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HERMITE––HADAMARD–TYPE INEQUALITIES

FOR ∗DIFFERENTIABLE MULTIPLICATIVE

m–PREINVEXITY AND (s,m)–PREINVEXITY VIA THE

MULTIPLICATIVE TEMPERED FRACTIONAL INTEGRALS

YU PENG AND TINGSONG DU ∗

(Communicated by J. Pečarić)

Abstract. In virtue of the conception of the multiplicative tempered fractional integrals, put for-
ward by Fu et al. in the published article [AIMS Math., 6 (7): 7456–7478, 2021], we present
a fractional integral identity for ∗ differentiable functions. Based upon it, we develop several
inequalities of Hermite–Hadamard type in association with ∗ differentiable multiplicative m -
preinvexity and (s,m) -preinvexity.

1. Introduction

Throughout this paper let K ⊆ R be a real interval, K◦ be the interior of K and
R+ = (0,∞) .

Let f : K → R be a convex function defined on the real-valued interval K and
a,b ∈ K along with a < b . The following inequalities

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (t)dt � f (a)+ f (b)

2

are well known in the literature as Hermite–Hadamard’s inequalities.
Such type of classical inequality, under various generalized convexity conditions,

has been deeply investigated in the sense of Riemann integrals by many researchers.
For example, one can refer to Kórus [25] for s-convex functions, to Delavar and Sen
[14] for h -convex functions, to Eken et al. [19] for p -convex functions, to Latif et
al. [26] for harmonically-convex and harmonically quasi-convex functions, to Andrić
and Pečarić [6] for (h,g;m)-convex functions, to Nikodem and Rajba [32] for (k,h)-
convex set-valued functions, to Du and Zhou [18] for interval-valued co-ordinated con-
vex functions and so on. For more recent results involving with this topical subject, we
recommend the minded readers to consult the published articles [7, 22, 27, 40] and the
bibliographies quoted in them.
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Recently, the generalizations and extensions for the conceptions of convexity have
been considered by some scholars. Among them, one of the most important general-
izations of convexity is the conception of preinvex sets and preinvex functions. Let us
review them in the following ways:

DEFINITION 1.1. [41] The set Δ ⊆ R
n , with respect to the mapping ζ : Δ×Δ →

Rn , is said to be invex, if it satisfies the following

x+ tζ (y,x) ∈ K, ∀ x,y ∈ Δ, t ∈ [0,1].

If we consider taking the mapping ζ (y,x) = y− x , then the invex set becomes a
convex set, but there are also some invex sets which are not convex.

DEFINITION 1.2. [16] A set Δ ⊆ Rn , with respect to the mapping η : Δ×Δ×
(0,1]→ Rn , is named as m-invex, if mx+ tη(y,x,m)∈ Δ holds true for all x,y∈ Δ and
t ∈ [0,1] as well as certain fixed m ∈ (0,1] .

DEFINITION 1.3. [42] It is assumed that Δ ⊆ Rn is an m-invex set with respect
to the mapping η : Δ×Δ× (0,1] → Rn . For any x,y ∈ Δ and m ∈ (0,1] , the ηm -path
Pτ1τ2(y,x,m) linking the points τ1 = mx and τ2 = mx + η(y,x,m) is defined by the
following expression

Pτ1τ2(y,x,m) =
{

θ |θ = mx+ tη(y,x,m),t ∈ [0,1]
}
.

DEFINITION 1.4. [16] It is assumed that Δ ⊆ R
n is an open m-invex set with

respect to the mapping η : Δ×Δ× (0,1] → Rn . For certain fixed s,m ∈ (0,1] , the
function f : Δ → R is said to be generalized (s,m)-preinvex if the following inequality

f
(
mx+ tη(y,x,m)

)
� m(1− t)s f (x)+ ts f (y)

holds for all x,y ∈ Δ and t ∈ [0,1] .

Noor provided the conception of the multiplicative preinvexity, also called log-
preinvexity, in the following way:

DEFINITION 1.5. [33] The strictly positive function f defined on the invex set
Δ , with respect to the mapping ζ : Δ×Δ → Rn , is said to be multiplicatively preinvex,
if it satisfies the following inequality

f (x+ tζ (y,x)) � ( f (x))1−t ( f (y))t , ∀ x,y ∈ Δ, t ∈ [0,1].

In 2022, Cao et al. introduced the following conception of the (λ ,η)-incomplete
gamma functions.
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DEFINITION 1.6. [13] It is assumed that the mapping η : K×K× (0,1] → R ,
where K ⊆ R be an open m-invex subset with some fixed m ∈ (0,1] . For any real
numbers α,λ > 0 along with x � 0, the (λ ,η)-incomplete gamma function is defined
by in the following ways:

γλ η(b,a,m)(α,x) =
∫ x

0
tα−1e−λ η(b,a,m)tdt.

If we consider taking the mapping η(b,a,m)= 1, then the definition of the (λ ,η)-
incomplete gamma functions reduces to the definition of λ -incomplete gamma func-
tions. In particular, if we consider choosing λ = 1, then it transfers to the incomplete
gamma functions.

The relations between the (λ ,η)-incomplete gamma functions and λ -incomplete
gamma functions are the following ones (see [13])

(1) γλ η(b,a,m)(α,1) =
∫ 1

0
uα−1e−λ η(b,a,m)udu =

1
ηα(b,a,m)

γλ

(
α,η(b,a,m)

)
.

(2)
∫ 1

0
γλ η(b,a,m)(α,x)du =

γλ
(
α,η(b,a,m)

)
ηα (b,a,m)

− γλ
(
α +1,η(b,a,m)

)
ηα+1(b,a,m)

.

Abdeljawad and Grossman introduced a family of fractional integrals, called the
multiplicative Riemann–Liouville (RL) fractional integrals, in the following way:

DEFINITION 1.7. [1] The multiplicative left-sided RL-fractional integrals aIα∗ f (x)
of order α ∈ C,Re(α) > 0 is defined by

aIα
∗ f (x) = exp

{(Iα
a+ (ln◦ f )

)
(x)
}

,

and the multiplicative right-sided one ∗Iα
b f (x) is defined by

∗Iα
b f (x) = exp

{(Iα
b− (ln◦ f )

)
(x)
}

,

where the symbols Iα
a+ f (x) and Iα

b− f (x) denote respectively the left- and right-sided
RL-fractional integrals, which are defined, correspondingly, by the following ones

Iα
a+ f (x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, x > a,

and

Iα
b− f (x) =

1
Γ(α)

∫ b

x
(t − x)α−1 f (t)dt, x < b.

