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ANISOTROPIC NONLINEAR ELLIPTIC SYSTEM

WITH DEGENERATE COERCIVITY AND Lm DATA

NOUR ELHOUDA ALLAOUI AND FARES MOKHTARI

(Communicated by I. Pažanin)

Abstract. In a bounded open subset Ω ⊂ R
n with n � 2 , we study nonlinear degenerate aniso-

tropic elliptic systems with Lm data, where m being small. Therefore, we prove the existence
of a weak solution u : Ω → R

N with N � 2 , under various hypotheses on the data f .

1. Introduction

Let us consider the Dirichlet elliptic problem⎧⎨
⎩−

n

∑
i=1

Di (ai(x,u(x),Diu(x))) = f (x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

(1.1)

where Ω is a bounded open subset of R
n , n � 2, f ,u : Ω → R

N , N � 2, Diu =
∂u
∂xi

,

and the vector fields ai : Ω×R
N ×R

N → R
N i = 1, . . . ,n are Carathéodory functions.

Hence, we aim at proving the existence of a bounded weak solution u for problem
(1.1) under suitable assumptions on the vector fields ai for all i = 1, . . . ,n , and the
right hand side f ∈ Lm(Ω;RN) , we have studied the following states: the first is when

f ∈
(
W 1,(pi)

0 (Ω;RN)
)′

, and the last case f is not in
(
W 1,(pi)

0 (Ω;RN)
)′

therefore the

solution u doesn’t belong to W 1,(pi)
0 (Ω;RN) but is in W 1,(qi)

0 (Ω;RN) such that qi ∈
(1, pi) for all i = 1, . . . ,n , where qi as in (3.12) and pi as in (3.11). Our regularity
results given in Theorems 3.3 and 3.4 are new and have not been proven before neither
in the isotropic nor in the anisotropic case. An important feature is the fact that, due

to (3.1), the operator A(u) = −
n

∑
i=1

Di(ai(x,u,Diu)) is well defined between W 1,(pi)
0 (Ω)

and its dual space (W 1,(pi)
0 (Ω))′ but, from (3.2), it fails to be coercive if u is large. This

shows that the classical methods for elliptic operators can’t be applied. To overcome
this problem, we will proceed by approximation by means of truncations in ai to get a
coercive differential operator. Next, we prove some anisotropic uniform estimates on
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the sequence of approximate solutions. Finally, we pass to the limit in the approximate
system to obtain the existence of a weak solution for problem (1.1).

Existence of weak solutions u has been profoundly examined in [21, 35, 8, 33],
while uniqueness seems to be a delicate matter, see [13]. For the scalar case with lower
order term we refer the reader to [9, 10, 11, 7, 20]. For some recent developments on
anisotropic elliptic equations and systems, see [4, 28, 5, 2, 3, 15, 18, 19]. The case of
p -Laplacian operator is treated in [17, 12], and the anisotropic case, in which each
component of the gradient Diu may have a possibly different exponent pi , is dealt
in [22] and [23].

In addition, it is important to mention that for the given system we’ve to add a
basic condition, as in some previous works treated, the isotropic case when p = 2:
sometimes use assumptions on the support off-diagonal coefficients when we deal with
elliptic systems: in [32] off-diagonal coefficients aα ,β

i, j must disappear when yα is large,

while [36] the system is supposed to be tridiagonal, i.e., aα ,β
i, j = 0 for β > α ; [24]

and [25] require that the support of aα ,β
i, j (x,y) is confined in square along the yα =±yβ

diagonals, in [26] different conditions on the support are given. In the case of the
anisotropic elliptic system, in [14] and [16] the authors use the following structure
condition

∀x ∈ Ω, ∀ξ ∈ R
N , ∀s ∈ R

N with |s| � 1,

ai(x,ξ ).((I− s⊗ s)ξ ) � 0, i = 1, . . . ,n,

where (I− s⊗ s) is the rank N − 1 orthogonal projector onto the space orthogonal to
the unit vector s ∈ R

N , see also [1, 6, 29].
This paper is organized in the following way: The section 2 is devoted to mathe-

matical preliminaries. Following that, assumptions and results are highlighted in sec-
tion 3. Next, we approximate problem (1.1) with some non degenerate problems in
section 4, and we show some a priori estimates on the solutions of these problems in
section 5. Finally, we pass to the limit in the approximate problem in section 6.

