FURTHER REFINEMENTS OF THE TAN-XIE INEQUALITY FOR SECTOR MATRICES AND ITS APPLICATIONS

Yonghui Ren

(Communicated by J. Pečarić)

Abstract

In this paper, we present some further refinements of the Tan-Xie inequality for sector matrices and its applications due to Nasiri and Furuichi [J. Math. Inequal., 15 (2021), 14251434].

1. Introduction

Let $\mathbb{M}_{n}(\mathbb{C})$ denote the set of $n \times n$ complex matrices and A^{*} denote the conjugate transpose of A. The matrix $A \in \mathbb{M}_{n}(\mathbb{C})$ is called accretive if $\Re A$ is positive definite, and accretive-dissipative matrix if both $\mathfrak{R A}$ and $\mathfrak{I} A$ are positive definite, where $\mathfrak{R} A=\frac{1}{2}\left(A+A^{*}\right)$ and $\mathfrak{J} A=\frac{1}{2 i}\left(A-A^{*}\right)$ are called the real part and imaginary part of A, respectively ([2, p. 6]). For two Hermitian matrices $A, B \in \mathbb{M}_{n}(\mathbb{C}), A \geqslant B$ means that $A-B$ is positive semi-definite. In addition, a norm $\|\cdot\|$ on $\mathbb{M}_{n}(\mathbb{C})$ is unitarily invariant if $\|U A V\|=\|A\|$ for any $A \in \mathbb{M}_{n}(\mathbb{C})$ and all unitarily matrices $U, V \in \mathbb{M}_{n}(\mathbb{C})$.

Recall that the numerical range of $A \in \mathbb{M}_{n}(\mathbb{C})$ is defined by

$$
W(A)=\left\{x^{*} A x: x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

S_{α} denotes the sector region in the complex plane as follows

$$
S_{\alpha}=\{z \in \mathbb{C}: \Re z>0,|\mathfrak{I} z| \leqslant(\Re z) \tan \alpha\}
$$

for $\alpha \in\left[0, \frac{\pi}{2}\right)$. It is clearly that $W(A) \subseteq S_{0}$ means A is positive definite. And if $W(A), W(B) \subseteq S_{\alpha}$ for some $\alpha \in\left[0, \frac{\pi}{2}\right)$, then $W(A+B) \subseteq S_{\alpha}$. Very recently, Nasiri and Furuichi [7] showed that $W(A) \subseteq S_{\alpha}$ implies $W\left(A^{-1}\right) \subseteq S_{\alpha}$. We denote $A \in \mathbb{M}_{n}(\mathbb{C})$ with $W(A) \subset S_{\alpha}$ for $\alpha \in\left[0, \frac{\pi}{2}\right)$ by $A \in S_{\alpha}$ for our convenience.

If $A, B \in \mathbb{M}_{n}(\mathbb{C})$ are positive definite, then the weighted Arithmetic-GeometricHarmonic (AM-GM-HM) means are defined as

$$
A \nabla_{v} B=(1-v) A+v B, \quad A \nVdash_{v} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{v} A^{\frac{1}{2}}
$$

and

$$
A!_{v} B=\left((1-v) A^{-1}+v B^{-1}\right)^{-1}
$$

Mathematics subject classification (2020): Primary 15A60, 47A30, 47A60.
Keywords and phrases: Sector matrices, positive linear maps, AM-GM-HM.
for $v \in[0,1]$, denoted by $A \nabla B, A \sharp B$ and $A!B$ for brevity when $v=\frac{1}{2}$, respectively. Besides, we default the Kantorovich constant to $K(h)=\frac{(h+1)^{2}}{4 h}$ for $h:=\frac{M}{m} \geqslant 1$ with $0<m \leqslant M$ if there is no special explanation in the rest of this paper.

A linear map $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow \mathbb{M}_{n}(\mathbb{C})$ is called positive if it maps positive definite matrices into positive difinite matrices and is said to be unital if it maps identity matrices to identity matrices. Recently, Tan and Chen [9] proved that for any positive linear map $\Phi, A \in S_{\alpha}$ implies $\Phi(A) \in S_{\alpha}$ and $\Re \Phi(A)=\Phi(\Re A)$.

