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FURTHER REFINEMENTS OF THE TAN–XIE INEQUALITY

FOR SECTOR MATRICES AND ITS APPLICATIONS

YONGHUI REN

(Communicated by J. Pečarić)

Abstract. In this paper, we present some further refinements of the Tan-Xie inequality for sector
matrices and its applications due to Nasiri and Furuichi [J. Math. Inequal., 15 (2021), 1425–
1434].

1. Introduction

Let Mn(C) denote the set of n×n complex matrices and A∗ denote the conjugate
transpose of A . The matrix A ∈ Mn(C) is called accretive if ℜA is positive defi-
nite, and accretive-dissipative matrix if both ℜA and ℑA are positive definite, where
ℜA = 1

2(A+A∗) and ℑA = 1
2i (A−A∗) are called the real part and imaginary part of A ,

respectively ([2, p. 6]). For two Hermitian matrices A,B ∈ Mn(C) , A � B means that
A−B is positive semi-definite. In addition, a norm ‖·‖ on Mn(C) is unitarily invariant
if ‖UAV‖ = ‖A‖ for any A ∈ Mn(C) and all unitarily matrices U,V ∈ Mn(C) .

Recall that the numerical range of A ∈ Mn(C) is defined by

W (A) = {x∗Ax : x ∈ C
n, x∗x = 1}.

Sα denotes the sector region in the complex plane as follows

Sα = {z ∈ C : ℜz > 0, |ℑz| � (ℜz) tanα}
for α ∈ [0, π

2 ) . It is clearly that W (A) ⊆ S0 means A is positive definite. And if
W (A),W (B)⊆ Sα for some α ∈ [0, π

2 ) , then W (A+B)⊆ Sα . Very recently, Nasiri and
Furuichi [7] showed that W (A) ⊆ Sα implies W (A−1) ⊆ Sα . We denote A ∈ Mn(C)
with W (A) ⊂ Sα for α ∈ [0, π

2 ) by A ∈ Sα for our convenience.
If A,B ∈ Mn(C) are positive definite, then the weighted Arithmetic-Geometric-

Harmonic (AM-GM-HM) means are defined as

A∇vB = (1− v)A+ vB, A�vB = A
1
2 (A− 1

2 BA− 1
2 )vA

1
2

and
A!vB = ((1− v)A−1 + vB−1)−1
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for v ∈ [0,1] , denoted by A∇B , A�B and A!B for brevity when v = 1
2 , respectively.

Besides, we default the Kantorovich constant to K(h) = (h+1)2
4h for h := M

m � 1 with
0 < m � M if there is no special explanation in the rest of this paper.

A linear map Φ : Mn(C) → Mn(C) is called positive if it maps positive definite
matrices into positive difinite matrices and is said to be unital if it maps identity matrices
to identity matrices. Recently, Tan and Chen [9] proved that for any positive linear map
Φ , A ∈ Sα implies Φ(A) ∈ Sα and ℜΦ(A) = Φ(ℜA) .

The famous Choi’s inequality [1, p. 41] involving a positive unital linear map Φ
and a positive definite A ∈ Mn(C) reads

Φ−1(A) � Φ(A−1). (1.1)

In 2020, Tan and Xie [10] obtained the following AM-GM-HM means inequali-
ties:

cos2(α)ℜ(A!vB) � ℜ(A�vB) � sec2(α)ℜ(A∇vB), (1.2)

where A,B ∈ Sα and v ∈ [0,1] .
In 2021, Nasiri and Furuichi [7] present a reverse of the double inequality (1.2)

involving positive linear maps as follows:

THEOREM 1. Let A,B ∈ Sα and v ∈ [0,1] . Then for every positive unital linear
map Φ , we have the following

(i) if 0 < mIn � ℜ(A) , ℜ(B) � MIn , then

K−2(h)cos8(α)Φ2(ℜ(A∇vB)) � Φ2(ℜ(A�vB)). (1.3)

(ii) if 0 < mIn � ℜ(A−1),ℜ(B−1) � MIn , then

Φ2(ℜ(A�vB)) � sec8(α)K2(h)Φ2(ℜ(A!vB)). (1.4)

In this paper, we try to give some generalizations and further refinements of The-
orem 1. As applications, we obtain some inequalities for determinant, singular and
unitarily invariant norm.

2. Main results

Firstly, we give further refinements of inequality (1.3).

LEMMA 1. ([3]) Let A,B ∈ Mn(C) be positive definite. Then

‖AB‖� 1
4
‖A+B‖2.