2. Mathematical preliminaries

Let Ω be a bounded open subset of R
n and pi > 1, i = 1, . . . ,n , n � 2. We

introduce the anisotropic Sobolev spaces W 1,(pi)(Ω) and W 1,(pi)
0 (Ω) which are defined

respectively by

W 1,(pi)(Ω) =
{
g ∈W 1,1(Ω) : Dig ∈ Lpi(Ω), ∀i = 1, . . . ,n

}
,

and
W 1,(pi)

0 (Ω) = W 1,1
0 (Ω)∩W1,(pi)(Ω).

which is a Banach space under the norm

‖g‖
W

1,(pi)
0 (Ω)

= ‖g‖L1(Ω) +
n

∑
i=1

‖Dig‖Lpi (Ω) .

We need the anisotropic Sobolev embedding Theorem.
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THEOREM 2.1. [34] Suppose g ∈W 1,(pi)
0 (Ω) . Then

‖g‖Lq(Ω) � C
n

∏
i=1

‖Dig‖
1
n
Lpi (Ω) . (2.1)

where ⎧⎨
⎩q = p∗ =

np
n− p

if p < n,

q ∈ [1,∞) if p � n,

1
p

=
1
n

n

∑
i=1

1
pi

.

The constant C , depends on p1, . . . , pn , n if p < n. Furthermore, if p � n, the inequal-
ity (2.1) is true for all q � 1 and C depends on q and |Ω| .

One has the following lemma.

LEMMA 2.2. [31] Let v ∈W 1,(pi)
0 (Ω) . Then there exists a constant C > 0 such

that
‖v‖Lpi(Ω) � C‖∂iv‖Lpi (Ω).

We use standard notation for the vector and matrix-valued versions of the space/

norm introduced above, as an example the R
N -valued of W 1,(pi)

0 (Ω) is denoted by

W 1,(pi)
0 (Ω;RN) .

3. Assumptions and main results

We assume that the vector fields ai : Ω×R
N ×R

N → R
N , i = 1, . . . ,n , are Cara-

thédory functions, satisfying the following conditions, there exist c1 > 0, τ > 0, such
that for a.e. x ∈ Ω , all u ∈ R

N , and all ξ ,ξ ′ ∈ R
N , i = 1, . . . ,n , we have

|ai(x,u,ξ )| � c1

(
|h|+ |u|p +

n

∑
j=1

|ξ j|p j

)1− 1
pi

, |h| ∈ L1(Ω), (3.1)

τ
|ξ |pi

(1+ |u|)θ � ai(x,u,ξ ).ξ , (3.2)

(
ai(x,u,ξ )−ai(x,u,ξ ′)

)
.
(
ξ − ξ ′)� 0, (3.3)

0 < θ < p−1, (3.4)

where pi > 1 is real number and 1/p = 1/n∑n
i=1 1/pi . Defining p+ = max

1�i�n
pi and

p− = min
1�i�n

pi .

The fundamental problem presented by extending the results of an equation to a
system is to obtain as estimation of the truncation, since the truncation is different for
both scalar and vector cases, therefore as additional structure condition is needed in



1226 N. E. ALLAOUI AND F. MOKHTARI

order to prove the existence of a solution for the elliptic system with Lm data. Here we
use the following condition

ai,l(x,u,ξ )ξl � 0, ∀(x,ξ ) ∈ Ω×R
N, i = 1, . . . ,n, l = 1, . . . ,N, (3.5)

see set assumption in [37].
Here ai,l and ξl , are the l-th row of vectors ai and ξ , respectively.
We make the further restriction

m � np
np+ p−np−

. (3.6)

As prototype examples, we consider the following models

⎧⎨
⎩−

n

∑
i=1

Di

( |Diu|pi−2Diu
(1+ |u|)θ

)
= f in Ω,

u = 0 on ∂Ω.

and ⎧⎪⎨
⎪⎩−

n

∑
i=1

Di

(
a(u)|Diu|

pi−2
2

(1+ |u|)θ Diu

)
= f in Ω,

u = 0 on ∂Ω,

where a : R
N → (0,∞) is a bounded continuous function.

