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FURTHER PROPERTIES OF 2-INNER PRODUCT SPACES

ABBAS ALIPOUR AND MOHAMMAD HADI AKHBARI

(Communicated by M. Sababheh)

Abstract. This paper aims to establish some results on the structure of fixed point sets for map-
pings in 2-inner product spaces. To this end, we employ some well-known techniques of 2-inner
product spaces.

1. Introduction and preliminaries

The concept of 2-metric spaces, linear 2-normed spaces, and 2-inner product spaces
was introduced by Gihler [6]. After that, several authors like White [17], Lewandowska
[11, 12], Freese [5], and Diminnie [3], worked on possible applications of Metric Ge-
ometry, Functional Analysis, and Topology in these settings. Some other related results
are also concerned in [2, 8, 10, 14].

Let 2 be a linear space of dimension greater than one over the field K =R of
real numbers or the field K = C of complex numbers and let x,y,z € 2. Suppose
that (-,-|-) is a K -valued function defined on 2" x 2" x 2~ satisfying the subsequent
conditions:

(I1) (x,x|z) >0 and (x,x|z) =0, if and only if x and z are linearly dependent;
X, x2) = (z,20x);

{
{
13) (v,xlz) = (x,yl2)s
(
{

ox,y|z) = a{x,y|z) for any scalar o € K;

(I5) (x+x,ylz) = (x,y|z) + &, y]z).

(-,-]-) is called a 2-inner product on 2" and (27, (:,-|-)) is called a 2-inner product
space (or 2-pre-Hilbert space). Some basic properties of 2-inner product (-,-|-) can be
immediately obtained as follows:

(P1) (0,ylz) = (x,0z) = (x,y/0) =
(P2) (x,ay|z) =0 (x,y|z) forany a € K;
(P3) (x,y|oz) = |a|? (x,y|z), forall x,y,z€ 2 and a € K.
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By the above properties, we can prove the Cauchy-Schwarz inequality

(e, ¥12) 7 < (x,x]2) (3, y12) -

The most common example for a linear 2-inner product (-, -|-) is defined on 2~ by

e y) (x2)
(x,y|z) := det [<z7y> <Z7§>]

forall x,y,z € 2 . In[3], itis shown that, in any given 2-inner productspace (2, (-,-|-)),
we can define a function
[l 2l = v/ (x, x2) (L.1)

forall x,z € 2. Itis easy to see that this function satisfies the following conditions:
(N1) ||x,y]| =0, if and only if x and y are linearly dependent;

(N2) [, ¥l = [l x][

(N3) |lex,y|| = |et| ||x, || for any real number o;

(N4) [lx,y 42l <l vl + e, 2]

Any function ||-,-|| defined on 2" x 2" and satisfying the above conditions is called a
2-normon £ and (£, ||-,-||) is called linear 2-normed space.

Whenever a 2-inner product space (27, {-,-|-)) is given, we consider it as a linear
2-normed space (2, ||-,-||) with the 2-norm represented by (1.1).

An operator A is said to be bounded, if there exists M > 0 such that

[Ax,y[| <M ||lx, ¥,

for every x,y € 2~ (we write A € #(2")).
Let (27,(-,+])) be a 2-inner product space, and z € 2 . A sequence {x,,z} in
2 is a z-Cauchy sequence if

Ve>03N >0, stVmn=NO<|x,—x,z|| <€

Meanwhile, 2" is called z-Hilbert if every z-Cauchy sequence is converges in the semi
normed (%7 ||7Z||)

2. Main properties

Let C be a nonempty closed convex subset of a 2-inner product space. A mapping
A : C — C is named non spreading if

2[|Ax — Ay, z|]* < ||Ax—y,2]|* + Ay — x,z]?

forall x,y € C.
We say A : C — C is an asymptotic non-spreading mapping if there exists two
functions o : C — [0,2) and B : C — [0,k], k < 2, such that
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(@) 2[Ax —Ay.2l|* < e (x) [ Ax —y.z]|* + B (x) |4y —x.2||* . forall x,y,z € C.
(b) 0<o(x)+PB(x) <2, forall xeC.