The famous Choi's inequality [1, p. 41] involving a positive unital linear map Φ and a positive definite $A \in \mathbb{M}_{n}(\mathbb{C})$ reads

$$
\begin{equation*}
\Phi^{-1}(A) \leqslant \Phi\left(A^{-1}\right) \tag{1.1}
\end{equation*}
$$

In 2020, Tan and Xie [10] obtained the following AM-GM-HM means inequalities:

$$
\begin{equation*}
\cos ^{2}(\alpha) \Re\left(A!_{v} B\right) \leqslant \Re\left(A \sharp_{v} B\right) \leqslant \sec ^{2}(\alpha) \Re\left(A \nabla_{v} B\right), \tag{1.2}
\end{equation*}
$$

where $A, B \in S_{\alpha}$ and $v \in[0,1]$.
In 2021, Nasiri and Furuichi [7] present a reverse of the double inequality (1.2) involving positive linear maps as follows:

THEOREM 1. Let $A, B \in S_{\alpha}$ and $v \in[0,1]$. Then for every positive unital linear map Φ, we have the following
(i) if $0<m I_{n} \leqslant \mathfrak{R}(A), \mathfrak{R}(B) \leqslant M I_{n}$, then

$$
\begin{equation*}
K^{-2}(h) \cos ^{8}(\alpha) \Phi^{2}\left(\mathfrak{R}\left(A \nabla_{v} B\right)\right) \leqslant \Phi^{2}\left(\mathfrak{R}\left(A \not \sharp_{v} B\right)\right) . \tag{1.3}
\end{equation*}
$$

(ii) if $0<m I_{n} \leqslant \mathfrak{R}\left(A^{-1}\right), \mathfrak{R}\left(B^{-1}\right) \leqslant M I_{n}$, then

$$
\begin{equation*}
\Phi^{2}\left(\mathfrak{R}\left(A \not \sharp_{v} B\right)\right) \leqslant \sec ^{8}(\alpha) K^{2}(h) \Phi^{2}\left(\mathfrak{R}\left(A!_{v} B\right)\right) . \tag{1.4}
\end{equation*}
$$

In this paper, we try to give some generalizations and further refinements of Theorem 1. As applications, we obtain some inequalities for determinant, singular and unitarily invariant norm.

2. Main results

Firstly, we give further refinements of inequality (1.3).
Lemma 1. ([3]) Let $A, B \in \mathbb{M}_{n}(\mathbb{C})$ be positive definite. Then

$$
\|A B\| \leqslant \frac{1}{4}\|A+B\|^{2}
$$

Lemma 2. ([8]) Let $A, B \in \mathbb{M}_{n}(\mathbb{C})$ be accretive and let $v \in[0,1]$. Then

$$
\mathfrak{R} A \sharp_{v} \Re B \leqslant \Re\left(A \not \sharp_{v} B\right) .
$$

THEOREM 2. If $A, B \in S_{\alpha}, 0<m I_{n} \leqslant \Re(A), \mathfrak{R}(B) \leqslant M I_{n}$ and $v \in[0,1]$, then for every positive unital linear map Φ, we have

$$
\begin{equation*}
\Phi^{2}\left(\Re\left(A \nabla_{v} B\right)\right) \leqslant K^{2}(h) \Phi^{2}\left(\Re\left(A \not \sharp_{v} B\right)\right) . \tag{2.1}
\end{equation*}
$$

Proof. Under the conditions, we have

$$
\left(M I_{n}-\Re(A)\right)\left(m I_{n}-\Re(A)\right) \Re^{-1}(A) \leqslant 0,
$$

and

$$
\left(M I_{n}-\Re(B)\right)\left(m I_{n}-\Re(B)\right) \mathfrak{R}^{-1}(B) \leqslant 0,
$$

we obtain

$$
\begin{equation*}
\mathfrak{R}\left(A \nabla_{v} B\right)+M m\left(\mathfrak{R}^{-1}(A) \nabla_{v} \mathfrak{R}^{-1}(B)\right) \leqslant(M+m) I_{n} \tag{2.2}
\end{equation*}
$$

Inequality (2.1) is equivalent to

$$
\left\|\Phi\left(\Re\left(A \nabla_{v} B\right)\right) \Phi^{-1}\left(\Re\left(A \sharp_{v} B\right)\right)\right\| \leqslant K(h) .
$$