Our main results are the following

THEOREM 3.1. Let f ∈ Lm(Ω;RN) with m >
n
p

satisfying (3.6), n � 3 , N � 2 ,

and assume that p ∈ [2,n) . Then every solution u ∈W 1,(pi)
0 (Ω;RN) to problem (1.1) is

such that u ∈ L∞(Ω;RN) , which is weak solution of (1.1) in the sense that

∫
Ω

n

∑
i=1

ai(x,u,Diu).Diϕ dx =
∫

Ω
f .ϕ dx, ∀ϕ ∈W 1,(pi)

0 (Ω;RN). (3.7)

THEOREM 3.2. Let f ∈ Lm(Ω;RN) with m =
n
p

satisfying (3.6), n � 3 , N � 2 ,

assume that p∈ [2,n) . Then every solution u∈W 1,(pi)
0 (Ω;RN) to problem (1.1) is such

that eλ |u|1−
θ

p−1 ∈ L1(Ω) for every λ > 0 , which is weak solution of (1.1) in the sense
(3.7).

REMARK 1.

• If we take N = 1, the results of Theorems 3.1–3.2 are the same as the results of
Theorems 1.1–1.2 found in [18].
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THEOREM 3.3. Let f ∈ Lm(Ω;RN) . Assume that θ as in (3.4) and p < n, such
that

np
np− (1+ θ )(n− p)

� m <
n
p
. (3.8)

Then every weak solution u ∈W 1,(pi)
0 (Ω;RN) to problem (1.1) in the sense of (3.7), is

such that u ∈ Lr(Ω;RN) , with

r =
nmp(p+−θ −1)

mp+(n− p)−np(m−1)
, p+ = max

1�i�n
pi. (3.9)

REMARK 2.

• Hypothesis m � np
np− (1+ θ )(n− p)

guarantees that r � p∗ . Since we have the

continuous embedding W 1,(pi)
0 (Ω) ↪→ Lp∗(Ω) we deduce that u ∈ Lr(Ω) for all

r ∈ [1,∞) .

• If pi = 2, and N = 1, f ∈ Lm(Ω) , with
2n

n+2−θ (n−2)
� m <

n
2

, then u ∈

H1
0 (Ω)∩Lr(Ω) , such that r =

nm(1−θ )
n−2m

, which is the same result as in Theorem

1.3 in [8].

THEOREM 3.4. Under the assumptions (3.1)–(3.5), let f ∈ Lm(Ω;RN) , with m >
1 and p < n, such that for i = 1, . . . ,n

np
p(1+ θ )+2n(p−1−θ )

< m <
np

np− (1+ θ )(n− p)
(3.10)

np−mp(1+ θ )
nm(p−1−θ )

< pi <
np−mp(1+ θ )

np−mp(1+ θ )−nm(p−1−θ )
. (3.11)

Then there exists a function u ∈W 1,(qi)
0 (Ω;RN) , with

qi =
pinm(p−1−θ )
np−mp(1+ θ )

< pi, i = 1, . . . ,n, (3.12)

which allows to solve (1.1) in the sense

∫
Ω

n

∑
i=1

ai (x,u,Diu) .Diϕ dx =
∫

Ω
f .ϕ dx, ∀ϕ ∈C∞

0 (Ω;RN). (3.13)

REMARK 3.

• If θ > np+p−2n
2n−p then the lower bound for m in (3.10) is smaller than 1, and if

θ < np+p−2n
2n−p then the lower bound for m in (3.10) is greater than 1.

• The lower bound of m in (3.10) guarantees that (3.11) is well defined.
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• We note that qi < pi for all i = 1, . . . ,n , due to the upper bound for m in (3.10).

• Since we have θ < p−1 the inequalities (3.8) and (3.10) are well defined.

• If we take pi = 2, and N = 1, with f ∈ Lm(Ω) , n
n+1−θ(n−1) < m < 2n

n+2−θ(n−2) ,

then u ∈W 1,q
0 (Ω) , with q = nm(1−θ)

n−m(1+θ) < 2, which is the same result as in Theo-
rem 1.8 in [8].

4. Approximate solutions

Let Tε be the standard scalar truncation defined as

Tε : R → R

x → Tε(x) =

{
x if |x| � ε,

ε sign(x) if |x| > ε.

