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FURTHER REFINEMENTS OF THE TAN-XIE INEQUALITY
FOR SECTOR MATRICES AND ITS APPLICATIONS

YONGHUI REN

(Communicated by J. Pecaric)

Abstract. In this paper, we present some further refinements of the Tan-Xie inequality for sector
matrices and its applications due to Nasiri and Furuichi [J. Math. Inequal., 15 (2021), 1425—
1434].

1. Introduction

Let M, (C) denote the set of n x n complex matrices and A* denote the conjugate
transpose of A. The matrix A € M, (C) is called accretive if RA is positive defi-
nite, and accretive-dissipative matrix if both RA and SA are positive definite, where
RA=1(A+A") and SA = 5 (A —A") are called the real part and imaginary part of A,
respectively ([2, p. 6]). For two Hermitian matrices A, B € M,(C), A > B means that
A — B is positive semi-definite. In addition, a norm || - || on M, (C) is unitarily invariant
if ||UAV|| = ||A]| for any A € M,(C) and all unitarily matrices U,V € M,(C).

Recall that the numerical range of A € M,(C) is defined by

W(A)={x"Ax:x € C", x'x=1}.
S denotes the sector region in the complex plane as follows
Se={z€C:Rz>0, |3z < (Rz)tan }

for o € [0,%). It is clearly that W(A) C Sy means A is positive definite. And if
W(A),W(B) C Sq forsome a € [0,%), then W(A+B) C Sy Very recently, Nasiri and
Furuichi [7] showed that W(A) C S, implies W(A~!) C S,. We denote A € M,,(C)
with W(A) C Sy for o € [0,F) by A € Sy for our convenience.

If A,B € M,(C) are positive definite, then the weighted Arithmetic-Geometric-
Harmonic (AM-GM-HM) means are defined as

1

AV,B=(1—v)A+VB, Af,B=A7(A"TBA 2)'A}

and
ALB=((1-v)A~ 4B~ 1)7!
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for v € [0,1], denoted by AVB, AfB and A!B for brevity when v = 1, respectively.

2
Besides, we default the Kantorovich constant to K(h) = (h:[—hl) for h = % > 1 with

0 <m < M if there is no special explanation in the rest of this paper.

A linear map @ : M, (C) — M],(C) is called positive if it maps positive definite
matrices into positive difinite matrices and is said to be unital if it maps identity matrices
to identity matrices. Recently, Tan and Chen [9] proved that for any positive linear map
D, A e Sy implies P(A) € S and RDO(A) = P(RA).

The famous Choi’s inequality [1, p. 41] involving a positive unital linear map @
and a positive definite A € M,(C) reads

oA <p(A™). (1.1)

In 2020, Tan and Xie [10] obtained the following AM-GM-HM means inequali-
ties:

cos?(0)R(A!,B) < R(A4,B) < sec’(a)R(AV,B), (1.2)

where A,B € Sy and v € [0,1].
In 2021, Nasiri and Furuichi [7] present a reverse of the double inequality (1.2)
involving positive linear maps as follows:

THEOREM 1. Let A,B € Sy and v € [0,1]. Then for every positive unital linear

map @, we have the following
() if 0 <ml, < R(A), R(B) < Ml,, then

K2(h)cos® (a)®*(R(AV,B)) < ®*(R(A#,B)). (1.3)
(i) if 0 < ml, < R(A™H), R(B~') < M1, then
@?(R(At,B)) < sec®(a)K? (h)D?* (R(A!,B)). (1.4)

In this paper, we try to give some generalizations and further refinements of The-
orem 1. As applications, we obtain some inequalities for determinant, singular and
unitarily invariant norm.

2. Main results
Firstly, we give further refinements of inequality (1.3).
LEMMA 1. ([3]) Let A,B € M,(C) be positive definite. Then
1
1ABII< 1A+ B,

LEMMA 2. ([8]) Let A,B € M, (C) be accretive and let v € [0,1]. Then

RALRB < R(ALB).
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THEOREM 2. I[fA,BE€ Sy, 0 <ml, <R(A), R(B) <M1, and v € |0, 1], then for
every positive unital linear map ®©, we have

®* (R(AV,B)) < K* ()@ (R(A4B)). 2.1)

Proof. Under the conditions, we have

(ML, —R(A)) (mI, — R(A)R(A) <0,
and

(M1, — R(B)) (ml, — R(B)) R~ (B) <0,
we obtain

R(AV,B) + Mm(R(A)V,RY(B)) < (M +m)I,. (2.2)

Inequality (2.1) is equivalent to

Hcp(sn (AV,,B))CD‘I(ER(AﬁVB))H <K(h).
By computations, we have

[pame> (5t (49,8)) @ (5(42,8))|

N

@ (R (AV,B)) + Mm@~ (R(At,B)) Hz (by Lemma 1)

N

(R (AV.8)) + Mm% (45.8)| (by (11)

N

O (R (AV, B)) + Mnd(R(A)LR(B)) ) H2 (by Lemma 2)

N N R S VW U Ny,

(R (AV,B)) + Mmo( - (4)%(8))||

N

2
O (R(AV,B)) + Mm® (R~ (A)V, R (B)) H (by AM — GM inequality)
<z (M+m)? (by (22))
This completes the proof. [
Next, we give a generalization of Theorem 2.

LEMMA 3. ([1]) Let A,B € M,,(C) be positive definite. Then for 1 < r < +eo,

A"+ B'[[< [[(A+B)"]|.
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THEOREM 3. If A,B € Sq, 0 <ml, <R(A), R(B) <Ml,, 1 <B <2

and v € [0,1], then for every positive unital linear map ®, we have

2
K (h)(MP 4+ mP)) ¥
16MPmP

& (R (AV,B)) < | O (R(A%,B)).