By computations, we have

$$
\begin{aligned}
& \left\|M m \Phi\left(\Re\left(A \nabla_{v} B\right)\right) \Phi^{-1}\left(\Re\left(A \sharp_{v} B\right)\right)\right\| \\
& \leqslant \frac{1}{4}\left\|\Phi\left(\Re\left(A \nabla_{v} B\right)\right)+\operatorname{Mm} \Phi^{-1}\left(\Re\left(A \sharp_{v} B\right)\right)\right\|^{2} \quad(\text { by Lemma 1) } \\
& \leqslant \frac{1}{4}\left\|\Phi\left(\Re\left(A \nabla_{v} B\right)\right)+\operatorname{Mm} \Phi\left(\Re^{-1}\left(A \sharp_{v} B\right)\right)\right\|^{2} \quad(\text { by }(1.1)) \\
& \leqslant \frac{1}{4}\left\|\Phi\left(\Re\left(A \nabla_{v} B\right)\right)+\operatorname{Mm} \Phi\left(\left(\Re(A) \sharp_{v} \Re(B)\right)^{-1}\right)\right\|^{2} \quad(\text { by Lemma } 2) \\
& =\frac{1}{4}\left\|\Phi\left(\Re\left(A \nabla_{v} B\right)\right)+\operatorname{Mm} \Phi\left(\Re^{-1}(A) \sharp_{v} \Re^{-1}(B)\right)\right\|^{2} \\
& \leqslant \frac{1}{4}\left\|\Phi\left(\Re\left(A \nabla_{v} B\right)\right)+\operatorname{Mm} \Phi\left(\Re^{-1}(A) \nabla_{v} \Re^{-1}(B)\right)\right\|^{2} \quad \quad(\text { by AM }- \text { GM inequality }) \\
& \leqslant \frac{1}{4}(M+m)^{2} . \quad(\text { by }(2.2))
\end{aligned}
$$

This completes the proof.
Next, we give a generalization of Theorem 2.

Lemma 3. ([1]) Let $A, B \in \mathbb{M}_{n}(\mathbb{C})$ be positive definite. Then for $1 \leqslant r<+\infty$,

$$
\left\|A^{r}+B^{r}\right\| \leqslant\left\|(A+B)^{r}\right\| .
$$

THEOREM 3. If $A, B \in S_{\alpha}, 0<m I_{n} \leqslant \mathfrak{R}(A), \mathfrak{R}(B) \leqslant M I_{n}, 1<\beta \leqslant 2, p \geqslant 2 \beta$ and $v \in[0,1]$, then for every positive unital linear map Φ, we have

$$
\begin{equation*}
\Phi^{p}\left(\Re\left(A \nabla_{v} B\right)\right) \leqslant \frac{\left(K^{\frac{\beta}{2}}(h)\left(M^{\beta}+m^{\beta}\right)\right)^{\frac{2 p}{\beta}}}{16 M^{p} m^{p}} \Phi^{p}\left(\Re\left(A \not \sharp_{v} B\right)\right) . \tag{2.3}
\end{equation*}
$$

Proof. Since

$$
m I_{n} \leqslant \Phi((1-v) \Re(A)+v \Re(B))=\Phi\left(\Re\left(A \nabla_{v} B\right)\right) \leqslant M I_{n},
$$

we have

$$
\begin{equation*}
M^{\beta} m^{\beta} \Phi^{-\beta}\left(\Re\left(A \nabla_{v} B\right)\right)+\Phi^{\beta}\left(\Re\left(A \nabla_{v} B\right)\right) \leqslant\left(M^{\beta}+m^{\beta}\right) I_{n} \tag{2.4}
\end{equation*}
$$

By (2.1) and the famous L-H inequality, we get

$$
\begin{equation*}
\Phi^{-\beta}\left(\Re\left(A \sharp_{v} B\right)\right) \leqslant K^{\beta}(h) \Phi^{-\beta}\left(\Re\left(A \nabla_{v} B\right)\right) . \tag{2.5}
\end{equation*}
$$

