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PARAMETERIZED MORE ACCURATE
HARDY-HILBERT-TYPE INEQUALITIES AND APPLICATIONS

YONG HONG, YANRU ZHONG " AND BICHENG YANG

(Communicated by M. Krni¢)

Abstract. By means of the weight coefficients, the idea of introduced parameters and Hermite-
Hadamard’s inequality, a more accurate Hardy-Hilbert-type inequality with the general homo-
geneous kernel and the discrete intermediate variables is given. The equivalent form and a few
equivalent statements of the best possible constant factor related to some parameters are ob-
tained. As applications, the operator expressions, a few particular cases and some examples are
considered.

1. Introduction

Assuming that p > 1, +— =1,ap,0,20,0<3,_ 1am < oo and 0<Z°°,1b <
oo, We have a more accurate Hardy -Hilbert’s inequality with the best possible constant

factor m(” 757 a8 follows (cf. [3], Theorem 323):
1 1
- — amby, T - p - !
- al bl . (1)
mz:'ln; m+n—1 sm(n:/p) mg‘l ng‘l
Since min < m+; r (m,n € N={1,2,---}), inequality (1) reduces to the following

well known Hardy-Hilbert’s inequality with the sane best possible constant factor

n(ﬂ/p)
(cf. [3], Theorem 315):
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Stting w;,v; >0 (i,j € N) and

m n
Upn =Y Hi,Vu:= Y vj (mn €N), (3)
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we still obtain the following Hardy-Hilbert-type inequality (cf. [1], Theorem 320):

1 1
o 0 T N aﬁl P e bz q
2:" g‘ Um+V Sln(ﬂ:/p) (lel ”rzzll> (2 vq.1> . 4)

n=1 nj

For u; =v; =1 (i,j € N), inequality (4) reduces to (2).
If f(x),g(y) 20,0< [y fP(x)dx <ooand 0 < [; g9(y)dy < oo, then we have the
following Hardy-Hilbert’s integral inequality:

[y« 2 (i) (o)’ o

Sin(x /p (cf. [3], Theorem 316). In 1998, by introducing an

independent parameter A > 0, Yang [23, 24] gave an extension of (2) (for p =g =2)
with the best possible constant factor B( 5 ’21 ) as follows:

// x+y dXdy
N . :
<B(§,§)</O xl’lfz(X)dx/O y”gz(y)dy> : (6)

where, B(u,v) := [y lf:t At (u,v > 0) is the beta function.
Inequalities (1), (2) and (4)—(6) with their extensions are important in analysis and
its applications (cf. [1, 2, 4, 5, 12, 15, 19-21, 25, 26, 30]).
The following half-discrete Hilbert-type inequality was provided (cf. [3], Theo-
rem 351): if K(x) (x> 0) is a decreasing function, p > 1, Il—,+}1 =1,0<¢(s) =

Jo K(t)t*~ldt < oo, then for a, >0, 0 < 357 ah < oo,

. w P
/0 xP2 (2 K(nx)an> dx < (Z)p z a? @)

with the best constant factor

Some new extensions of (7) with their applications were provided by [6, 16—18, 27,
28].

In 2016, by the use of the technique of real analysis, Hong et al. [7] considered
some equivalent statements of the extensions of (2) with the best possible constant
factor related to a few parameters. The other similar works about the extensions of (5)
and (6) were given by [8-11, 22].

In this paper, according to the way of [7], by means of the weight functions, the
idea of introduced parameters and Hermite-Hadamard’s inequality, a more accurate
Hardy-Hilbert-type inequality with the general homogeneous kernel and the discrete
intermediate variables is given, which is a more accurate extension of (4). The equiv-
alent form and the equivalent statements of the best possible constant factor related
to some parameters are considered. As applications, the operator expressions, a few
particular cases and some examples are obtained.
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2. Some lemmas

In what follows, we suppose that p > 1, %—l—é: I,O0<oa,B<1, AER; =

(0,00), A2, A — A1 < é, M, A—2 < %3, both {u,}_, and {v,}_ are positive

decreasing sequences, with [I € [0, £ and V € [0, %], k; (x,y) is a positive homo-

geneous function of degree —A, satisfying for any u,x,y > 0,

Ky, (wx,uy) = u=ky (x,y).