It is required to remark that
(@) If a(x) =P (x) =1, forall x € C, then A is a non-spreading mapping.
®) If a(x) = % and B (x) = % forall x € C, then A is a AJ-2 mapping.

Let 2" be a real 2-inner product space and C be a nonempty subset of Z2°. A
mapping A : C — % is named symmetric generalized hybrid if there exist o, 3,7,8 €
R such that

oA — Ay,z|*+ B (Il — Ay, 2l + llAx =32 + ¥k =y, 2
+8 (Il = AxzlP + ly— Ay’ ) <0

for all x,y,z € £ . Such mapping A is also called (¢, 3,7, 0)- symmetric generalized
hybrid.

THEOREM 2.1. Let C be a nonempty closed convex subset of a 2-inner product
space X x 2. Let o, B be the same as in the above. Then A : C — C is an asymptotic
non-spreading mapping if

HA)C—Ay7Z||2

< 2P fax P
@ (3) 3,2l 2 A x, @ (0) (e ) + B ) Ay =) o)
2B SRR '

Proof. We have that for x,y,z € C
2ljAx—Ay,2l* < o (3) v — 3,22+ B () Ay,
= 0 (x) [|Ax — x,2]|* + 201 (x) (Ax — x,x — y[2)
() o= w2l B () Ay — Ax, 2
2B () (v — Ax, Ax— xJ2) + B () [ Ax — x, 2P
= (@ () +B () JAx —x,2]P + B () 4y — Ax, 2|
o (x) [x =y, 2| 4 20¢ (x) (Ax = x,x = y )
+2B (x) (Ay —x+x — Ax,Ax — x|z)
= (o(x) = B (x)) [Ax = x,2[|* + B (x) || Ay — Ax, 2|
00 (x) [ 3 201> + (Ax — x, 200 (x) (x — y)
+2 (x) Ay — x[z),

and this indicates the desired result. [
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THEOREM 2.2. Let & x 2 be a real 2-inner product space, let C be a nonempty
closed convex subset of 2 and let A be an (o, 3,7, 8)-symmetric generalized hybrid
mapping from C into itself such that the conditions

(i) o+2B+7v>0
(ii)) a+B+6>0
(iti) 6=0
hold. Then A has a fixed point if and only if there exists y € C such that {A"y : n € {0,

1,...}} is bounded. In particular, a fixed point of A is unique in the case of a+2 +
Y > 0 on the condition.

Proof. Assume that A has a fixed point y. Then {A"y: n€{0,1,...}} = {y}
and hence {A"y: n € {0,1,...}} is bounded. Conversely, suppose that there exists y €
C such that {A"y: ne€{0,1,...}} is bounded. Since A is an (o, f3,y,d)-symmetric
generalized hybrid mapping of C into itself, we have that

(xHAx—A”Hy,sz +B <Hx—A"+1y,ZH2 + HAx—A"y,sz)
o= A,z + 8 (llx— Ax 2> + 4"y = 4"y, 2] ) <0

forall n € NU{0} and x € C. Since {A"y} is bounded, we can apply Banach limit
L to both sides of the inequality. Since p,||Ax— A"y, z||* = unHAx—A"“y,sz and

|| x — A"y, z ]2 = lt||x — A", 2||*, we have that

(04 B) tta|Ax — A"y, 2|1* + (B +7) bl |x — A"y, 2]
+8 (Jlx—Ax 2l + 4"y = 4 y.2]) <o0.
Also, since
|| Ax — A"y, z||* = | Ax — x, 2> + 241 (Ax — x,x — A", 2) + |l x — A"x 2]*

we have that

(0+ B+ 8)||Ax — x,2||> +2 (0 + B) i (Ax — x,x — A"|z)

+(a+2B+7) tnllx — A"y, z||* + 5,un||A”x—A”Jrlx,zH2 <0.