A generalization of the multiplicative RL-fractional integrals appeared in [21],
called as multiplicative tempered fractional integrals, is defined in the following ways:
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DEFINITION 1.8. [21] The multiplicative left-sided tempered fractional integrals

aIα ,λ
∗ f (x) of order α ∈ C , together with Re(α) > 0, is defined by

aIα ,λ
∗ f (x) = exp

{(
Iα ,λ

a+ (ln◦ f )
)

(x)
}

, λ � 0,

and the multiplicative right-sided one ∗Iα ,λ
b f (x) is defined by

∗Iα ,λ
b f (x) = exp

{(
Iα ,λ

b− (ln◦ f )
)

(x)
}

, λ � 0,

where the symbols Iα ,λ
a+ f (x) and Iα ,λ

b− f (x) denote respectively the left- and right-sided
tempered fractional integrals, which are defined, correspondingly, by the following ones
(see [36])

Iα ,λ
a+ f (x) =

1
Γ(α)

∫ x

a
(x− t)α−1 e−λ (x−t) f (t)dt, x > a,

and

Iα ,λ
b− f (x) =

1
Γ(α)

∫ b

x
(t− x)α−1 e−λ (t−x) f (t)dt, x < b.

For recent results in connection with multiplicative integral inequalities, the read-
ers can refer to [4, 9, 29, 31, 34] and the references therein.

Fractional calculus, as one of the fastest developing parts in mathematical analy-
sis, has played a crucial cornerstone in approximation theory, especially the fractional
integral operators have become a prevalent tool in dealing with integral inequalities.
Here, we list a bunch of different kinds of inequalities established by different frac-
tional integral operators. For example, in the sense of RL- and Hadamard fractional
integrals, Bounoua and Yin [10] built the Simpson-type integral inequalities. Fur-
ther, the approximate schemes of the results obtained in their work were studied as
well. In the frame of the tempered fractional integrals, Mohammed et al. [30] re-
searched a few inequalities of the Hermite–Hadamard type refer to the λ -incomplete
gamma functions. Furthermore, Akhtar and Awan [3] generalized the tempered frac-
tional integrals to the δ -tempered fractional integrals, by means of it, and obtained
Hermite–Hadamard’s inequalities for harmonically convex functions. By virtue of the
fractional integral operators with exponential kernels, Ahmad et al. [2] established
Hermite–Hadamard-, Hermite–Hadamard–Fejér-, Dragomir–Agarwal- and Pachpatte-
type inequalities, which generalized classical inequalities involving convex functions.
By using AB-fractional integral operators, Set et al. [38] presented inequalities of
Hermite–Hadamard type involving with twice differentiable convex functions. As a
form of generalization of AB-fractional integral operators, the authors in Ref. [12]
gave Hermite–Hadamard-type inequalities under the setting of ABK-fractional inte-
grals. And they gave some simulation results via different parameters values. Taking
advantage of local fractional integral operators, Meftah et al. [28] derived the frac-
tal Maclaurin-type integral inequalities. In terms of generalized fractional integrals,
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Du et al. [17] deduced Bullen-type fractional inequalities and considered its applica-
tions. Additionally, the authors in the paper [39], with the help of the RL-fractional
integrals, set up the Newton-type inequalities for differentiable convex functions. They
also pointed out the results established are the extension of already existing results in
the literature. For more interesting outcomes with relation to the fractional integrals by
different approaches, we recommend the minded readers to glance over the published
articles [15, 20, 24, 37] for reference.

Inspired by the above-mentioned outcomes, especially these developed in [11] and
[21], the present article focus on investigating some inequalities of Hermite–Hadamard
type through the multiplicative tempered fractional integrals. For this purpose, we pro-
pose an identity for ∗differentiable functions. And using it as an auxiliary result, we
obtain certain estimates of the upper bounds involving the multiplicative tempered frac-
tional integral inequalities.

2. Multiplicative calculus

In 2008, Bashirov et al. [8] proposed a family of multiplicative integral opera-
tors, called the ∗ integral operators, which is denoted by

∫ b
a ( f (x))dx . And the classical

Riemann integrals is denoted by
∫ b
a f (x)dx . Let us retrospect that the function f is

multiplicatively integrable defined on the real-valued interval [a,b] , if f is positive and
Riemann integrable on the real-valued interval [a,b] . The ∗ integral operator, that is to
say, is given by in the following way:

∫ b

a
( f (x))dx = exp

{∫ b

a
ln( f (x))dx

}
.

PROPOSITION 2.1. [8] It is assumed that the positive function f belongs to
∗ integrable on the real-valued interval [a,b] . Then, we have the following properties:

(i)
∫ b

a
(( f (x))p)dx =

(∫ b

a
( f (x))dx

)p

, p ∈ R,

(ii)
∫ b

a
( f (x)g(x))dx =

∫ b

a
( f (x))dx.

∫ b

a
(g(x))dx,

(iii)
∫ b

a

(
f (x)
g(x)

)dx

=
∫ b
a ( f (x))dx∫ b
a (g(x))dx

,

(iv)
∫ b

a
( f (x))dx =

∫ c

a
( f (x))dx.

∫ b

c
( f (x))dx, a � c � b,

(v)
∫ a

a
( f (x))dx = 1 and

∫ b

a
( f (x))dx =

(∫ a

b
( f (x))dx

)−1

.

Bashirov et al. also proposed the multiplicative derivative of the functions.
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DEFINITION 2.1. [8] Given that the function f : R → R+ . The multiplicative
derivative of the function f is given by

d∗ f (t)
dt

= f ∗(t) = lim
h→0

(
f (t +h)

f (t)

) 1
h

.

The relation between the f ∗ and the ordinary derivative f ′ is the following

f ∗(t) = exp
{

[ln f (t)]′
}

= exp

{
f ′(t)
f (t)

}
.