Also, kj (x,y) is a strictly decreasing and strictly convex function with respect to x,y >
0, such that

i 0 i 0 .
(—1) ﬁkzl()@y) >0, (=1) g—y,-kz(x»y) >0 (i=1,2),
and for )/le, 2,—2,2,

ki (7) = /Owk;t(u, Du'~'du € Ry. ®)

Using the expressions (3), we still assume that a,,,b,, > 0, such that

oo

A=y | A 14
0< 3 Up—pt eI
m=1 Moy

and

& (M Ry b
0 < Z(Vn_v)ﬂl B4+ 1__1<°O'
n=1 VZH

We set ((f) := tp, t € (m—1,m|, v(t) :=V,, t € (n—1,n| (m,n € N),and
Ux) = /Oxu(t)dt, V(y) = /Oyv(t)dt (r,y > 0).

It follows that U (m) = Uy, V(n) =V,, U(3) =4,V(3) = % and

U'(x) = : pu(x) = tm, x€ (m—1,m],
V'(y) =:v(y) =Vu, yE (n—1,n] (mn€N).

LEMMA 1. For fixed m € N, the following continuous function
) =k (Un = )%, (V(y) = 0)P)(V (y) — 0) 2P

is strictly decreasing and strictly convex with respectto y € (n— %,n + %) (neN).
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Proof. Forye(n—%,n), 0<B<l1, B—-1<0, we find

fn @) = [BE, (U — )%, (V(y) = V)P)(V (y) = 0)P !
(2B — Dk (Un — )%, (V(y) = 0)P)(V(y) — D))
x(V(y)— )Py, <o0.

Replacing v, by V4| in the above expression, we have f,(y) <0 (y € (n,n+1)).
In view of f,(y) is continuous in (n— %,n+ 1), it follows that f,(y) is a strictly
decreasing function with respect to (n —%,n+3) (n €N).

Fory e (n— %,n), we find

() = B (Un = )% (V) = V)P)(V(y) - 0)*P 2

+(1 = A2 )y, (U — 1), (V () = V)P)(V (v) = D) ]

X (V(y) = 0)2P= 2+ [BE (Un — ), (V(y) = V)P)(V(y) — 0)P !
+(22B = Dy (Un — 1), (V) = 0)P)(V(y) = D) ']

X (V(y)—0)»2P=2y2 > 0.

Replacing v, by v, in the above expression, it follows that f},(y) >0 (y € (n,n+1).
For n € N, since v, > V,1 > 0, we find that f;,(n—0) > f/,(n+0), in the above
expressions. In view of f}(y) >0 (y € (n—$,n+%)). it follows that £, (y) is a strictly
increasing function in (n — %,n + %) , and then f,,(y) is a strictly convex function with
respectto y € (n—3,n+ 1) (n€N).
The lemma is proved. [

DEFINITION 1. The following weight coefficients are defined: for m,n € N,

o= ,glkl(wm_ﬁ "W =) (E]xr/n(;f_)?)lﬁ&fl-"}?l- (10)
LEMMA 2. The following inequalities are valid:
0(Az,m) < lk,l(x—/lz) (m €N), (11

B
@(A,n) < ékl(kl) (neN). (12)
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Proof. According to Lemma 1, by Hermite-Hadamard’s inequality (cf. [13]), we
find

o il N N n_’\ﬁlzfl /
aam <3 [ ka0 =) -
) — V)mz V'(y)
Un ”) A=) w
(V) 9Pt
(Un— ﬁ)a(bil)

dy

_ Z/nnﬂkl((Um_ma,(V(y) v) )( ((y
- /lwkk((Um—ﬁ)a7(V(Y) -v)P) d(V(y) = ).

( 7\

Un—H)
V)-v)F>

Setting 7 = since V € [0, %], we find

Umﬂ

o(Aa,m ﬂ/ I (D) g
/k;L 1, 1) %) gy — ﬂ Ky (= 2a).

Hence, we have (11).

In view of Lemma 1 and in the same way, for fixed n € N and 0 < ¢ < 1, A —
< 0, we can conclude that the following continuous function

gn (%) = ki (U (x) = )% (Va = V)P)(U () = )“H !

is also a strictly decreasing and strictly convex function with respect to x € (m — %,m +

1) (m €N). Setting, u = %, sine [1 € [0, 4], we find

o emtd N N U, — 1)1y (x
R S A R e

(U @) — @) U (x)

. d

) (Vo —0)B-2)

oo TYaA —1
_ Cva gy oy U x) — ) =
- % kl((U(x) nu) 7(Vn ) ) (Vn_v)ﬁ(ll_l) d(U(x) ALL)

| e e
= L s L = )

(Va—Vv)