By computation, we have

$$
\begin{align*}
& \left\|M^{\frac{p}{2}} m^{\frac{p}{2}} \Phi^{\frac{p}{2}}\left(\Re\left(A \nabla_{v} B\right)\right) \Phi^{-\frac{p}{2}}\left(\Re\left(A \sharp_{v} B\right)\right)\right\|^{2} \quad \\
& \leqslant \frac{1}{4}\left\|K^{\frac{p}{4}}(h) \Phi^{\frac{p}{2}}\left(\Re\left(A \nabla_{v} B\right)\right)+\left(\frac{M^{2} m^{2}}{K(h)}\right)^{\frac{p}{4}} \Phi^{-\frac{p}{2}}\left(\Re\left(A \sharp_{v} B\right)\right)\right\|^{2} \quad(\text { by Lemma 1) } \\
& \leqslant \frac{1}{4}\left\|K^{\frac{\beta}{2}}(h) \Phi^{\beta}\left(\Re\left(A \nabla_{v} B\right)\right)+\left(\frac{M^{2} m^{2}}{K(h)}\right)^{\frac{\beta}{2}} \Phi^{-\beta}\left(\Re\left(A \sharp_{v} B\right)\right)\right\|^{\frac{p}{\beta}} \quad(\text { by Lemma 3) } \\
& \leqslant \frac{1}{4}\left\|K^{\frac{\beta}{2}}(h) \Phi^{\beta}\left(\Re\left(A \nabla_{v} B\right)\right)+K^{\frac{\beta}{2}}(h) M^{\beta} m^{\beta} \Phi^{-\beta}\left(\Re\left(A \nabla_{v} B\right)\right)\right\|^{\frac{p}{\beta}} \quad(\text { by }(2.5)) \tag{2.5}\\
& =\frac{1}{4}\left\|K^{\frac{\beta}{2}}(h)\left(\Phi^{\beta}\left(\Re\left(A \nabla_{v} B\right)\right)+M^{\beta} m^{\beta} \Phi^{-\beta}\left(\Re\left(A \nabla_{v} B\right)\right)\right)\right\|^{\frac{p}{\beta}} \\
& \leqslant \frac{1}{4}\left(K^{\frac{\beta}{2}}(h)\left(M^{\beta}+m^{\beta}\right)\right)^{\frac{p}{\beta}} . \quad(\text { by }(2.4))
\end{align*}
$$

That is,

$$
\left\|\Phi^{\frac{p}{2}}\left(\Re\left(A \nabla_{v} B\right)\right) \Phi^{-\frac{p}{2}}\left(\Re\left(A \sharp_{v} B\right)\right)\right\| \leqslant \frac{\left(K^{\frac{\beta}{2}}(h)\left(M^{\beta}+m^{\beta}\right)\right)^{\frac{p}{\beta}}}{4 M^{\frac{p}{2}} m^{\frac{p}{2}}},
$$

which is equivalent to inequality (2.3).
The following theorem explains that the factor in inequality (1.4) could be $\sec ^{4}(\alpha) K^{2}(h)$ under some conditions.

Lemma 4. ([8]) Let $A, B \in \mathbb{M}_{n}(\mathbb{C})$ be accretive and $v \in[0,1]$. Then

$$
(\Re A)!_{v}(\Re B) \leqslant \Re\left(A!_{v} B\right) .
$$

THEOREM 4. Let $v \in[0,1], A, B \in S_{\alpha}$ and $0<m I_{n} \leqslant \mathfrak{R}^{-1}(A), \Re^{-1}(B) \leqslant M I_{n}$. Then for every positive unital linear map Φ, we have

$$
\begin{equation*}
\Phi^{2}\left(\Re\left(A \nVdash_{v} B\right)\right) \leqslant\left(\sec ^{2}(\alpha) K(h)\right)^{2} \Phi^{2}\left(\Re\left(A!_{v} B\right)\right) \tag{2.6}
\end{equation*}
$$

Proof. Under the conditions, we can get

$$
\begin{equation*}
\Re^{-1}(A) \nabla_{v} \Re^{-1}(B)+M m \Re\left(A \nabla_{v} B\right) \leqslant(M+m) I_{n} \tag{2.7}
\end{equation*}
$$