We introduce the following cubic truncation function

Tε(y) = (Tε(y1), . . . ,Tε(yN))

= (max(−ε,min(ε,y1)), . . . ,max(−ε,min(ε,yN))) ,

which satisfies
|Tε(y)| � |y|, |Tε(y)| � Nε. (4.1)

We consider the following family of approximate problems⎧⎨
⎩−

n

∑
i=1

Di (ai(x,Tε (uε),Diuε)) = fε x ∈ Ω,

uε = 0, x ∈ ∂Ω,

(4.2)

where fε = Tε( f ) , such that

fε → f stronglyinLm(Ω;RN), (4.3)

and
‖ fε‖Lm(Ω;RN ) � ‖ f‖Lm(Ω;RN ). (4.4)

We are going to prove the existence of weak solution for problem (4.2) that is a

function uε ∈W 1,(pi)
0 (Ω;RN) such that for all ϕ ∈W 1,(pi)

0 (Ω;RN)

∫
Ω

n

∑
i=1

ai(x,Tε (uε),Diuε).Diϕ dx =
∫

Ω
fε .ϕ dx. (4.5)

For uε ,vε ∈W 1,(pi)
0 (Ω;RN) , we denote by A the operator

A : uε →
(

vε →
∫

Ω

n

∑
i=1

ai(x,Tε (uε),Diuε).Divε dx

)
.
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Clearly, A is well-defined and monotone. This function satisfies condition (3.2), we
deduce from the coercivity condition that A is coercive.

The growth condition (3.1) implies that A is hemicontinuous. By (3.1) and by
using Hölder’s inequality we obtain

|〈Auε ,vε〉| � c1

n

∑
i=1

{∫
Ω

(
|h|+ |uε |p +

n

∑
j=1

|Djuε |p j

)
dx

} 1
p′i

.

Since the solution |uε | is in Lp(Ω) , this because, there exists j ∈ {1, . . . ,n} so that
p j � p , then |uε | ∈ Lp(Ω) , by using Lemma 2.2, the boundedness of A . According to

(3.3) and that fε ∈
(
W 1,(pi)

0 (Ω;RN)
)′

, we can apply the surjectivity result given in [27].

This gives the existence of a weak solution uε ∈W 1,(pi)
0 (Ω;RN) for problem (4.2) each

of them satisfying the weak formulation (4.5).

5. A priori estimates

Throughout the paper, we will denote by c or C the positive constants depending
only on the data of the problem, but not on ε .

LEMMA 5.1. Assume that m >
n
p

, and let fε ∈ Lm(Ω;RN) , p � 2, and let uε

be a solution of (4.2) in the sense of (4.5). Then, the sequence (uε) is bounded in

W 1,(pi)
0 (Ω;RN)∩L∞(Ω;RN) .

LEMMA 5.2. Assume that m =
n
p

, and let fε ∈ Lm(Ω;RN), p � 2 and let uε be a

solution of (4.2) in the sense of (4.5). Then, there exists λ > 0 such that eλ |uε |1−
θ

p−1 ∈
L1(Ω) .

Proof of Lemmas 5.1–5.2. We define the function

Gk : R
N → R

N

y → Gk(y) = y−Tk(y) = (y1−Tk(y1), . . . ,yN −Tk(yN)) .

For k > 0, if we take Gk(uε) as test function in (4.5) yields

N

∑
l=1

∫
{|ul

ε |>k}

n

∑
i=1

ai,l(x,Tε (uε),Diuε)Diu
l
ε dx =

∫
Ω

fε .Gk(uε)dx. (5.1)
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Using (3.2), (3.5), and (5.1) we can deduce that

∫
{∑N

l=1 |ul
ε |>k}

n

∑
i=1

|Diuε |pi

(1+ |uε |)θ dx

� 1
τ

∫
{∑N

l=1 |ul
ε |>k}

n

∑
i=1

ai(x,Tε (uε),Diuε).Diuε dx

� 1
τ

N

∑
l=1

∫
{|ul

ε |>k}

n

∑
i=1

ai,l(x,Tε (uε),Diuε)Diu
l
ε dx

� 1
τ

∫
Ω

fε .Gk(uε)dx.