From (i) and (iii) we have

(00+ B+ 8) ||Ax —x,z||* +2 (0 + B) tty (Ax — x,x — A", 2) < 0. 2.1)
Since there exists p € 2~ such that

Uy (W,Any’ Z) = (Wapaz)
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for all w € 2 . We have from (2.1) that
(o4 B+ 8)||Ax — x,2||> + 2 (0t + B) phy (Ax — x,x — p,2) < 0. (2.2)
Since C is closed and convex, we have that
peco{A"x: neN} CC.
Placing x = p we receive from (2.2) that
(a+B+8)Ap—p.zl* <O. (2.3)

We have from (ii) that ||Ap — p,b||* < 0. This means that p is a fixed pointin A.
New assume that o +2 +y > 0. Let p; and p, be fixed points of A. Then we
have that

ollAps = Ap2,2l*+ B (IIp1 = Ap2, 2l + lApy = p2,2]1)

2 2 2
+ 7P = P22+ 8 (1= Ap1,2ll? + 12— Apa.2]*) <0

and hence (0 + 2B +7)||p1 — p2,z||> <0. We have from 42+ 7> 0 that p; = ps.
Consequently, a fixed point of A is unique. This completes the proof. [

COROLLARY 2.3. Let 2" x Z be a real 2-inner product space, let C be a non-
empty closed convex subset of 2 and let A be an (a,3,7,8)-symmetric generalized
hybrid mapping from C into itself such that the conditions

1. a+2B+y>0
2. a+B+06>0
3.620

hold. Then A has a fixed. In particular, a fixed point of A is unique in the case of
o+ 2B+ v > 0 on the condition.

The next theorem is the generalization of the Banach contraction principle in the
2-inner product space, involving four rational square terms in the inequality.

THEOREM 2.4. Let A: 2 — 2 be a self-mapping satisfying the following con-
dition
Iy —Ayzl (14 |x—Ax.e]?)
L+ =z
o= Ax.zlP (14 ]ly—Avz|?)
L+ [x—y2)°

1Ax = Ay,2)|* <ar

+a2
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2 2
loe— Azl (1+ ly— Ax, 2]

+ a3

2
1+ |x—y,z]|

Iy —Ax2lP (1+ = ApzlP)
+ay 3
1+ |x—y,z]|

2
+a5Hx_y7Z||
forall x,y,z € Z and x #y, where ay,ay,as,a4,as are non negative reals with a; +

ar + a3z +4ag+as < 1. Therefore, A has a unique fixed point in 2 .

Proof. For some xp € 2, we define a sequence {x,} of iterates of A as follows
X1 =Ax0,2, X2 =Ax1,2, X3 =Ax2,2,..., Xpt1=AXn,Z

forne{0,1,...}.
Now, we demonstrate that {x,,z} is a z-Cauchy sequence in 2" x 2. For this,
consider

%41 — X, 2]|* = (A — A1, 2|

Then by utilizing the assumption, we have

o1 = A1, 2l (14 b — A, 2

e i
n ny X l+ H_xn__xn717z||2

(1% —A)cn,z||2 (1 + |Ixa—1 —Ax,,_l,ZH2>
+ax

1+ [ — Xp1,2] %

oo = A1, 2l (14 -1 = Ao, )
+a3

1+ ||xn — xa_1,2] 2

ot = A2l (1 i — A1,
+ay

1+ ||xn — xo_1,2]?

+as|xn — xa-1,2],
which indicates that

(1 —day— 2514) Hanrl _me”Z
(1= ay—a) s — X 2 [on — 01.2])

< ((al +2a4+as) + as||x, —xn—1,ZH2> %0 — X1, 2|
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Resulting in
n st — %2> < p (1) 0 — X015

where
(al + 2ay +a5) +615Hxn _)Cn—laZ”2

p(n)=
(1—az—2a4) + (1 —ay — a2) ||xa — xp-1, 2]

for n € {0,1,...}. Obviously p(n) <1, for all n as a; +ax+az +4as+as < 1.
Repeating the same argument, we find some S < 1, such that

