|^{2}} \\
& +a_{4} \frac{\left\|x_{n-1}-A x_{n}, z\right\|^{2}\left(1+\left\|x_{n}-A x_{n-1}, z\right\|^{2}\right)}{1+\left\|x_{n}-x_{n-1}, z\right\|^{2}} \\
& +a_{5}\left\|x_{n}-x_{n-1}, z\right\|^{2}
\end{aligned}
$$

which indicates that

$$
\begin{aligned}
& \left(1-a_{2}-2 a_{4}\right)\left\|x_{n+1}-x_{n}, z\right\|^{2} \\
& \quad+\left(1-a_{1}-a_{2}\right)\left\|x_{n+1}-x_{n}, z\right\|^{2}\left\|x_{n}-x_{n-1}, z\right\|^{2} \\
& \leqslant\left(\left(a_{1}+2 a_{4}+a_{5}\right)+a_{5}\left\|x_{n}-x_{n-1}, z\right\|^{2}\right)\left\|x_{n}-x_{n-1}, z\right\|^{2}
\end{aligned}
$$

Resulting in

$$
\left\|x_{n+1}-x_{n}, z\right\|^{2} \leqslant p(n)\left\|x_{n}-x_{n-1}, b\right\|^{2}
$$

where

$$
p(n)=\frac{\left(a_{1}+2 a_{4}+a_{5}\right)+a_{5}\left\|x_{n}-x_{n-1}, z\right\|^{2}}{\left(1-a_{2}-2 a_{4}\right)+\left(1-a_{1}-a_{2}\right)\left\|x_{n}-x_{n-1}, z\right\|^{2}}
$$

for $n \in\{0,1, \ldots\}$. Obviously $p(n)<1$, for all n as $a_{1}+a_{2}+a_{3}+4 a_{4}+a_{5}<1$. Repeating the same argument, we find some $S<1$, such that

$$
\left\|x_{n+1}-x_{n}, z\right\|^{2} \leqslant \lambda^{n}\left\|x_{1}-x_{0}, z\right\|^{2}
$$

where $\lambda=S^{2}$. Letting $n \rightarrow \infty$, we obtain $\left\|x_{n+1}-x_{n}, z\right\| \rightarrow 0$. It follows that $\left\{x_{n}, z\right\}$ is a z-Cauchy sequence in \mathscr{X}. So by the completeness of \mathscr{X} there exists a point $\mu \in \mathscr{X}$ such that $x_{n} \rightarrow \mu$ as $n \rightarrow \infty$. Also $\left\{x_{n+1}, z\right\}=\left\{A x_{n}, z\right\}$ is sub sequence of $\left\{x_{n}, z\right\}$ converges to the same limit μ. Since A is continuous, we get

$$
A(\mu)=A\left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} x_{n+1}=\mu
$$

Thus μ is a fixed point of \mathscr{X}. Now, we establish the uniqueness of μ. If A has another fixed point γ and $\mu \neq \gamma$, then

$$
\begin{aligned}
\left\|p-p^{\prime}, z\right\|^{2}= & \left\|A p-A p^{\prime}, z\right\|^{2} \\
\leqslant & a_{1} \frac{\left\|p^{\prime}-A p^{\prime}, z\right\|^{2}\left(1+\|p-A p, z\|^{2}\right)}{1+\left\|p-p^{\prime}, b\right\|^{2}} \\
& +a_{2} \frac{\|p-A p, z\|^{2}\left(1+\left\|p^{\prime}-A p^{\prime}, z\right\|^{2}\right)}{1+\left\|p-p^{\prime}, z\right\|^{2}} \\
& +a_{3} \frac{\left\|p-A p^{\prime}, z\right\|^{2}\left(1+\left\|p^{\prime}-A p, z\right\|^{2}\right)}{1+\left\|p-p^{\prime}, z\right\|^{2}} \\
& +a_{4} \frac{\left\|p^{\prime}-A p, z\right\|^{2}\left(1+\left\|p-A p^{\prime}, z\right\|^{2}\right)}{1+\left\|p-p^{\prime}, z\right\|^{2}} \\
& +a_{5}\left\|p-p^{\prime}, z\right\|^{2}
\end{aligned}
$$

which, in turn, indicates that

$$
\left\|p-p^{\prime}, z\right\|^{2} \leqslant\left(a_{3}+a_{4}+a_{5}\right)\left\|p-p^{\prime}, z\right\|^{2}
$$

This provides a contradiction, for $a_{3}+a_{4}+a_{5}<1$. Accordingly, p is a unique fixed point of A in \mathscr{X}.