Therefore, Hölder’s inequality implies

∫
{|uε |>k}

n

∑
i=1

|Diuε |pi

(1+ |uε |)θ dx � c‖ fε‖Lm(Ω;RN )

(∫
Ω
|Gk(uε)|m′

dx

) 1
m′

, (5.2)

such that |uε | =
N

∑
l=1

|ul
ε | (1-norm of vector uε = (u1

ε , . . . ,u
N
ε )). In fact (5.2) is exactly

(3.2) in [18]. So the rest of the proof that (uε) is bounded in L∞(Ω) and eλ |uε |1−
θ

p−1
is

bounded in L1(Ω) is similar to scalar case in [18].

We are going to prove that (uε) is bounded in W 1,(pi)
0 (Ω;RN) : taking uε as test

function in (4.5), we obtain

∫
Ω

n

∑
i=1

ai(x,uε ,Diuε).Diuε dx � ‖uε‖L∞(Ω;RN)‖ fε‖L1(Ω;RN ).

By assumption (3.2) and (4.1), we get

τ
∫

Ω

n

∑
i=1

|Diuε |pi

(1+ |uε |)θ dx � ‖uε‖L∞(Ω;RN)‖ f‖L1(Ω;RN ),

so,

∫
Ω

n

∑
i=1

|Diuε |pi dx � ‖uε‖L∞

τ
(1+‖uε‖L∞)θ ‖ f‖L1

� C.

Therefore, the proof of Lemmas 5.1–5.2 is concluded. �

LEMMA 5.3. Let pi ∈ [1,+∞) , i = 1, . . . ,n. We have for all k > 0∫
{k�|uε |<k+1}

|Diuε |pi dx � c(2+ k)θ
∫
{|uε |�k}

| fε |dx. (5.3)
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Proof. We take T1 (Gk(uε)) as a test function in (4.5), such that

T1(Gk(uε)) = T1(uε −Tk(uε)) =
(
T1(u1

ε −Tk(u1
ε)), . . . ,T1(uN

ε −Tk(uN
ε ))
)

where for all x ∈ R

T1(x−Tk(x)) =

⎧⎪⎪⎨
⎪⎪⎩

x− k sign(x); k � |x| � k+1,

sign(x); |x| � k+1,

0; |x| � k.

So
N

∑
l=1

∫
{k�|ul

ε |<k+1}

n

∑
i=1

ai,l(x,uε ,Diuε)Diu
l
ε dx =

∫
Ω

fε .T1(Gk(uε))dx. (5.4)

According to (3.2) and (5.4), we have

∫
{k�∑N

l=1 |ul
ε |<k+1}

n

∑
i=1

|Diuε |pi

(1+ |uε |)θ dx

�
∫
{k�∑N

l=1 |ul
ε |<k+1}

n

∑
i=1

ai(x,uε ,Diuε).Diuε dx

�
N

∑
l=1

∫
{k�|ul

ε |<k+1}

n

∑
i=1

ai,l(x,uε ,Diuε)Diu
l
ε dx

=
∫

Ω
fε .T1(Gk(uε))dx.

which implies

n

∑
i=1

∫
{k�|uε |<k+1}

|Diuε |pi dx � 1
τ
(2+ k)θ

∫
{|uε |�k}

| fε |dx.

Consequently ∫
{k�|uε |<k+1}

|Diuε |pi dx � c(2+ k)θ
∫
{|uε |�k}

| fε |dx. �

LEMMA 5.4. Assume that m satisfies (3.8), and let uε be a solution of (4.2) in

the sense of (4.5). Let r as in (3.9), then uε is bounded in W 1,(pi)
0 (Ω;RN)∩Lr(Ω;RN) .

Proof. We set

Ak = {x ∈ Ω : |uε | � k} , Bk = {x ∈ Ω : k � |uε | < k+1} .

Let γ � 1, using the fact that(
N

∑
i=1

αi

)p

� Np
N

∑
i=1

(αi)p , αi � 0, (5.5)
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and due to the anisotropic Sobolev inequality (2.1), we have

(∫
Ω
|uε |γ p∗ dx

) 1
p∗

� c

(∫
Ω

N

∑
l=1

|ul
ε |γ p∗ dx

) 1
p∗

� C
n

∏
j=1

(
+∞

∑
k=0

∫
Bk

|uε |p j(γ−1)|Djuε |p j dx

) 1
np j

(5.6)

�
n

∏
j=1

(
C

+∞

∑
k=0

(1+ k)p j(γ−1)
∫

Bk

|Djuε |p j dx

) 1
np j

,

from Lemma 5.3, we get

(∫
Ω
|uε |γ p∗ dx

) 1
p∗

�
n

∏
j=1

(
C

+∞

∑
k=0

(1+ k)p j(γ−1)(2+ k)θ
∫

Ak

| fε |dx

) 1
np j

�
n

∏
j=1

(
C

+∞

∑
k=0

(2+ k)p j(γ−1)+θ
∞

∑
h=k

∫
Ah

| fε |dx

) 1
np j

.