PROPOSITION 2.2. [8] Given that the functions f and g are both multiplicative
derivative, and h is differentiable. If c is a positive constant, then functions c f , f +
g, f g , f

g , f h and f ◦ h are all multiplicative derivative, and we have the following
properties

(i) (c f )∗ (x) = f ∗(x),

(ii) ( f +g)∗ (x) = f ∗(x)
f (x)

f (x)+g(x) ·g∗(x)
g(x)

f (x)+g(x) ,

(iii) ( f g)∗ (x) = f ∗(x)g∗(x),

(iv)
(

f
g

)∗
(x) =

f ∗(x)
g∗(x)

,

(v)
(

f h
)∗

(x) = f ∗(x)h(x) · f (x)h′(x),

(vi) ( f ◦ h)∗(x) = f ∗(h(x))h′(x).

The formulas of the multiplicative integration by parts are the following ones.

THEOREM 2.1. [8] Let f : [a,b] → R be multiplicative differentiable, and let
g : [a,b] → R be differentiable. Then, the function f g is multiplicative integrable. And
we have that

∫ b

a

(
f ∗(x)g(x)

)dx
=

f (b)g(b)

f (a)g(a) ·
1∫ b

a

(
f (x)g′(x))dx .

LEMMA 2.1. [5] Let f : [a,b] → R be multiplicative differentiable, and let g :
[a,b]→ R and h : J ⊂ R → [a,b] be two differentiable functions. Then, we have that

∫ b

a

(
f ∗(h(x))g(x)h′(x)

)dx
=

f (h(b))g(b)

f (h(a))g(a) ·
1∫ b

a

(
f (h(x))g′(x))dx .
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3. Main results

Before establishing our primary results, we first introduce the following defini-
tions.

DEFINITION 3.1. It is assumed that K ⊆ R is an m-invex set with respect to
the mapping η : K×K× (0,1] → R . A function f : K → R+ , with respect to the
mapping η , is said to be multiplicatively m-preinvex or m-log-preinvex, if it satisfies
the following inequality

f (mx+ tη(y,x,m)) � [ f (x)]m(1−t)[ f (y)]t , (3.1)

for all x , y ∈ K and t ∈ [0,1] and some fixed m ∈ (0,1] .

DEFINITION 3.2. It is assumed that K ⊆ R is an m-invex set with respect to the
mapping η :K×K× (0,1]→R . A function f : K→ R+ , with respect to the mapping
η , is said to be multiplicatively (s,m)-preinvex or (s,m)-log-preinvex, if it satisfies the
following inequality

f (mx+ tη(y,x,m)) � [ f (x)]m(1−t)s [ f (y)]t
s
, (3.2)

for all x,y ∈ K and t ∈ [0,1] together with some fixed s,m ∈ (0,1] .

REMARK 3.1. The following conclusions can be drawn by considering some spe-
cial cases:

(i) If we consider taking m = 1 in Definition 3.1, then we have the conception
of the multiplicative preinvexity. Furthermore, if the mapping η(y,x,m) reduces to
η(y,x,m) = y−mx with m = 1, then we have the conception of multiplicative convex-
ity.

(ii) If we consider taking the mapping η(y,x,m) = y−mx with m = 1 in Definition
3.2, then we have the conception of multiplicative s-convexity.

Next, we discuss some properties for multiplicatively m-preinvex functions and
multiplicatively (s,m)-preinvex functions.

PROPOSITION 3.1. Let f ,g : K → [1,∞) . If f and g are both multiplicatively
m-preinvex functions, then f g is a multiplicatively m-preinvex function.

PROPOSITION 3.2. If fi : K → [1,∞] are multiplicatively m-preinvex functions
with respect to the same mapping η : R×R× (0,1]→ R for the same fixed m ∈ (0,1] ,
then the function f = ∏ai fi,ai � 0,(i = 1,2 · · ·n) is also a multiplicatively m-preinvex
function with respect to the same mapping η .

PROPOSITION 3.3. Let f : K → [1,∞) . Every multiplicatively m-preinvex func-
tion is a multiplicatively (s,m)-preinvex function.
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Proof. The proof is clear from the following inequalities

t � ts and 1− t � (1− t)s,

for all t ∈ [0,1] with some fixed s ∈ (0,1] .
Therefore,

f (mx+ tη(y,x,m)) � [ f (x)]m(1−t)[ f (y)]t � [ f (x)]m(1−t)s [ f (y)]t
s
,

for all x,y ∈ K, t ∈ [0,1] and fixed s ∈ (0,1] . Thus, the desired result is obtained.

PROPOSITION 3.4. Let f : R+ → [1,∞) is a multiplicatively m-preinvex function
with respect to the mapping η : R+ ×R+ × (0,1] → R+ for some fixed m ∈ (0,1] .
Assumed that the function f is monotone decreasing, and the mapping η is monotone
increasing regarding m for fixed x,y ∈ R+ along with m1 � m2, m1,m2 ∈ (0,1] . If f
is a multiplicatively m1 -preinvex function on R+ with respect to the mapping η , then
f is a multiplicatively m2 -preinvex function on R+ with respect to the same mapping
η .

Proof. Since f is a multiplicatively m-preinvex function, for all x,y ∈ R+ , we
have that

f (m1x+ tη(y,x,m1)) � [ f (x)]m1(1−t)[ f (y)]t .

Combining the conditions f is monotone decreasing, and the mapping η is monotone
increasing regarding m for fixed x,y ∈ R+ and m1 � m2 , it follows that

f (m2x+ tη(y,x,m2)) � f (m1x+ tη(y,x,m1)),

and

[ f (x)]m1(1−t)[ f (y)]t � [ f (x)]m2(1−t)[ f (y)]t .

Following the above two inequalities, we have that

f (m2x+ tη(y,x,m2)) � [ f (x)]m2(1−t)[ f (y)]t .

Hence, f is also a multiplicatively m2 -preinvex function on R
+ with respect to the

mapping η , which completes the proof.
Our main results depend on the following lemma.