By computation, we have

$$
\begin{aligned}
& \left\|\sec ^{2}(\alpha) M m \Phi\left(\Re\left(A \not \sharp_{v} B\right)\right) \Phi^{-1}\left(\Re\left(A!_{v} B\right)\right)\right\| \\
& \leqslant \frac{1}{4}\left\|M m \Phi\left(\Re\left(A \not \sharp_{v} B\right)\right)+\sec ^{2}(\alpha) \Phi^{-1}\left(\Re\left(A!_{v} B\right)\right)\right\|^{2} \quad(\text { by Lemma 1) } \\
& \leqslant \frac{1}{4}\left\|M m \Phi\left(\Re\left(A \not{ }_{v} B\right)\right)+\sec ^{2}(\alpha) \Phi\left(\Re^{-1}\left(A!_{v} B\right)\right)\right\|^{2} \quad(\text { by }(1.1)) \\
& \leqslant \frac{1}{4}\left\|M m \Phi\left(\Re\left(A \not{ }_{v} B\right)\right)+\sec ^{2}(\alpha) \Phi\left(\Re^{-1}(A) \nabla_{v} \Re^{-1}(B)\right)\right\|^{2} \quad(\text { by Lemma 4) } \\
& \left.\leqslant \frac{1}{4}\left\|\sec ^{2}(\alpha) M m \Phi\left(\Re\left(A \nabla_{v} B\right)\right)+\sec ^{2}(\alpha) \Phi\left(\Re^{-1}(A) \nabla_{v} \Re^{-1}(B)\right)\right\|^{2} \quad \text { (by }(1.2)\right) \\
& =\frac{1}{4}\left\|\sec ^{2}(\alpha) \Phi\left(M m \Re\left(A \nabla_{v} B\right)+\Re^{-1}(A) \nabla_{v} \Re^{-1}(B)\right)\right\|^{2} \\
& \leqslant \frac{1}{4} \sec ^{4}(\alpha)(M+m)^{2} . \quad(\text { by }(2.7))
\end{aligned}
$$

That is,

$$
\left\|\Phi\left(\Re\left(A \nVdash_{v} B\right)\right) \Phi^{-1}\left(\Re\left(A!_{v} B\right)\right)\right\| \leqslant \sec ^{2}(\alpha) K(h) .
$$

This complete the proof.
It is natural to ask whether (2.6) can be generalized following the line of (2.3). However, we don't have a satisfactory answer to these questions for the time being.

Next, we give some inequalities for determinant, singular and unitarily invariant norm by Theorem 2 and Theorem 4.

Lemma 5. ([6]) Let $A \in S_{\alpha}$. Then

$$
|\operatorname{det} A| \leqslant \sec ^{n}(\alpha) \operatorname{det}(\Re A)
$$

Lemma 6. ([5]) If $A \in \mathbb{M}_{n}(\mathbb{C})$ has positive definite real part, then

$$
\operatorname{det}(\Re A) \leqslant|\operatorname{det} A|
$$

Lemma 7. ([4]) Let $A \in S_{\alpha}$. Then

$$
s_{j}(A) \leqslant \sec ^{2}(\alpha) \lambda_{j}(\Re A)
$$

Lemma 8. ([11]) Let $A \in \mathbb{M}_{n}(\mathbb{C})$. Then

$$
\lambda_{j}(\Re A) \leqslant s_{j}(A)
$$

where $\lambda_{j}(A)$ and $s_{j}(A)$ is the j-th largest eigenvalue and singular value of A.
Lemma 9. ([12]) Let $A \in S_{\alpha}$. Then for any unitarily invariant norm $\|\cdot\|$,

$$
\|A\| \leqslant \sec (\alpha)\|\Re A\|
$$

Lemma 10. ([2]) Let $A \in \mathbb{M}_{n}(\mathbb{C})$. Then for any unitarily invariant norm $\|\cdot\|$,

$$
\|\Re A\| \leqslant\|A\| .
$$

THEOREM 5. Let $A, B \in S_{\alpha}$ and $v \in[0,1]$. If $0<m I \leqslant \mathfrak{R}(A), \mathfrak{R}(B) \leqslant M I$, then

$$
\begin{aligned}
\cos ^{n}(\alpha)\left|\operatorname{det}\left(A \nabla_{v} B\right)\right| & \leqslant K^{n}(h)\left|\operatorname{det}\left(A \sharp_{v} B\right)\right| ; \\
\cos ^{2}(\alpha) s_{j}\left(A \nabla_{v} B\right) & \leqslant K(h) s_{j}\left(A \sharp_{v} B\right) ; \\
\cos (\alpha)\left\|A \nabla_{v} B\right\| & \leqslant K(h)\left\|A \sharp_{v} B\right\| ;
\end{aligned}
$$