LEMMA 2. ([8]) Let A,B ∈ Mn(C) be accretive and let v ∈ [0,1] . Then

ℜA�vℜB � ℜ(A�vB).
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THEOREM 2. If A,B∈ Sα , 0 < mIn � ℜ(A) , ℜ(B) � MIn and v∈ [0,1] , then for
every positive unital linear map Φ , we have

Φ2 (ℜ(A∇vB)) � K2(h)Φ2(ℜ(A�vB)). (2.1)

Proof. Under the conditions, we have

(MIn −ℜ(A))(mIn−ℜ(A))ℜ−1(A) � 0,

and

(MIn −ℜ(B))(mIn−ℜ(B))ℜ−1(B) � 0,

we obtain

ℜ(A∇vB)+Mm(ℜ−1(A)∇vℜ−1(B)) � (M +m)In. (2.2)

Inequality (2.1) is equivalent to

∥∥∥Φ(ℜ(A∇vB))Φ−1(ℜ(A�vB))
∥∥∥ � K(h).

By computations, we have

∥∥∥MmΦ(ℜ(A∇vB))Φ−1(ℜ(A�vB))
∥∥∥

� 1
4

∥∥∥Φ(ℜ(A∇vB))+MmΦ−1(ℜ(A�vB))
∥∥∥2

(by Lemma 1)

� 1
4

∥∥∥Φ(ℜ(A∇vB))+MmΦ(ℜ−1(A�vB))
∥∥∥2

(by (1.1))

� 1
4

∥∥∥Φ(ℜ(A∇vB))+MmΦ((ℜ(A)�vℜ(B))−1)
∥∥∥2

(by Lemma 2)

=
1
4

∥∥∥Φ(ℜ(A∇vB))+MmΦ(ℜ−1(A)�vℜ−1(B))
∥∥∥2

� 1
4

∥∥∥Φ(ℜ(A∇vB))+MmΦ
(
ℜ−1(A)∇vℜ−1(B)

)∥∥∥2
(by AM−GM inequality)

� 1
4
(M +m)2. (by (2.2))

This completes the proof. �

Next, we give a generalization of Theorem 2.

LEMMA 3. ([1]) Let A,B ∈ Mn(C) be positive definite. Then for 1 � r < +∞ ,

‖Ar +Br‖� ‖(A+B)r‖.
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THEOREM 3. If A,B ∈ Sα , 0 < mIn � ℜ(A) , ℜ(B) � MIn , 1 < β � 2 , p � 2β
and v ∈ [0,1] , then for every positive unital linear map Φ , we have

Φp (ℜ(A∇vB)) � (K
β
2 (h)(Mβ +mβ ))

2p
β

16Mpmp Φp(ℜ(A�vB)). (2.3)

Proof. Since

mIn � Φ((1− v)ℜ(A)+ vℜ(B)) = Φ(ℜ(A∇vB)) � MIn,

we have

Mβ mβ Φ−β (ℜ(A∇vB))+ Φβ (ℜ(A∇vB)) �
(
Mβ +mβ )

In. (2.4)

By (2.1) and the famous L-H inequality, we get

Φ−β (ℜ(A�vB)) � Kβ (h)Φ−β (ℜ(A∇vB)) . (2.5)

By computation, we have
∥∥∥M

p
2 m

p
2 Φ

p
2 (ℜ(A∇vB))Φ− p

2 (ℜ(A�vB))
∥∥∥

� 1
4

∥∥∥K
p
4 (h)Φ

p
2 (ℜ(A∇vB))+

(
M2m2

K(h)

) p
4

Φ− p
2 (ℜ(A�vB))

∥∥∥2
(by Lemma 1)

� 1
4

∥∥∥K
β
2 (h)Φβ (ℜ(A∇vB))+

(
M2m2

K(h)

) β
2

Φ−β (ℜ(A�vB))
∥∥∥

p
β (by Lemma 3)

� 1
4

∥∥∥K
β
2 (h)Φβ (ℜ(A∇vB))+K

β
2 (h)Mβ mβ Φ−β (ℜ(A∇vB))

∥∥∥
p
β (by (2.5))

=
1
4

∥∥∥K
β
2 (h)

(
Φβ (ℜ(A∇vB))+Mβ mβ Φ−β (ℜ(A∇vB))

)∥∥∥
p
β

� 1
4
(K

β
2 (h)(Mβ +mβ ))

p
β . (by (2.4))

That is,

∥∥∥Φ
p
2 (ℜ(A∇vB))Φ− p

2 (ℜ(A�vB))
∥∥∥ � (K

β
2 (h)(Mβ +mβ ))

p
β

4M
p
2 m

p
2

,

which is equivalent to inequality (2.3). �
The following theorem explains that the factor in inequality (1.4) could be

sec4(α)K2(h) under some conditions.