LEMMA 3.1. Let K ⊆ R be an open m-invex subset with respect to the mapping
η : K×K× (0,1] → R+ for certain fixed m ∈ (0,1] . And let ma, ma + η(b,a,m)
lie on the ηm -path Pτ1τ2(b,a,m) , for a,b ∈ K together with a < b. It is supposed
that f : K → R

+ is a ∗differentiable function on K◦ . If f ∗ is integrable on interval
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[ma,ma+η(b,a,m)] , then for α > 0 and λ � 0 , the following equality with regard to
the multiplicative tempered fractional integrals holds:

∗J f (α,λ ;a,b,m) =
∫ 1

0

[
f ∗
(
ma+ tη(b,a,m)

)η(b,a,m)ωγλη(b,a,m)(α ,t)
]dt

×
∫ 1

0

[
f ∗
(
ma+(1− t)η(b,a,m)

)−η(b,a,m)ωγλη(b,a,m)(α ,t)
]dt

,

(3.3)

where

∗J f (α,λ ;a,b,m)

:=

√
f (ma) f (ma+ η(b,a,m))[

∗Iα ,λ
[ma+η(b,a,m)] f (ma) ·ma Iα ,λ

∗ f (ma+ η(b,a,m))
] Γ(α)

2γλ (α,η(b,a,m))

, (3.4)

and

ω =
ηα(b,a,m)

2γλ
(
α,η(b,a,m)

) . (3.5)

Proof. For the convenience of expression, let us define the quantities

ρ1 =
∫ 1

0

[(
f ∗
(
ma+ tη(b,a,m)

))η(b,a,m)ωγλη(b,a,m)(α ,t)
]dt

,

and

ρ2 =
∫ 1

0

[(
f ∗
(
ma+(1− t)η(b,a,m)

))−η(b,a,m)ωγλη(b,a,m)(α ,t)
]dt

.

Applying the multiplicative integration by parts, we have that

ρ1 =

[
f
(
ma+ η(b,a,m)

)]ωγλη(b,a,m)(α ,1)

[ f (ma)]0

× 1∫ 1
0

[(
f
(
ma+ tη(b,a,m)

))ωtα−1e−λη(b,a,m)t ]dt ,

and

ρ2 =
[ f (ma)]ωγλη(b,a,m)(α ,1)[
f
(
ma+ η(b,a,m)

)]0
× 1∫ 1

0

[(
f
(
ma+(1− t)η(b,a,m)

))ωtα−1e−λη(b,a,m)t ]dt .
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Thus, we derive that

ρ1×ρ2 =

[
[ f (ma+ η(b,a,m))]

1
2 · [ f (ma)]

1
2

]

:

[∫ 1

0

[(
f
(
ma+ tη(b,a,m)

))ωtα−1e−λη(b,a,m)t
]dt

×
∫ 1

0

[(
f
(
ma+(1− t)η(b,a,m)

))ωtα−1e−λη(b,a,m)t
]dt
]

=

[
f
(
ma+ η(b,a,m)

)] 1
2

exp
{∫ 1

0 ω · tα−1e−λ η(b,a,m)t · ln f
(
ma+ tη(b,a,m)

)
dt
}

× [ f (ma)]
1
2

exp
{∫ 1

0 ω · tα−1e−λ η(b,a,m)t · ln f
(
ma+(1− t)η(b,a,m)

)
dt
}

=

[
f
(
ma+ η(b,a,m)

)] 1
2 · [ f (ma)]

1
2

exp{I1 + I2} .

(3.6)

Taking advantage of the change of variable u = ma+ tη(b,a,m) , we have that

I1 =
∫ 1

0
ω · tα−1e−λ η(b,a,m)t · ln f

(
ma+ tη(b,a,m)

)
dt

= ω
∫ ma+η(b,a,m)

ma

(
u−ma

η(b,a,m)

)α−1

e−λ (u−ma)

× ln f (u) · 1
η(b,a,m)

du

=
Γ(α)

2γλ (α,η(b,a,m))
Iα ,λ

[ma+η(b,a,m)]− ln f (ma).

(3.7)

Analogously, we can deduce that

I2 =
∫ 1

0
ω · tα−1e−λ η(b,a,m)t · ln( f

(
ma+(1− t)η(b,a,m)

))
dt

=
Γ(α)

2γλ (α,η(b,a,m))
Iα ,λ

[ma]+ ln f
(
ma+ η(b,a,m)

)
.

(3.8)

Substituting equations (3.7) and (3.8) into (3.6), we can get the required identity. This
ends the proof.
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COROLLARY 3.1. In Lemma 3.1, if we consider taking λ = 0 , then we have the
following identity in association with multiplicative RL-fractional integrals

√
f (ma) f

(
ma+ η(b,a,m)

)
[
∗Iα

[ma+η(b,a,m)] f (ma) ·ma Iα∗ f
(
ma+ η(b,a,m)

)] Γ(α+1)
2ηα (b,a,m)

=
∫ 1

0

[(
f ∗
(
ma+ tη(b,a,m)

)) tα
2 η(b,a,m)

]dt

×
∫ 1

0

[(
f ∗
(
ma+(1− t)η(b,a,m)

))− tα
2 η(b,a,m)

]dt

.

(3.9)

COROLLARY 3.2. In Lemma 3.1, if we consider taking λ = 0 and α = 1 , then
we have the following identity in association with multiplicative Riemann integrals

√
f (ma) f

(
ma+ η(b,a,m)

)
(∫ ma+η(b,a,m)

ma ( f (u))du ) 1
η(b,a,m)

=
∫ 1

0

[(
f ∗
(
ma+ tη(b,a,m)

)) t
2 η(b,a,m)

]dt

×
∫ 1

0

[(
f ∗
(
ma+(1− t)η(b,a,m)

))− t
2 η(b,a,m)

]dt
.

(3.10)

We are now in a position to establish the following multiplicative fractional inte-
gral inequalities for multiplicatively m-preinvex functions.