Proof. By computations, we have

$$
\begin{aligned}
\cos ^{n}(\alpha)\left|\operatorname{det}\left(A \nabla_{v} B\right)\right| & \leqslant \operatorname{det}\left(\Re\left(A \nabla_{v} B\right)\right) \\
& \leqslant K^{n}(h) \operatorname{det}\left(\Re\left(A \not{ }_{v} B\right)\right) \\
& \leqslant K^{n}(h)\left|\operatorname{det}\left(A \not \sharp_{v} B\right)\right|,
\end{aligned}
$$

where the first inequality is by Lemma 5, the second one is by (2.1), and the last inequality is by Lemma 6.

$$
\begin{aligned}
\cos ^{2}(\alpha) s_{j}\left(A \nabla_{v} B\right) & \leqslant \lambda_{j}\left(\Re\left(A \nabla_{v} B\right)\right) \\
& =s_{j}\left(\Re\left(A \nabla_{v} B\right)\right) \\
& \leqslant K(h) s_{j}\left(\Re\left(A \nVdash_{v} B\right)\right) \\
& \leqslant K(h) s_{j}\left(A \sharp_{v} B\right),
\end{aligned}
$$

where the first inequality is by Lemma 7, the second one is by (2.1), and the last inequality is by Lemma 8 .

$$
\begin{aligned}
\cos (\alpha)\left\|A \nabla_{v} B\right\| & \leqslant\left\|\Re\left(A \nabla_{v} B\right)\right\| \\
& \leqslant K(h)\left\|\Re\left(A \not \sharp_{v} B\right)\right\| \\
& \leqslant K(h)\left\|A \sharp_{v} B\right\|,
\end{aligned}
$$

where the first inequality is by Lemma 9, the second one is by (2.1), and the last inequality is by Lemma 10.

Theorem 6. Let $A, B \in S_{\alpha}$ and $v \in[0,1]$. If $0<m I_{n} \leqslant \Re^{-1}(A), \Re^{-1}(B) \leqslant M I_{n}$, then

$$
\begin{aligned}
\cos ^{3 n}(\alpha)\left|\operatorname{det}\left(A \sharp_{v} B\right)\right| & \leqslant K^{n}(h)\left|\operatorname{det}\left(A!_{v} B\right)\right| ; \\
\cos ^{4}(\alpha) s_{j}\left(A \not \sharp_{v} B\right) & \leqslant K(h) s_{j}\left(A!_{v} B\right) ; \\
\cos ^{3}(\alpha)\left\|A \not \sharp_{v} B\right\| & \leqslant K(h)\left\|A!_{v} B\right\| ;
\end{aligned}
$$

Proof. By replacing (2.1) by (2.6) in the proof of Theorem 5, we can get the proof of Theorem 6 similarly, so we omit the details.

Acknowledgement. The author wish to express his sincere thanks to the referee for his/her detailed and helpful suggestions for revising the manuscript.

REFERENCES

[1] R. Bhatia, Positive Definite Matrices, Princeton University Press, Princeton, 2007.
[2] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[3] R. Bhatia, F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra Appl., 308 (2000) 203-211.
[4] S. Drury, M. Lin, Singular value inequalities for matrices with numerical ranges in a sector, Oper. Matrices 8 (2014) 1143-1148.
[5] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 2013.
[6] M. Lin, Extension of a result of Hanynsworth and Hartfiel, Arch. Math., 104 (2015) 93-100.
[7] L. NASIRI, S. FUruichi, On a reverse of the Tan-Xie inequality for sector matrices and its applications, J. Math. Inequal., 15 (2021), 1425-1434.
[8] M. Raissouli, M. S. Moslehian, S. Furuichi, Relative entropy and Tsallis entropy of two accretive operators, C. R. Math. Acad. Sci. Paris, Ser. I, 355 (2017) 687-693.
[9] F. TAN, H. ChEn, Inequalities for sector matrices and positive linear maps, Electron J. Linear Algebra 35 (2019) 418-423.
[10] F. Tan, A. Xie, An extension of the AM-GM-HM inequality, Bull. Iranian Math. Soc., 46 (2020) 245-251.
[11] X. ZHAN, Matrix theory, American Mathematical Society, 2013.
[12] F. Zhang, A matrix decomposition and its applications, Linear Multilinear Algebra 63 (2015) 20332042.

[^0]
[^0]: Journal of Mathematical Inequalities
 www.ele-math.com
 jmi@ele-math.com