3. Frame in 2-Hilbert space

This section introduces frame notions in a 2-Hilbert space \mathscr{H}. Some results concerning these notions are surveyed. We refer the reader to [16] for other fresh generalizations of the frame.

Many authors have obtained significant results on the classical definition of the 2 -inner product (e.g., see $[1,4,5]$). However, the most important fault in the classical definition of a 2 -inner product space was that they could not define 2-Hilbert spaces. Gordji [7] presented the best-generalized definition of the 2-inner product space, which includes all the previous definitions and the geometric approach to the concept of a more appropriate. In this section, we recall some fundamental definitions of generalized 2inner product spaces that will be used in the sequel.

DEFINITION 3.1. A complex vector space \mathscr{X} is called a 2 -inner product space if there exists a complex-valued function $\langle(\cdot, \cdot),(\cdot, \cdot)\rangle$ on $\mathscr{X}^{2} \times \mathscr{X}^{2}$ such that, for all $x, y, z, w \in \mathscr{X}$ and $\alpha \in \mathbb{C}$ satisfying the following conditions:
(a) $\langle(x, y),(z, w)\rangle=\overline{\langle(z, w),(x, y)\rangle}$;
(b) If x and y are linearly independent in X, then $\langle(x, y),(x, y)\rangle>0$;
(c) $\langle(x, y),(z, w)\rangle=-\langle(y, x),(w, z)\rangle$;
(d) $\left\langle\left(\alpha x+x^{\prime}, y\right),(z, w)\right\rangle=\alpha\langle(x, y),(z, w)\rangle+\left\langle\left(x^{\prime}, y\right),(z, w)\right\rangle$.

In any given 2 -inner product space $(\mathscr{X},\langle(\cdot, \cdot),(\cdot, \cdot)\rangle)$, we can define a function $\|\cdot, \cdot\|$ on $\mathscr{X}^{2} \times \mathscr{X}^{2}$ by

$$
\|x, y\|=\langle(x, y),(x, y)\rangle^{\frac{1}{2}}
$$

Let \mathscr{X} be a linear space of dimension greater than 1 and let $\|\cdot, \cdot\|$ be a real-valued function on $\mathscr{X} \times \mathscr{X}$ satisfying the following conditions:
(a) $\|x, y\|=0$ if and only if x and y are linearly dependent;
(b) $\|x, y\|=\|y, x\|$;
(c) $\|\alpha x, y\|=|\alpha|\|x, y\|$, where α is real;
(d) $\|x, y+z\| \leqslant\|x, y\|+\|x, z\|$.

The function $\|\cdot, \cdot\|$ is called a 2 -norm on \mathscr{X} and $(\mathscr{X},\|\cdot, \cdot\|)$ a linear 2 -normed space. Note that in the definition of 2 -norm, if the following condition replaces the condition (d):
(e) $\|x, y\|=\|x, y-x\|$
then the function $\|\cdot, \cdot\|$ is called a semi 2 -norm on \mathscr{X} and $(\mathscr{X},\|\cdot, \cdot\|)$ a semi 2 -normed space. Some basic properties of 2 -inner product $\langle(\cdot, \cdot),(\cdot, \cdot)\rangle$ can be immediately obtained as follows:
(I) $\langle(x, y),(x, y)\rangle \geqslant 0$,
(II) $\left\langle(x, y),\left(z, \beta w+w^{\prime}\right)\right\rangle=\bar{\beta}\langle(x, y),(z, w)\rangle+\left\langle(x, y),\left(z, w^{\prime}\right)\right\rangle$,
(III) $\langle(x, y),(x, y)\rangle=0$ if and only if x and y are linearly,
for all $x, y, z, w, w^{\prime} \in X$ and and $\beta \in \mathbb{C}$.
Using the above properties, we can prove the Cauchy-Schwarz inequality:

$$
|\langle(x, y),(z, w)\rangle|^{2} \leqslant\langle(x, y),(x, y)\rangle\langle(z, w),(z, w)\rangle
$$