Pn1 —%n, 21> < A |lx1 — x0,2]J

where A = §%. Letting n — oo, we obtain |[x,41 — x,,z|| — 0. It follows that {x,,z} is
a z-Cauchy sequence in 2. So by the completeness of .2~ there exists a point u € 2~
such that x, — { as n — eo. Also {x,41,2} = {Ax,,z} is sub sequence of {x,,z}
converges to the same limit . Since A is continuous, we get

AQQ:A<mnM>:hmAW:ﬁm&Hr:M

n—oo n—oo

Thus p is a fixed point of 2. Now, we establish the uniqueness of u. If A has another
fixed point y and u # vy, then

lp—p.al* = [[ap —ap' <]
0 =Ap',2ll® (14 lp — Ap,IP)

<ap

2
L+lp—p',b|
2
lp=Ap,zIP* (1+Ip' = Ap',2IP)
+ap —
L+[p—p.7
2 2
”P—AﬂJH<1+Hﬂ—APJH>
+ a3 2
1+|p—p'.7
2 2
1o = Ap.lf (1+ Ip—Ap'2I1)
+ay 2
1+|p—p'.7
2
+as|lp—p'.z|
which, in turn, indicates that
! 2 / 2
|p— Pzl <(as+as+as)||p— 12|

This provides a contradiction, for az + a4 +as < 1. Accordingly, p is a unique fixed
pointof A in Z°. O
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3. Frame in 2-Hilbert space

This section introduces frame notions in a 2-Hilbert space .7¢. Some results con-
cerning these notions are surveyed. We refer the reader to [16] for other fresh general-
izations of the frame.

Many authors have obtained significant results on the classical definition of the
2-inner product (e.g., see [, 4, 5]). However, the most important fault in the classical
definition of a 2-inner product space was that they could not define 2-Hilbert spaces.
Gordji [7] presented the best-generalized definition of the 2-inner product space, which
includes all the previous definitions and the geometric approach to the concept of a more
appropriate. In this section, we recall some fundamental definitions of generalized 2-
inner product spaces that will be used in the sequel.

DEFINITION 3.1. A complex vector space 2 is called a 2-inner product space
if there exists a complex-valued function ((-,-),(-,-)) on 22 x 22 such that, for all
x,y,z,w € 2 and o € C satisfying the following conditions:

(@) ((x,y) ’ (Z’ W)> = <(Z’ W) ’ (x7y)>;

(b) If x and y are linearly independent in X, then {(x,y), (x,y)) > 0;
© ((x,),(zw)) == ((1x),(w2));

@ ((ax+x"y),(zw)) = o {(x,y), (z,w)) +((*,y), (z,w))-

In any given 2-inner product space (£, ((-,),(+,*))), we can define a function
H»” on 22 x 27 by

eyl = (), (5, )) 2.

Let 2 be a linear space of dimension greater than 1 and let ||-,-|| be a real-valued
function on 2" x 2 satisfying the following conditions:

(a) |lx,y|]| =0 if and only if x and y are linearly dependent;
(b) [lx, ¥l = [y,

(©) |lox,y|| = |a||lx,y]|, where o is real;

@) ey +zll < [beyll [Pzl

The function |-,-|| is called a 2-normon 2" and (2, ||,-||) a linear 2-normed space.
Note that in the definition of 2-norm, if the following condition replaces the condition

(d):
@ [lxyll =[xy —x|

then the function ||-,-|| is called asemi 2-normon 2" and (2, ||-,-||) a semi 2-normed
space. Some basic properties of 2-inner product ((-,-),(+,-)) can be immediately ob-
tained as follows:
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@ ((xy), () =0,
D ((5y), (@ Bw+w)) = B{(xy),(@w)) + (), (W),
(D) {(x,y),(x,y)) =0 if and only if x and y are linearly,

for all x,y,z,w,w’ € X and and 8 € C.
Using the above properties, we can prove the Cauchy-Schwarz inequality:

()5 @w) P < (), (69)) ((2w) s (2,w))