THEOREM 3.1. Let K ⊆ R be an open m-invex subset with respect to the map-
ping η :K×K× (0,1]→ R+ for certain fixed m ∈ (0,1] . And let ma, ma+η(b,a,m)
lie on the ηm -path Pτ1τ2(b,a,m) , for a,b ∈ K together with a < b. It is supposed that
f : K→ R+ is an increasing ∗differentiable function on K◦ . And if the function f ∗ is
multiplicatively m-preinvex on K , then the following inequality holds:

∣∣∗J f (α,λ ;a,b,m)
∣∣� [

( f ∗(a))m · f ∗(b)
] 1

2 ϕ
, (3.11)

where

ϕ = η(b,a,m)− γλ
(
α +1,η(b,a,m)

)
γλ
(
α,η(b,a,m)

) . (3.12)
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Proof. Making use of Lemma 3.1, and the increasing property of f , we deduce
that∣∣∗J f (α,λ ;a,b,m)

∣∣
=
∣∣∣∣
∫ 1

0

[(
f ∗
(
ma+ tη(b,a,m)

))η(b,a,m)ωγλη(b,a,m)(α ,t)
]dt

×
∫ 1

0

[(
f ∗
(
ma+(1− t)η(b,a,m)

))−η(b,a,m)ωγλη(b,a,m)(α ,t)
]dt
∣∣∣∣

� exp

{∫ 1

0

∣∣∣ln( f ∗
(
ma+ tη(b,a,m)

)η(b,a,m)ωγλη(b,a,m)(α ,t)
)∣∣∣dt}

× exp

{∫ 1

0

∣∣∣ln( f ∗
(
ma+(1− t)η(b,a,m)

)−η(b,a,m)ωγλη(b,a,m)(α ,t)
)∣∣∣dt}

� exp

{∫ 1

0

∣∣∣η(b,a,m)ωγλ η(b,a,m)(α,t)
∣∣∣ · ln f ∗

(
ma+ tη(b,a,m)

)
dt

}

× exp

{∫ 1

0

∣∣∣−η(b,a,m)ωγλ η(b,a,m)(α,t)
∣∣∣ · ln f ∗

(
ma+(1− t)η(b,a,m)

)
dt

}

= exp

{∫ 1

0

∣∣∣η(b,a,m)ωγλ η(b,a,m)(α,t)
∣∣∣

×
[
ln f ∗

(
ma+ tη(b,a,m)

)
+ ln f ∗

(
ma+(1− t)η(b,a,m)

)]
dt

}
.

(3.13)

Since f ∗ is a multiplicatively m-preinvex function, we get that

ln f ∗
(
ma+ tη(b,a,m)

)
� m(1− t)ln f ∗(a)+ tln f ∗(b), (3.14)

and

ln f ∗
(
ma+(1− t)η(b,a,m)

)
� mtln f ∗(a)+ (1− t)ln f ∗(b). (3.15)

Combining (3.14) and (3.15) with (3.13), we obtain that∣∣∗J f (α,λ ;a,b,m)
∣∣

� exp

{
η(b,a,m)ω

[
mln f ∗(a)+ ln f ∗(b)

]

×
[

γλ
(
α,η(b,a,m)

)
ηα(b,a,m)

− γλ
(
α +1,η(b,a,m)

)
ηα+1(b,a,m)

]}

= exp

{[
η(b,a,m)

2
− γλ

(
α +1,η(b,a,m)

)
2γλ

(
α,η(b,a,m)

)
]
·
[
mln f ∗(a)+ ln f ∗(b)

]}

=
[
( f ∗(a))m · f ∗(b)

] η(b,a,m)
2 − γλ (α+1,η(b,a,m))

2γλ (α,η(b,a,m))

=
[
( f ∗(a))m · f ∗(b)

] 1
2 ϕ

,
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which is the required result. The proof is completed.
For displaying the result of Theorem 3.1 more visually, we here offer an example

to illustrate the correctness of Theorem 3.1.

EXAMPLE 3.1. Let the multiplicatively preinvex function f ′(x)
f (x) : (0,∞) → (0,∞)

be defined by f ′(x)
f (x) = 1

x with respect to the mapping η(y,x,m) = y−mx with m = 1.

We can get f ∗(x) = e
1
x is a generalized multiplicatively 1-preinvex function. It is easy

to check that f (x) = x . Thus, all assumptions in Theorem 3.1 are satisfied. If we take
a = 1, b = 2, α = 1

2 and λ = 1
2 , then the left-hand side term of (3.11) is

∣∣∗J f (α,λ ;a,b,m)
∣∣=

∣∣∣∣∣∣∣∣∣∣∣∣

√
f (1) f (2)

[
eI

1
2 , 12
1+ ln f (2) · eI

1
2 , 12
2− ln f (1)

] Γ( 1
2 )

2γ 1
2

( 1
2 ,1)

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
√

2[
e
∫ 2
1 lnu·(2−u)−

1
2 e−

1
2 (2−u)du+

∫ 2
1 lnu·(u−1)−

1
2 e−

1
2 (u−1)du

] 1
2γ 1

2
( 1

2 ,1)

∣∣∣∣∣∣∣∣∣∣
≈ 0.9702,

and the right-hand side term of (3.11) is

[
( f ∗(a))m · f ∗(b)

] 1
2 ϕ

=
(
e

3
2

) 1
2

⎡
⎣1−

γ 1
2
( 3

2 ,1)
γ 1
2
( 1

2 ,1)

⎤
⎦
≈ 1.7017.

It is clear that 0.9702 < 1.7017, which demonstrates the correctness of the result
described in Theorem 3.1.

REMARK 3.2. Case 1: It is assumed that the parameter α is not a fixed con-
stant in Example 3.1. For instance, if we consider putting the parameter α ∈ (0,1] , in
accordance with Theorem 3.1, then we get the result for the parameter α as below

− [ f ∗(1) · f ∗(2)]
1
2 ϕ �

√
2[

eI
α, 12
1+ ln f (2) · eI

α, 12
2− ln f (1)

] Γ(α)
2γ 1

2
(α,1)

�
[
f ∗(1) · f ∗(2)

] 1
2 ϕ

,
(3.16)

where

ϕ = 1−
γ 1

2

(
α +1,1

)
γ 1

2

(
α,1

) .
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Three functions given by the inequalities (3.16) pertaining to the left-, middle- and
right-sides are plotted in Figure 3.1 for the parameter α ∈ (0,1] . From Figure 3.1, we
can intuitively observe that the value on the left is less than the value on the middle, and
the value on the middle is less than the value on the right, which is consistent with the
theoretical result given in Theorem 3.1.
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Figure 3.1: Graphical representation for Example 3.1 for the variable α ∈ (0,1] with λ = 1
2