Let $(\mathscr{X},\|\cdot, \cdot\|)$ be a 2 -normed space. Let \mathscr{D} be a subspace of $\mathscr{X}, b \in \mathscr{D}$ be fixed, then a map $A: \mathscr{D} \times\langle b\rangle \rightarrow \mathscr{K}$ where $\langle b\rangle$ is the subspace of \mathscr{X} generated by b, is called a b-operator on $\mathscr{D} \times\langle b\rangle$ whenever for every $x, y \in \mathscr{D}$ and $k \in \mathscr{K}$ holds:

1. $A(x+y, b)=A(x, b)+A(y, b)$.
2. $A(k x, b)=k A(x, b)$.

A b-operator $A: \mathscr{D} \times\langle b\rangle \rightarrow \mathscr{K}$ is said to be bounded if there exists a real number $\mathscr{M}>0$ such that $|A(x, b)| \leqslant \mathscr{M}\|x, b\|$ for every $x \in \mathscr{D}$.

The norm of the b-operator is defined by

$$
\|A\|_{2}=\sup \{|A(x, b)|:\|x, b\|=1\} .
$$

Also we have $|A(x, b)| \leqslant\|A\|\|x, b\|$, where $A(x, b)=\langle x, y \mid b\rangle$ for every x in \mathscr{X}.
Harikrishnan et al. [9] proved the Riesz theorem in a 2-inner product for b operators (see also [13]). In addition, Riyas in [15], presented the notion of adjoint for b-operators as follows:

DEFINITION 3.2. Let \mathscr{X} be a 2 -normed space. Restricting \mathscr{X} to $\widetilde{\mathscr{X}}$, define $A^{*}: \widetilde{\mathscr{X}} \rightarrow \widetilde{\mathscr{X}}$ by $A^{*}(y)=z_{y}$. By construction,

$$
\left\langle\left(A^{*}(y), b\right),(x, b)\right\rangle=\langle(y, b),(A(x), b)\rangle
$$

or

$$
\left\langle A^{*}(y), b\right\rangle_{b}=\langle y, A(x)\rangle_{b}
$$

We call A^{*} adjoint operator of A in $\mathscr{B}(\mathscr{X})$.
We refer the interested reader to [2] for the basic theory of 2 -inner product spaces.
Let \mathscr{V} be a finite-dimensional vector space equipped with a 2 -inner product introduced in the previous section. A countable family of elements $\left\{f_{i}, h_{i}\right\}_{i \in I}$ in $\mathscr{V} \times \mathscr{V}$ is a frame for $\mathscr{V} \times \mathscr{V}$ if there exists constants $A, B>0$ such that

$$
\begin{equation*}
A\|f, g\|^{2} \leqslant \sum_{i \in I}\left|\left\langle(f, g),\left(f_{i}, h_{i}\right)\right\rangle\right|^{2} \leqslant B\|f, g\|^{2}, \quad((f, g) \in \mathscr{V} \times \mathscr{V}) \tag{3.1}
\end{equation*}
$$

The numbers A, B are called frame bounds. The frame is normalized if $\left\|f_{i}, h_{i}\right\|=1$ for each $i \in I$.