Therefore, changing the order of summation, and using the fact that

h

∑
k=0

kρ � c(h+1)ρ+1, (5.7)

where c = c(ρ) , one obtains

(∫
Ω
|uε |γ p∗ dx

) 1
p∗

�
n

∏
j=1

(
C

∞

∑
h=0

∫
Bh

| fε |
h

∑
k=0

(2+ k)p j(γ−1)+θ dx

) 1
np j

�
n

∏
j=1

(
C
∫

Ω
| fε |(3+ |uε |)p j(γ−1)+θ+1 dx

) 1
np j

�
n

∏
j=1

(
n

∑
i=1

C
∫

Ω
| fε |(3+ |uε |)pi(γ−1)+θ+1 dx

) 1
np j

� C

(
n

∑
i=1

∫
Ω
| f |(3+ |uε|)pi(γ−1)+θ+1 dx

) 1
p

.

Since m > 1, by Hölder’s inequality and this last inequality, we obtain

(∫
Ω
|uε |γ p∗ dx

) p
p∗

� C
n

∑
i=1

(∫
Ω

(3+ |uε |)(pi(γ−1)+θ+1)m′
dx

) 1
m′

.
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Knowing that min
1�i�n

pi = p− � pi � max
1�i�n

pi = p+ , we have

(∫
Ω
|uε |γ p∗ dx

) p
p∗

� C

(
1+

n

∑
i=1

∫
Ω
|uε |(p+(γ−1)+θ+1)m′

dx

) 1
m′

� C′
(

1+
∫

Ω
|uε |(p+(γ−1)+θ+1)m′

dx

) 1
m′

.

(5.8)

Now choose γ so that
p∗γ = (1+ p+(γ −1)+ θ )m′,

thus

γ =
(n− p)m(1+ θ − p+)

np(m−1)−mp+(n− p)
.

The lower bound of m in (3.8) is equivalent to γ � 1. It follows that

r = γ p∗ =
nmp(1+ θ − p+)

np(m−1)−mp+(n− p)
� p∗. (5.9)

Since m <
n
p

implies
p
p∗

� 1
m′ , (5.8) yields

∫
Ω
|uε |r dx � c. (5.10)

Combining (5.6)–(5.10), we deduce that

∫
Ω
|uε |p j(γ−1)|Djuε |p j dx � C

(
1+

∫
Ω
|uε |r dx

) 1
m′

� C. (5.11)

Therefore, by Lemma 5.3, that γ � 1, and (5.11), we can write for all i = 1, . . . ,n∫
Ω
|Diuε |pi dx =

∫
{|uε |�1}

|Diuε |pi dx+
∫
{|uε |�1}

|Diuε |pi dx

� C+
∫
{|uε |�1}

|uε |p∗i (γ −1)|Diuε |pi dx

� C.

This finishes the proof of Lemma 5.4. �

LEMMA 5.5. Assume that m satisfies (3.10), and let uε be a solution of (4.2) in

the sense of (4.5). Then, the sequence (uε) is bounded in W 1,(qi)
0 (Ω;RN)∩Ls(Ω;RN)

such that

s = q∗ =
nq

n−q
=

nm(p−1−θ )
n−mp

, (5.12)

and

qi =
pinm(p−1−θ )
np−mp(1+ θ )

. (5.13)
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Proof. Let λ be a positive number to be determined later. Due to Lemma 5.3, we
get ∫

Ω

|Diuε |pi

(1+ |uε |)λ dx =
∞

∑
k=0

∫
Bk

|Diuε |pi

(1+ |uε |)λ dx

�
∞

∑
k=0

1

(1+ k)λ

∫
Bk

|Diuε |pi dx

� c
∞

∑
k=0

1

(1+ k)λ (2+ k)θ
∫

Ak

| fε |dx

� c
∞

∑
k=0

(1+ k)θ−λ
∞

∑
h=k

∫
Bh

| fε |dx.