Case 2: It is assumed that the parameter λ is not a fixed constant in Example 3.1.
For instance, if we consider putting the parameter λ ∈ [0,1] with α = 1

2 in Theorem
3.1, then we get the result for the parameter λ as below

−[ f ∗(1) · f ∗(2)
] 1

2 ϕ �
√

2

[
eI

1
2 ,λ
1+ ln f (2) · eI

1
2 ,λ
2− ln f (1)

] Γ( 1
2 )

2γλ ( 1
2 ,1)

�
[
f ∗(1) · f ∗(2)

] 1
2 ϕ

,
(3.17)

where

ϕ = 1− γλ
(

3
2 ,1

)
γλ
(

1
2 ,1

) .
The visualization results of three functions given by the inequalities (3.17) pertaining to
the left-, middle- and right-sides are plotted in Figure 3.2. From the visual perspective
of graphics, it vividly describes the result exhibited in the inequalities (3.17). The result
displayed in the Figure 3.2 is consistent with the theoretical result given in Theorem 3.1.

Case 3: It is assumed that the parameters α and λ are not two fixed constants
in Example 3.1. For instance, if we consider putting the parameters α ∈ (0,1] and
λ ∈ [0,1] in Theorem 3.1, then we get the result for the parameters α and λ as below

−[ f ∗(1) · f ∗(2)
] 1

2 ϕ �
√

2[
eI

α,λ
1+ ln f (2) · eIα,λ

2− ln f (1)] Γ(α)
2γλ (α,1)

�
[
f ∗(1) · f ∗(2)

] 1
2 ϕ

, (3.18)
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Figure 3.2: Graphical representation for Example 3.1 for the variable λ ∈ [0,1] with α = 1
2

where

ϕ = 1− γλ
(
α +1,1

)
γλ
(
α,1

) .

The visualization results of three functions given by the inequalities (3.18) pertaining to
the left-, middle- and right-sides are plotted in Figure 3.3. From the visual perspective
of graphics, it vividly describes the result exhibited in the inequalities (3.18). The result
displayed in the Figure 3.3 is consistent with the theoretical result given in Theorem 3.1.

Figure 3.3: Graphical representation of Example 3.1 for Three-dimensional
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THEOREM 3.2. Let K ⊆ R be an open m-invex subset with respect to the map-
ping η :K×K× (0,1]→ R+ for certain fixed m ∈ (0,1] . And let ma, ma+η(b,a,m)
lie on the ηm -path Pτ1τ2(b,a,m) , for a,b ∈ K together with a < b. It is supposed that
f : K → R+ is an increasing ∗differentiable function on K◦ . And if, for q > 1 with
p−1 +q−1 = 1 , the function (ln f ∗)q is m-preinvex on K , then the following inequality
holds:

∣∣∗J f (α,λ ;a,b,m)
∣∣� exp

{
2η(b,a,m) ·ω · τ 1

p

(
m(ln f ∗(a))q +(ln f ∗(b))q

2

) 1
q
}

,

(3.19)

where ω is defined in Lemma 3.1 and

τ =
∫ 1

0

∣∣γλ η(b,a,m)(α,t)
∣∣p dt. (3.20)

Proof. Making use of Lemma 3.1 and Hölder’s inequality, we deduce that∣∣∗J f (α,λ ;a,b,m)
∣∣

=

∣∣∣∣∣
∫ 1

0

[(
f ∗
(
ma+ tη(b,a,m)

))η(b,a,m)ωγλη(b,a,m)(α ,t) ]dt

×
∫ 1

0

[(
f ∗
(
ma+(1− t)η(b,a,m)

))−η(b,a,m)ωγλη(b,a,m)(α ,t)
]dt
∣∣∣∣∣

� exp

{
η(b,a,m)ω

∫ 1

0

∣∣γλ η(b,a,m)(α,t)
∣∣

×
[∣∣ln f ∗

(
ma+ tη(b,a,m)

)∣∣+ ∣∣ln f ∗
(
ma+(1− t)η(b,a,m)

)∣∣]dt
}

= exp

{
η(b,a,m)ω

∫ 1

0

∣∣γλ η(b,a,m)(α,t)
∣∣ · ∣∣ln f ∗(ma+ tη(b,a,m))

∣∣dt}

× exp

{
η(b,a,m)ω

∫ 1

0

∣∣γλ η(b,a,m)(α,t)
∣∣ · ∣∣ln f ∗

(
ma+(1− t)η(b,a,m)

)∣∣dt}

� exp

{
η(b,a,m)ω

(∫ 1

0

∣∣γλ η(b,a,m)(α,t)
∣∣p dt

) 1
p

×
(∫ 1

0

∣∣ln f ∗
(
ma+ tη(b,a,m)

)∣∣q dt

) 1
q
}

× exp

{
η(b,a,m)ω

(∫ 1

0

∣∣γλ η(b,a,m)(α,t)
∣∣p dt

) 1
p

×
(∫ 1

0

∣∣ln f ∗
(
ma+(1− t)η(b,a,m)

)∣∣q dt

) 1
q
}

.

(3.21)
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Since (ln f ∗)q is an m-preinvex function, and using the increasing property of f , we
get that

∫ 1

0

∣∣ln f ∗
(
ma+ tη(b,a,m)

)∣∣qdt �
∫ 1

0

[
m(1− t)(ln f ∗(a))q + t(ln f ∗(b))q]dt

=
m(ln f ∗(a))q +(ln f ∗(b))q

2
,

(3.22)

and

∫ 1

0

∣∣ln f ∗
(
ma+(1− t)η(b,a,m)

)∣∣qdt �
∫ 1

0

[
mt(ln f ∗(a))q +(1− t)(ln f ∗(b))q]dt

=
m(ln f ∗(a))q +(ln f ∗(b))q

2
.