Cauchy-Schwarz inequality shaws that

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\left\langle(f, g),\left(f_{i}, h_{i}\right)\right\rangle\right|^{2} \leqslant \sum_{i=1}^{n}\|f, g\|^{2}\left\|f_{i}, h_{i}\right\|^{2},((f, g) \in \mathscr{V} \times \mathscr{V}) \tag{3.2}
\end{equation*}
$$

Let $\left\{f_{i}, b\right\}_{i=1}^{n}$ be a frame for $\mathscr{V} \times\langle b\rangle$ and define a linear mapping

$$
T: \mathbb{C}^{m} \rightarrow \mathscr{V} \times\langle b\rangle, T\left\{c_{i}\right\}_{i=1}^{n}=\sum_{i=1}^{n} c_{i}\left(f_{i}, b\right)
$$

T is usually called the pre-frame operator. Also, the adjoint operator is given

$$
T^{*}: \mathscr{V} \times\langle b\rangle \rightarrow \mathbb{C}^{m},\left(T^{*} f, b\right)=\left\{\left\langle(f, b),\left(f_{i}, b\right)\right\rangle\right\}_{i=1}^{n}
$$

and is named the analysis operator. By composing T with its adjoint T^{*}, we obtain the frame operator

$$
S: \mathscr{V} \times\langle b\rangle \rightarrow \mathscr{V} \times\langle b\rangle, S(f, b)=T\left(T^{*} f, b\right)=\sum_{i=1}^{n}\left\langle(f, b),\left(f_{i}, b\right)\right\rangle\left(f_{i}, b\right)
$$

Note that in terms of the frame operator,

$$
\langle(S f, b)(f, b)\rangle=\sum_{i=1}^{n}\left|\left\langle(f, b),\left(f_{i}, b\right)\right\rangle\right|^{2}, \quad((f, b) \in \mathscr{V} \times\langle b\rangle) .
$$

DEFINITION 3.3. A frame $\left\{f_{i}, g_{i}\right\}_{i=1}^{n}$ is tight if

$$
\sum_{i=1}^{n}\left|\left\langle(f, g),\left(f_{i}, h_{i}\right)\right\rangle\right|^{2}=A\|f, g\|^{2}, \quad((f, g) \in \mathscr{V} \times \mathscr{V})
$$

PROPOSITION 3.4. Let $\left\{f_{i}, h_{i}\right\}_{i=1}^{n}$ be a sequence in $\mathscr{V} \times \mathscr{V}$. Then $\left\{f_{i}, h_{i}\right\}_{i=1}^{n}$ is a frame for span $\left\{f_{i}, h_{i}\right\}_{i=1}^{n}$.

Proof. We can assume that not all $\left\{f_{i}, h_{i}\right\}_{i=1}^{n}$ are zero. The upper frame condition is satisfied with

$$
B=\sum_{i=1}^{n}\left\|f_{i}, h_{i}\right\|^{2}
$$

Now let

$$
\mathscr{W} \times \mathscr{W}:=\operatorname{span}\left\{f_{i}, h_{i}\right\}_{i=1}^{n}
$$

and consider the continuous mapping

$$
\phi: \mathscr{W} \times \mathscr{W} \rightarrow \mathbb{R}, \phi(f, g)=\sum_{i=1}^{n}\left|\left\langle(f, g),\left(f_{i}, h_{i}\right)\right\rangle\right|^{2}
$$

The unit ball is compact so

$$
\begin{aligned}
A & =: \sum_{i=1}^{n}\left|\left\langle(w, k),\left(f_{i}, h_{i}\right)\right\rangle\right|^{2} \\
& =\inf \left\{\sum_{i=1}^{m}\left|\left\langle(f, g),\left(f_{i}, h_{i}\right)\right\rangle\right|^{2}:(f, g) \in \mathscr{W} \times \mathscr{W},\|f, g\|=1\right\} .
\end{aligned}
$$

It is clear that $A>0$. Now given $(f, g) \in \mathscr{W} \times \mathscr{W}$ and $(f, g) \neq 0$, we have

$$
\sum_{i=1}^{n}\left|\left\langle(f, g),\left(f_{i}, h_{i}\right)\right\rangle\right|^{2}=\sum_{i=1}^{n}\left|\left\langle\frac{(f, g)}{\|f, g\|},\left(f_{i}, h_{i}\right)\right\rangle\right|^{2}\|f, g\|^{2} \geqslant A\|f, g\|^{2}
$$

COROLLARY 3.5. A family of elements $\left\{f_{i}, h_{i}\right\}_{i \in I}$ in $\mathscr{V} \times \mathscr{V}$ is a frame for $\mathscr{V} \times \mathscr{V}$ if and only if span $\left\{f_{i}, h_{i}\right\}_{i \in I}=\mathscr{V} \times \mathscr{V}$.