Let (Z,]],-||) be a 2-normed space. Let & be a subspace of 2" ,b € Z be fixed, then
amap A: 9 x (by — o where (b) is the subspace of 2~ generated by b, is called a
b-operator on 2 x (b) whenever for every x,y € 2 and k € ¢ holds:

. A(x+y,b)=A(x,b)+A(y,Db).
2. A(kx,b) = kA (x,b).
A Db-operator A : 9 x (b) — J is said to be bounded if there exists a real number

A > 0 such that |A (x,b)| < A& ||x,b|| forevery x € 2.
The norm of the b-operator is defined by

1A[l; = sup{|A (x,b)[ =[x, b =1}

Also we have |A (x,b)| < ||A]| ||x,b]|, where A (x,b) = (x,y|b) forevery x in Z".

Harikrishnan et al. [9] proved the Riesz theorem in a 2-inner product for b-
operators (see also [13]). In addition, Riyas in [15], presented the notion of adjoint
for b-operators as follows:

DEFINITION 3.2. Let 2" be a 2-normed space. Restricting 2" to Z , define
A" 2 — X by A" (y) = z,. By construction,

<(A* (y) 7b)v(va)> = <(y,b) ) (A (x) vb)>»

or
(A" (), b))y = (A (X)),
We call A* adjoint operator of A in Z(2").

We refer the interested reader to [2] for the basic theory of 2-inner product spaces.

Let ¥ be a finite-dimensional vector space equipped with a 2-inner product intro-
duced in the previous section. A countable family of elements {f;, h;},c; in ¥ x ¥ is
a frame for ¥ x ¥ if there exists constants A, B > 0 such that

Allf.el> < T 8), (i) <Blfogls (fr8) €V x¥). (3.1

icl

The numbers A, B are called frame bounds. The frame is normalized if || f;, ;|| = 1 for
eachiel.
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Cauchy-Schwarz inequality shaws that
n

PIINVIDIESDY

n
i=1 i=1

If> &P 1fishill®, ((Frg) € ¥ % 7). 3.2)
Let {fi,b}?, be a frame for ¥ x (b) and define a linear mapping
T:C" =7 x (b), T{a}i, = X ci(fish)
i=1

T is usually called the pre-frame operator. Also, the adjoint operator is given
T* VN <b> - (Cm? (T*fab) = {<(fab) ) (flvb»}:l:l ’
and is named the analysis operator. By composing 7 with its adjoint 7, we obtain the
frame operator
n
St x(b) =V x(b), S(f,b) =T (T"f,b) = ¥ ((f.b),(fi.b)) (fi,0).
i=1
Note that in terms of the frame operator,

n

((S£.0) (f,0)) = 2 (), (fis b)) s ((f,b) €V x (D).

i=1

DEFINITION 3.3. A frame {f;, g}, is tight if

S (F,8). )P = Allfogl%s ((Fr8) €7 x 7).

i=1

PROPOSITION 3.4. Let {f;,h;}!_ | be a sequence in ¥ x V. Then {fi,h;};_, is
a frame for span { fi,h;}"_,.

Proof. We can assume that not all {f;,h;};_, are zero. The upper frame condition
is satisfied with

n
B= Z H.flahlnz
i=1
Now let
W X W = span{fi,hi};_,,
and consider the continuous mapping

n

O xW =R, ¢(f.8) =X [(f.g), (fi,hi))*.

i=1
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The unit ball is compact so

n

A=Y [((wk), (fir ki)

i=1

=inf{ Y [((f.8), (fih))[*: (f.8) € x W ||f.gll =1
i=1

It is clear that A > 0. Now given (f,g) € # x # and (f,g) # 0, we have

n n

S(f.8), (b)) =Y,

i=1 i=1

2
Sy h gl =Alf.el*. O
L >anm| ™

<(f,g)

COROLLARY 3.5. A family of elements { fi, hi};c; in V' <V is a frame for V' x ¥V

if and only if span {fi,hi};c; =V x V.
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