(3.23)

Combining (3.22) and (3.23) with (3.21), we can get the required result. This finishes
the proof. �

REMARK 3.3. Considering Theorem 3.2, we have the following conclusions:
(i) If we choose λ = 0, then we have that∣∣∣∣∣∣∣∣∣∣

√
f (ma) f

(
ma+ η(b,a,m)

)
[
∗Iα[

ma+η(b,a,m)
] f (ma) ·ma Iα∗ f

(
ma+ η(b,a,m)

)] Γ(α+1)
2ηα (b,a,m)

∣∣∣∣∣∣∣∣∣∣
� exp

{
η(b,a,m)

(
1

α p+1

) 1
p
(

m(ln f ∗(a))q +(ln f ∗(b))q

2

) 1
q
}

.

(ii) If we choose λ = 0 and α = 1, then we have that∣∣∣∣∣∣∣∣∣

√
f (ma) f

(
ma+ η(b,a,m)

)
∫ ma+η(b,a,m)
ma

(
f (u)

1
η(b,a,m)

)du

∣∣∣∣∣∣∣∣∣
� exp

{
η(b,a,m)

(
1

p+1

) 1
p
(

m(ln f ∗(a))q +(ln f ∗(b))q

2

) 1
q
}

.

THEOREM 3.3. Let K ⊆ R be an open m-invex subset with respect to the map-
ping η :K×K× (0,1]→ R+ for certain fixed m ∈ (0,1] . And let ma, ma+η(b,a,m)
lie on the ηm -path Pτ1τ2(b,a,m) , for a,b ∈ K together with a < b. It is supposed that



1196 Y. PENG AND T. DU

f : K → R+ is an increasing ∗differentiable function on K◦ . And if, for q > 1 , the
function (ln f ∗)q is m-preinvex on K , then the following inequality holds:∣∣∗J f (α,λ ;a,b,m)

∣∣
� exp

{
η(b,a,m) ·ω · J1− 1

q
1 · (m(ln f ∗(a))q ·κ1 +(ln f ∗(b))q ·κ2

) 1
q

}

× exp

{
η(b,a,m) ·ω · J1− 1

q
1 · ((ln f ∗(b))q ·κ1 +m(ln f ∗(a))q ·κ2

) 1
q

}
.

(3.24)

where ω is defined in Lemma 3.1 and

J1 =
γλ (α,η(b,a,m))

ηα(b,a,m)
− γλ (α +1,η(b,a,m))

ηα+1(b,a,m)
,

κ1 =
γλ (α,η(b,a,m))

2ηα(b,a,m)
− γλ (α +1,η(b,a,m))

ηα+1(b,a,m)
+

γλ (α +2,η(b,a,m))
2ηα+2(b,a,m)

,

together with

κ2 =
γλ (α,η(b,a,m))

2ηα(b,a,m)
− γλ (α +2,η(b,a,m))

2ηα+2(b,a,m)
.

Proof. Continuing from inequality (3.21) in the proof of Theorem 3.2, and using
the power-mean inequality, we have that∣∣∗J f (α,λ ;a,b,m)

∣∣
� exp

{
η(b,a,m)ω

(∫ 1

0
|γλ η(b,a,m)(α,t)|dt

)1− 1
q

×
(∫ 1

0
|γλ η(b,a,m)(α,t)| · ∣∣ln f ∗(ma+ tη(b,a,m)

)∣∣qdt) 1
q
}

× exp

{
η(b,a,m)ω

(∫ 1

0
|γλ η(b,a,m)(α,t)|dt

)1− 1
q

×
(∫ 1

0
|γλ η(b,a,m)(α,t)| · ∣∣ln f ∗

(
ma+(1− t)η(b,a,m)

)∣∣qdt) 1
q
}

.

(3.25)

For the convenience of expression, let us define the quantities

J1 =
∫ 1

0
|γλ η(b,a,m)(α,t)|dt,

J2 =
∫ 1

0
|γλ η(b,a,m)(α,t)|∣∣ln f ∗

(
ma+ tη(b,a,m)

)∣∣qdt,
and

J3 =
∫ 1

0
|γλ η(b,a,m)(α,t)|∣∣ln f ∗

(
ma+(1− t)η(b,a,m)

)∣∣qdt.
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According to the Definition 1.6, we derive that

J1 =
γλ (α,η(b,a,m))

ηα(b,a,m)
− γλ (α +1,η(b,a,m))

ηα+1(b,a,m)
. (3.26)

Utilizing the m-preinvexity of (ln f ∗)q , and using the increasing property of f , we
obtain that

J2 =
∫ 1

0
γλ η(b,a,m)(α,t)

∣∣ln f ∗
(
ma+ tη(b,a,m)

)∣∣qdt
�
∫ 1

0
γλ η(b,a,m)(α,t) [m(1− t)(ln f ∗(a))q + t (ln f ∗(b))q]dt

=
∫ 1

0

∫ t

0
uα−1e−λ η(b,a,m)u[m(1− t)(ln f ∗(a)q + t(ln f ∗(b))q]dudt

= m(ln f ∗(a))q ·
∫ 1

0

∫ t

0
uα−1e−λ η(b,a,m)u(1− t)dudt +(ln f ∗(b))q

×
∫ 1

0

∫ t

0
uα−1e−λ η(b,a,m)utdudt

= m(ln f ∗(a))q
[

γλ (α,η(b,a,m))
2ηα(b,a,m)

− γλ (α +1,η(b,a,m))
ηα+1(b,a,m)

+
γλ (α +2,η(b,a,m))

2ηα+2(b,a,m)

]

+(ln f ∗(b))q
[

γλ (α,η(b,a,m))
2ηα(b,a,m)

− γλ (α +2,η(b,a,m))
2ηα+2(b,a,m)

]
.

(3.27)

Analogously, we can deduce that

J3 =
∫ 1

0
γλ η(b,a,m)(α,t)

∣∣ln f ∗(ma+(1− t)η(b,a,m))
∣∣qdt

�
∫ 1

0
γλ η(b,a,m)(α,t)

[
mt(ln f ∗(a))q +(1− t)(ln f ∗(b))q]dt

=
∫ 1

0

∫ t

0
uα−1e−λ η(b,a,m)u[mt(ln f ∗(a))q +(1− t)(ln f ∗(b))q]dudt

= m(ln f ∗(a))q ·
∫ 1

0

∫ t

0
uα−1e−λ η(b,a,m)utdudt +(ln f ∗(b))q

×
∫ 1

0

∫ t

0
uα−1e−λ η(b,a,m)u(1− t)dudt

= (ln f ∗(b))q
[

γλ (α,η(b,a,m))
2ηα(b,a,m)

− γλ (α +1,η(b,a,m))
ηα+1(b,a,m)

+
γλ (α +2,η(b,a,m))

2ηα+2(b,a)

]

+m(ln f ∗(a))q
[

γλ (α,η(b,a,m))
2ηα(b,a,m)

− γλ (α +2,η(b,a,m))
2ηα+2(b,a,m)

]
.