LEMMA 4. ([8]) Let A,B ∈ Mn(C) be accretive and v ∈ [0,1] . Then

(ℜA)!v(ℜB) � ℜ(A!vB).
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THEOREM 4. Let v ∈ [0,1] , A,B ∈ Sα and 0 < mIn � ℜ−1(A) , ℜ−1(B) � MIn .
Then for every positive unital linear map Φ , we have

Φ2(ℜ(A�vB)) � (sec2(α)K(h))2Φ2 (ℜ(A!vB)) . (2.6)

Proof. Under the conditions, we can get

ℜ−1(A)∇vℜ−1(B)+Mmℜ(A∇vB) � (M +m)In. (2.7)

By computation, we have
∥∥∥ sec2(α)MmΦ(ℜ(A�vB))Φ−1 (ℜ(A!vB))

∥∥∥
� 1

4

∥∥∥MmΦ(ℜ(A�vB))+ sec2(α)Φ−1 (ℜ(A!vB))
∥∥∥2

(by Lemma 1)

� 1
4

∥∥∥MmΦ(ℜ(A�vB))+ sec2(α)Φ
(
ℜ−1 (A!vB)

)∥∥∥2
(by (1.1))

� 1
4

∥∥∥MmΦ(ℜ(A�vB))+ sec2(α)Φ
(
ℜ−1(A)∇vℜ−1(B)

)∥∥∥2
(by Lemma 4)

� 1
4

∥∥∥ sec2(α)MmΦ(ℜ(A∇vB))+ sec2(α)Φ
(
ℜ−1(A)∇vℜ−1(B)

)∥∥∥2
(by (1.2))

=
1
4

∥∥∥sec2(α)Φ
(
Mmℜ(A∇vB)+ ℜ−1(A)∇vℜ−1(B)

)∥∥∥2

� 1
4

sec4(α)(M +m)2. (by (2.7))

That is, ∥∥∥Φ(ℜ(A�vB))Φ−1 (ℜ(A!vB))
∥∥∥ � sec2(α)K(h).

This complete the proof. �
It is natural to ask whether (2.6) can be generalized following the line of (2.3).

However, we don’t have a satisfactory answer to these questions for the time being.
Next, we give some inequalities for determinant, singular and unitarily invariant

norm by Theorem 2 and Theorem 4.

LEMMA 5. ([6]) Let A ∈ Sα . Then

|detA| � secn(α)det(ℜA).

LEMMA 6. ([5]) If A ∈ Mn(C) has positive definite real part, then

det(ℜA) � |detA|.

LEMMA 7. ([4]) Let A ∈ Sα . Then

s j(A) � sec2(α)λ j(ℜA).
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LEMMA 8. ([11]) Let A ∈ Mn(C) . Then

λ j(ℜA) � s j(A),

where λ j(A) and s j(A) is the j -th largest eigenvalue and singular value of A.

LEMMA 9. ([12]) Let A ∈ Sα . Then for any unitarily invariant norm ‖·‖ ,

‖A‖� sec(α)‖ℜA‖.

LEMMA 10. ([2]) Let A ∈ Mn(C) . Then for any unitarily invariant norm ‖·‖ ,

‖ℜA‖� ‖A‖.

THEOREM 5. Let A,B ∈ Sα and v ∈ [0,1]. If 0 < mI � ℜ(A) , ℜ(B) � MI , then

cosn(α)|det(A∇vB)| � Kn(h)|det(A�vB)|;

cos2(α)s j(A∇vB) � K(h)s j(A�vB);

cos(α)||A∇vB|| � K(h)||A�vB||;

Proof. By computations, we have

cosn(α)|det(A∇vB)| � det(ℜ(A∇vB))
� Kn(h)det(ℜ(A�vB))
� Kn(h)|det(A�vB)|,

where the first inequality is by Lemma 5, the second one is by (2.1), and the last in-
equality is by Lemma 6.

cos2(α)s j(A∇vB) � λ j(ℜ(A∇vB))
= s j(ℜ(A∇vB))
� K(h)s j(ℜ(A�vB))
� K(h)s j(A�vB),

where the first inequality is by Lemma 7, the second one is by (2.1), and the last in-
equality is by Lemma 8.

cos(α)||A∇vB|| � ||ℜ(A∇vB)||
� K(h)||ℜ(A�vB)||
� K(h)||A�vB||,

where the first inequality is by Lemma 9, the second one is by (2.1), and the last in-
equality is by Lemma 10. �
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THEOREM 6. Let A,B∈ Sα and v∈ [0,1]. If 0 < mIn � ℜ−1(A) , ℜ−1(B) � MIn ,
then

cos3n(α)|det(A�vB)| � Kn(h)|det(A!vB)|;
cos4(α)s j(A�vB) � K(h)s j(A!vB);

cos3(α)||A�vB|| � K(h)||A!vB||;

Proof. By replacing (2.1) by (2.6) in the proof of Theorem 5, we can get the proof
of Theorem 6 similarly, so we omit the details. �
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