On the other, changing the order of summation, and using (5.7), and by Hölder’s in-
equality we conclude that∫

Ω

|Diuε |pi

(1+ |uε |)λ dx � c
∞

∑
h=0

∫
Bh

| fε |
h

∑
k=0

(1+ k)θ−λ dx

� c
∞

∑
h=0

(2+h)1+θ−λ
∫

Bh

| fε |dx

� c
∞

∑
k=0

∫
Bk

| fε |(2+ |uε |)θ−λ+1 dx

= c
∫

Ω
| fε |(2+ |uε |)θ−λ+1 dx

� c

(
‖ fε‖Lm

(∫
Ω

(2+ |uε |)m′(θ−λ+1) dx

) 1
m′
)

� C

(
1+
(∫

Ω
|uε |m′(θ−λ+1) dx

) 1
m′
)

.

Let s and qi be as in (5.12) and (5.13). Next, it can be checked that qi < pi . Using
again (5.5) and the anisotropic Sobolev inequality (2.1), we see that

∫
Ω
|uε |q∗ dx =

∫
Ω

(
N

∑
l=1

|ul
ε |
)q∗

dx � c
N

∑
l=1

∫
Ω
|ul

ε |q
∗
dx

� c
N

∑
l=1

n

∏
j=1

(∫
Ω
|Dju

l
ε |q j dx

) q∗
nq j

� C
N

∑
l=1

n

∏
j=1

(∫
Ω
|Djuε |q j dx

) q∗
nq j

= NC
n

∏
j=1

(∫
Ω
|Djuε |q j dx

) q∗
nq j
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� C
n

∏
j=1

(
n

∑
i=1

∫
Ω
|Diuε |qi dx

) q∗
nq j

� C

(
n

∑
i=1

∫
Ω
|Diuε |qi dx

) q∗
q

,

thus (∫
Ω
|uε |q∗ dx

) q
q∗

� C
n

∑
i=1

∫
Ω
|Diuε |qi dx. (5.14)

We can assume that
qi

pi
=

q
p
.

If not, we set
η = max

1�i�n

qi

pi
,

and replace qi byη pi . Notice that since η pi � qi , then Diuε remains in a bounded
set of Lη pi(Ω) , implies that Diuε bounded in Lqi(Ω;RN) for all i = 1, . . . ,n and this
involves the results.

In the sequel, we set qi = η pi , η =
q
p
∈ (0,1).

We choose λ such that

λ = q∗
1−η

η
,

so

λ =
np−mp(1+ θ )−nm(p−1−θ )

n−mp
.

It is easy to verify that this involves

(1+ θ −λ )m′ � q∗.

Using Hölder’s inequality and below calculations, we get∫
Ω
|Diuε |qi dx =

∫
Ω

|Diuε |qi

(1+ |uε |)
λqi
pi

(1+ |uε |)
λqi
pi dx

�
(∫

Ω

|Diuε |pi

(1+ |uε |)λ dx

) qi
pi
(∫

Ω
(1+ |uε |)

λqi
pi−qi dx

)1− qi
pi

�
(∫

Ω

|Diuε |pi

(1+ |uε|)λ dx

)η (∫
Ω

(1+ |uε |)
λη
1−η dx

)1−η

� C

{
1+
(∫

Ω
|uε |m′(θ−λ+1) dx

) η
m′
}{

1+
(∫

Ω
|uε |

λη
1−η dx

)1−η
}

� C

⎧⎨
⎩1+

(∫
Ω
|uε |q∗ dx

) η(1+θ−λ)
q∗

⎫⎬
⎭
{

1+
(∫

Ω
|uε |q∗ dx

)1−η
}

,
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it follows that

N

∑
i=1

∫
Ω
|Diuε |qi dx � C′

⎧⎨
⎩1+

(∫
Ω
|uε |q∗ dx

) η(1+θ−λ)
q∗ +1−η

⎫⎬
⎭ . (5.15)

This inequality together with (5.14), implies

(∫
Ω
|uε |q∗ dx

) q
q∗

� c
n

∑
i=1

∫
Ω
|Diuε |qi dx

� C

⎧⎨
⎩1+

(∫
Ω
|uε |q∗ dx

) η(1+θ−λ)
q∗ +1−η

⎫⎬
⎭ .