Proof. Since
ml, <O((1—v)R(A)+vR(B)) =P (R(AV,B)) < MI,,
we have
MPmP &P (R (AV,B)) + ®P (R (AV,B)) < (MP +mP)1,.
By (2.1) and the famous L-H inequality, we get
o B (R(A4,B)) < KP ()P (R (AV,B)).
By computation, we have

HMgmgcl)g (R(AV,B)) @ % (EK(AﬁVB))H

., p=2P

2.3)

2.4)

(2.5)

g% K% (h)®? (R (AV,B)) + (%)gm—‘z’(mmvm)”z (by Lemma 1)
g% K% (P (R(AV,B)) + (’ﬁ;”;) 2 o A(R(A1,8)|"  (by Lemma3)
g% K4 ()P (R (AV,B)) + K (PP P R (av,) T by 2.5))
:% K5 (h) (@8 (R(4V,B)) + MO P P (31 (aV,5)) b
< SEEWWP 1 m)E. by (24)
That is,
(K () (MP +mP))b

Hcp% (R (AV,,B))‘I)_g(EK(AﬁVB))H < YL

which is equivalent to inequality (2.3). [

The following theorem explains that the factor in inequality (1.4) could be

sec*(o)K?(h) under some conditions.

LEMMA 4. ([8]) Ler A,B € M,,(C) be accretive and v € [0,1]. Then

(RA)!,(RB) < R(AL,B).
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THEOREM 4. Let v € [0,1], A,B € Sg and 0 < ml, < R~1(A), R~1(B) < MI,.
Then for every positive unital linear map ®, we have

O*(R(A4,B)) < (sec’()K(h))*®* (R (A!,B)). (2.6)
Proof. Under the conditions, we can get

R YAV, RY(B) + MmR (AV,B) < (M +m)I,. (2.7)
By computation, we have

*(0)Mm®R(45,8) " (R (41,8)) |

72
@
(e}

g% MmcI)(iR(Ajij))—i—secz(a)CD‘l(EK(A!VB))Hz (by Lemma 1)
g% MM@CMAmB»+sm%aﬂ%%*%AQM)W (by (1.1))
g% MmCD(ER(AﬁVB))—|—secz(a)CID(iR‘l(A)V,,iR‘l(B))H2 (by Lemma 4)
<%sw%mMmmmmwmymw%m¢@rm@wm4w»W (by (1.2))
- i sec?(0)® (MmR (AV,B) + R~ (A)V, R (B)) Hz
< grect @M+ (by (27))

That is,

HCD(ER(AﬁVB))@‘I (R(ALB)) H < secX (@)K (h).

This complete the proof. [J

It is natural to ask whether (2.6) can be generalized following the line of (2.3).
However, we don’t have a satisfactory answer to these questions for the time being.

Next, we give some inequalities for determinant, singular and unitarily invariant
norm by Theorem 2 and Theorem 4.

LEMMA 5. ([6]) Let A€ Sy. Then
|detA| < sec” (o) det(RA).
LEMMA 6. ([5]) If A € M,,(C) has positive definite real part, then
det (RA) < |detA|.
LEMMA 7. ([4]) Let A € Sq. Then

5;(A) < sec? (o) A;(RA).
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LEMMA 8. ([11]) Let A € M,,(C). Then
A(FA) < 55(4),
where Aj(A) and sj(A) is the j-th largest eigenvalue and singular value of A.

LEMMA 9. ([12]) Let A € Sy,. Then for any unitarily invariant norm ||-

>

IA]l< sec(a)||RA.

LEMMA 10. ([2]) Let A € M,(C). Then for any unitarily invariant norm ||-

IRA[I< [IA]-
THEOREM 5. Let A,B € Sy and v € [0,1]. If 0 <ml < R(A), R(B) < MI, then
cos" (00)| det(AV,B)| < K" (k)| det(Af, B)|;
cos?(a)s;(AV,B) < K(h)s;(A4,B);
cos(a)||AV,B|| < K(h)||A4,B||;
Proof. By computations, we have

cos”"(or)|det(AV,B)| < det(R(AV,B))
K" (h) det(R(Af,B))
)

K" (h)|det(At,B)|,

NN N

where the first inequality is by Lemma 5, the second one is by (2.1), and the last in-
equality is by Lemma 6.

cos?(a)s;(AV,B) < A;(R(AV,B))
s;(R(AV,B))

(
(h)sj(R(AL%B))
(h)sj (AﬁvB)a

K
K

NN

where the first inequality is by Lemma 7, the second one is by (2.1), and the last in-
equality is by Lemma 8.

cos(a)[|AV, B[ < [|[R(AV,B)]|
(m)[[R(AzB)[|
(

<
<
< K(h)||AgBl|,

K
K
where the first inequality is by Lemma 9, the second one is by (2.1), and the last in-
equality is by Lemma 10. [J
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THEOREM 6. Let A,B€ Sy and v € [0,1]. If 0 < ml, < R~'(A), R~1(B) < MI,,
then
31 (or)| det(Af,B)| < K"(h)|det(A!,B)|;
cos*(a)s;(Af,B) < K(h)s;(A!,B);
cos’ (at)||AtyBI| < K (h)[|A!B[;

Proof. By replacing (2.1) by (2.6) in the proof of Theorem 5, we can get the proof
of Theorem 6 similarly, so we omit the details. [
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