Acknowledgements. The authors thank the referees for their valuable suggestions and comments.

REFERENCES

[1] Y. J. Cho, M. Matic and J. E. Pecaric, On Gram's determinant in 2-inner product spaces, J. Korean Math. Soc., 38 (6) (2001): 1125-1156.
[2] Y. J. Cho, P. C. S. Lin, S. S. Kim, and A. Misiak, Theory of 2-inner product spaces, Nova Science Publishers, Inc., New York, 2001.
[3] C. Diminnie, 2-inner product spaces, Demonstratio Math., 6 (1973): 525-536.
[4] S. S. Dragomir, Y. J. Cho, S. S. Kim and A. Sofo, Some Boas-Bellman type inequalities in 2-inner product spaces, J. Inequal. in Pure and Appl. Math., 6 (2) 55 (2005): 1-13.
[5] R. W. Freese, S. S. Dragomir, Y. J. Cho, and S. S. Kim, Some companions of Gruss inequality in 2 -inner product space and applications for determinantal integral inequalities, Commun. Korean Math. Soc., 20 (3) (2005): 487-503.
[6] S. GÄHLER, Linear 2-normierte Räume, Math. Nachr., 28 (1965): 1-45.
[7] M. E. Gordji, A. Divandari, M. R. Safi, and Y. J. Cho, On reformations of 2-Hilbert spaces, Aust. J. Math. Anal. Appl., 10 (1) (2013): 1-11.
[8] P. Harikrishnan, H. R. Moradi, and M. E. Omidvar, Numerical radius inequalities in 2-inner product spaces, Kragujevac J. Math., 44 (3) (2020): 415-421.
[9] P. K. Harikrishnan, P. Riyas, and K. T. Ravindran, Riesz Theorems In 2-Inner Product Spaces, Novi Sad J. Math., 41 (2) (2011): 57-61.
[10] P. K. Harikrishnan, B. L. Guillen, R. P. Agarwal, and H. R. Moradi, Strong and weak convergences in 2-probabilistic normed spaces, Adv. Theory Nonlinear Anal. Appl., 5 (2021): 454466.
[11] Z. LEWANDOWSKA, Banach-Steinhaus Theorems for bounded linear operators with values in a generalized 2-normed space, Glasnik Mat., 38 (2003): 329-340.
[12] Z. Lewandowska, Bounded 2-linear operators on 2-normed sets, Glasnik Mat., 39 (59) (2004): 303-314.
[13] H. Mazaheri, R. Kazemi, Some results on 2-inner product spaces, Novi Sad J. Math., 37 (2) (2007): 35-40.
[14] M. E. Omidvar, H. R. Moradi, S. S. Dragomir, and Y. J. Cho, Some reverses of the CauchySchwarz and triangle inequalities in 2-inner product spaces, Kragujevac J. Math., 41 (1) (2017): 8192.
[15] P. Riyas, K. Travindran, Riesz Theorems and Adjoint Operators on Generalized 2-Inner Product Spaces, Global Journal of Mathematics, 3 (1) (2015): 244-255.
[16] M. Taleb Alfakhr, M. E. Omidvar, H. R. Moradi, P. K. Harikrishnan, and S. S. DRAGOMIR, Properties and related inequalities of ϕ-frames in normed spaces, Appl. Math. E-Notes., 19 (2019), 419-432.
[17] A. White, 2-Banach spaces, Math. Nachr., 42 (1969): 43-60.

Abbas Alipour
Department of Mathematics
Kerman Branch, Islamic Azad University
Kerman, Iran
e-mail: abbasalipour1983@yahoo.com
Mohammad Hadi Akhbari
Department of Mathematics
Estahban Branch, Islamic Azad University
Estahban, Iran
e-mail: mhakhbari20@gmail.com