(3.28)

Combining (3.26), (3.27) and (3.28) with (3.25), we can get the required result. The
proof is completed. �
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Next, we establish multiplicative fractional integral inequalities for multiplica-
tively (s,m)-preinvex.

THEOREM 3.4. Let K ⊆ R be an open m-invex subset with respect to the map-
ping η :K×K× (0,1]→ R+ for certain fixed m ∈ (0,1] . And let ma, ma+η(b,a,m)
lie on the ηm -path Pτ1τ2(b,a,m) , for a,b ∈ K together with a < b. It is supposed that
f : K→ R+ is an increasing ∗differentiable function on K◦ . And if the function f ∗ is
multiplicatively (s,m)-preinvex on K , then the following inequality holds:

∣∣∗J f (α,λ ;a,b,m)
∣∣� [

( f ∗(a))m · f ∗(b)
]2−sϕ

, (3.29)

where ϕ is defined in Theorem 3.1.

Proof. The desired result can be obtained by applying the strategy used in the
proof of Theorem 3.1, combing with the (s,m)-multiplicative preinvexity of f ∗ , and
the inequality ts +(1− t)s � 21−s for all t ∈ [0,1] with some fixed s ∈ (0,1] . Thus, the
proof is omitted. �

REMARK 3.4. In Theorem 3.4, if we consider taking s = 1, then can get the same
result in Theorem 3.1.

THEOREM 3.5. Let K ⊆ R be an open m-invex subset with respect to the map-
ping η :K×K× (0,1]→ R+ for certain fixed m ∈ (0,1] . And let ma, ma+η(b,a,m)
lie on the ηm -path Pτ1τ2(b,a,m) , for a,b ∈ K together with a < b. It is supposed
that f : K → R+ is an increasing ∗differentiable function on K◦ . And if, for q > 1
with p−1 + q−1 = 1 , the function (ln f ∗)q is (s,m)-preinvex on K , then the following
inequality holds:

∣∣∗J f (α,λ ;a,b,m)
∣∣

� exp

{
2η(b,a,m) ·ω · τ 1

p

(
m(ln f ∗(a))q +(ln f ∗(b))q

s+1

) 1
q
}

,
(3.30)

where ω is defined in Lemma 3.1 and τ is defined in Theorem 3.2.

Proof. On the same parallel lines as used in the proof of Theorem 3.2, and taking
account of the (s,m)-preinvexity of (ln f ∗)q , we get the desired result of Theorem 3.5.
Thus, the proof is omitted. �

REMARK 3.5. In Theorem 3.5, if we consider taking s = 1, then we can get the
same result in Theorem 3.2.
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4. Conclusions

In this study, we first present a fractional integral identity for ∗differentiable func-
tions. By applying it and the multiplicative m-preinvexity and (s,m)-preinvexity, we
deduce a series of multiplicative fractional integral inequalities. The obtained results
here can be transferred to the multiplicative Riemann–Liouville fractional integral in-
equalities for λ = 0, and the multiplicative Riemann integral inequalities for α = 1 to-
gether with λ = 0. With the aid of ideas developed in this paper, interested researchers
can consider using different multiplicative fractional integrals, such as multiplicative
fractional integrals having exponential kernels [35], generalized multiplicative frac-
tional integrals [23] and others. And then the inequalities for generalized multiplicative
convex functions can be established similarly, which is an interesting and new research
subject.

Acknowledgements. The authors would like to thank the reviewer for his/her valu-
able comments and suggestions.
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[11] H. BUDAK, K. ÖZÇELIK, On Hermite–Hadamard type inequalities for multiplicative fractional inte-
grals, Miskolc Math. Notes, 21 (2020), 91–99.

[12] S. I. BUTT, S. YOUSAF, A. O. AKDEMIR, M. A. DOKUYUCU, New Hadamard-type integral in-
equalities via a general form of fractional integral operators, Chaos, Solitons and Fractals, 148 (2021),
Article ID 111025, 14 pages.

[13] Y. CAO, J. F. CAO, P. Z. TAN, T. S. DU, Some parameterized inequalities arising from the tempered
fractional integrals involving the (μ ,η) -incomplete gamma functions, J. Math. Inequal., 16 (2022),
1091–1121.

[14] M. R. DELAVAR, M. DE LA SEN, A mapping associated to h-convex version of the Hermite–
Hadamard inequality with applications, J. Math. Inequal., 14 (2020), 329–335.



1200 Y. PENG AND T. DU

[15] S. S. DRAGOMIR,Hermite–Hadamard type inequalities for generalized Riemann–Liouville fractional
integrals of h -convex functions, Math. Methods Appl. Sci., 44 (2021), 2364–2380.

[16] T. S. DU, J. G. LIAO, Y. J. LI, Properties and integral inequalities of Hadamard–Simpson type for
the generalized (s,m) -preinvex functions, J. Nonlinear Sci. Appl., 9 (2016), 3112–3126.

[17] T. S. DU, C. Y. LUO, Z. J. CAO, On the Bullen-type inequalities via generalized fractional integrals
and their applications, Fractals, 29 (2021), Article ID 2150188, 20 pages.

[18] T. S. DU, T. C. ZHOU, On the fractional double integral inclusion relations having exponential
kernels via interval-valued co-ordinated convex mappings, Chaos, Solitons and Fractals, 156 (2022),
Article ID 111846, 19 pages.

[19] Z. EKEN, S. KEMALI, G. TINAZTEPE, G. ADILOV, The Hermite–Hadamard inequalities for p-
convex functions, Hacet. J. Math. Stat., 50 (2021), 1268–1279.
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