From (3.4), we get
q
q∗

>
η(1+ θ −λ )

q∗
+1−η .

Consequently uε is bounded in Lq∗(Ω;RN), so, the inequality (5.15) implies∫
Ω
|Diuε |qi dx � C. (5.16)

This finishes the proof of Lemma 5.5. �

6. Proof of main results

In this section, we prove Theorems 3.1, 3.2, 3.3, and 3.4 using the estimates of
Section 5.

6.1. Proof of Theorem 3.4

By Lemma 5.5 the sequence uε is bounded in W 1,(qi)
0 (Ω;RN) , where qi is defined

as (5.13), without losing generality, we can therefore assume that

uε ⇀ u weakly in W 1,(qi)
0 (Ω;RN).

The sequence uε remains in a bounded set of the space

W 1,q−
0 (Ω;RN), q− = min

1�i�n
qi.

Thanks to the Rellich embedding Theorem, we can extract a subsequence denoted again
uε so that

uε → u strongly in Lq0(Ω;RN) (6.1)

and
uε → u a.e. inΩ. (6.2)
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Using the same method as [30], we can prove

Diuε → Diu a.e., in Ω, i = 1, . . . ,n. (6.3)

Since ai are Carathéodory functions, by (6.2) and (6.3), we get

ai(x,Tε(uε),Diuε) → ai(x,u,Diu), a.e., in Ω. (6.4)

Now we prove that

ai(x,uε ,Diuε) is uniformly bounded in L
qi

pi−1 (Ω;RN), ∀i = 1, . . . ,n.

Where qi satisfy (5.13), then we have for all i = 1, . . . ,n.

1 <
qi

pi−1
=

pi

pi −1
nm(p−1−θ )
np−mp(1+ θ )

,

the choice of
qi

pi−1
> 1 is possible since we have (3.11).

Now we let β ∈ (0,1) is a constant such that, for all i = 1, . . . ,n

qi

pi
= β =

nm(p−1−θ )
np−mp(1+ θ )

(6.5)

and β < 1 since (3.10). Moreover

0 < piβ = qi. (6.6)

Using the assumption (3.1), we get for all i = 1, . . . ,n

|ai(x,uε ,Diuε)|
qi

pi−1 � c1

(
|h|β + |uε |pβ +

n

∑
i=1

|Djuε |p jβ

) qi
piβ

� c1

(
|h|β + |uε |pβ +

n

∑
i=1

|Diuε |qi

)
.

Therefore by (6.6) and since uε is in Lp(Ω;RN) , we find that, for all i = 1, . . . ,n ,

ai(x,uε ,Diuε) uniformly bounded in L
qi

pi−1 (Ω;RN).
By (6.4) and Vitali’s Theorem, we derive for all i = 1, . . . ,n

ai(x,Tε(uε),Diuε) → ai(x,u,Diu)strongly inL1(Ω;RN), (6.7)

by (4.3), and (6.7), so that

lim
ε→0

∫
Ω

n

∑
i=1

ai(x,Tε (uε),Diuε).Diϕ dx =
∫

Ω

n

∑
i=1

ai(x,u,Diu).Diϕ dx, ∀ϕ ∈C∞
0 (Ω;RN).
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6.2. Proof of Theorems 3.1, 3.2, and 3.3

The proof of Theorems 3.1, 3.2 and 3.3 is similar to the proof of Theorem 3.4.

From Lemma 5.1, the sequence uε is bounded in W 1,(pi)
0 (Ω;RN). This shows that

we can extract a subsequence (denoted again by uε ), such that

uε ⇀ u weakly in W 1,pi
0 (Ω;RN),

uε → u strongly in Lp−(Ω;RN), p− = min
1�i�n

pi,

uε → u a.e., in Ω.

Arguing as the proof of Theorem 3.4, by using Lemma 5.1, we find that

ai(x,Tε (uε),Diuε) ⇀ ai(x,u,Diu)

weakly in Lp′i(Ω;RN) , ∀i = 1, . . . ,n , with p′i = pi
pi−1 .

The proof of Theorems 3.1–3.3 are finished.
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