Hence, we have (12).
The lemma is proved. [
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LEMMA 3. The following inequality is valid:

n=1m=1

1 1
k2 (A — 1) = _ I A K
A pll—a(=5=+7)]-1_%m
Bl/rol/a k() mgl(Um ) v p;i

lJ’ﬂ’l
> g Ry bE) Y
X{Z(Vn—v)q[l ﬁ( q +p)] lvq—l} .
n+1

13)
Proof. By Holder’s inequality with weight (cf. [13]), we obtain

1= 3 3 k(U — )% (Va—9)P)
n=1m=1

nt19m
~ 1
(Up — i) @21=D/ay !/,

(V= ) (BR=13/py 1/ ]

(U — ﬁ)(all—l)/q”il/flbn
(V, —v) Bty

==

m

Uy — )@t =D(p=1)yP 1

) 9Bty
< [Z Sk (Un— )%, (Vi — 9)8) Va2 ]

+1

. [i i k(U — )%, (V= V)P (Um—ﬁ)(“’ll‘l)umﬂb,’g]

(Vo — ) (Bra- a1y

<

p—1
'um+l

1
oo o ¥4 P
= { Y, @(A2,m)(Un _ et - }

1

S A-A q q

X{Z,G(M,n)(vn—v)qﬂmqlﬂ,?)]l b } .
n=1

g—1
anrl

Then, using (11) and (12), we obtain (13).
The lemma is proved. [J

REMARK 1. By (13) with the assumption, for A; + A, = 4, we find

o P
0< Y (Un— ﬁ)p(l—ah)—lal

ml why
00 R bz
0< Z(Vn — V)q(l_l”b)_lﬁ < oo,
n=1 1%

n+1
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and the following inequality:

n=1m=1
k(M) > S pli—ar)-1 D | "
(Up — fi)PU=4) -
1
S (v _ gy b1 |
| 2 Va=) = (14)
n=1 vr1+l
In particular, for I =V = 0, we have

n=1m=1
1 1
ky (A1) pl—ad)—1 & a(1=Bra)—1 b |7
< Blraifi | - ZU R DA i (15)
m+1 n=1 Vir1

Hence, inequality (14) is a more accurate extension of (15).

For A=oa=B=1, ki(x,y) = x+y M=+, = mequahty (14) reduces to
the following more accurate extension of (4) (replacmg I-1m+1 (Vut1) by i (vi)): for
K € [0, 217 we have

m < dm e by g
22U +V sin(n/p)<Z P 1) (2 q1> - 36

m=1n=1 m 1oum+1 n=1 Vn+1

In particular, for u,, =v, = k=1, inequality (16) reduces to (1).

LEMMA 4. If U(eo) =V (e0) = oo, then the constant factor % in (14) is the

best possible.

Proof. For any € > 0, we set

am = Uma(Mi%)iluerhﬂbin = Vnﬁ(l27§)7lvn+l (m,n € N)

If there exists a constant M (< [3];}717111 77 ), such that (14) is valid when we replace
ﬁ]f’}lsf;'l)/q by M. Then in particular, for i =V =0, we have

ﬁ ) Nmzn

P

HMX

1 . 1

3 yati-pr-1_bh '
n vq 1 M

n=1 n+1

P
pl OC}LI —1 dm
ZU p— 1‘|

'uerl
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‘We obtain
(1-¢) , B2 :
o poe(li=,)=pr p N aB(-5)-a_4 q
p(l—all)—lUm i q(1—BAs)— Iz Vi1
f<m|¥ NG
m=1 ‘LLerl n=1 Vi1

1 1

w » . q
<M (.Ulaglliz + Umaellim> (vlﬁglvz + Vnﬁ“:lvn)

n=2

1
P

= -

By the decreasingness property of series and Fubini theorem (cf. [14]), in view of
U(e0) =V (o0) = oo, we find

o oo ali—1 BAy—1
T _ o B\ Ym Hm+1 Va Vnt1
I= r;mgfl ki (U, Vir') Ungcs/p Vnﬁe/tl
> o n+1 rm+1 8 ali—1 y,Bla—1 , ,
_ a m n
=33 [ wwiv )y UV 0)dsdy
oo n+1 m+1 Uoc?q—l(x) Vﬁlz—l(y)
o B R S #0) !
2 XS] V0D eV 0| eV )y

_ - oy B Uakl_l(x) ") dx Vrae- /
-/ [/1 O S B
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: _ U%)
Setting u = TR we have

T L[ N M—£E—1 Vﬁlzil(}’) /
I = o, /ua(l) ky (u, u™ " 7» " du 7‘/[38/‘1()}) Vi(y)dy
vB)
1 oo oo A 1 e
= — o ky (u, D™ P du )t 78 dt
ap /v?< u 2 (u, D™ u)

K
1 B C el M—E_1 1 > M1
= — ! ot dr ) ky (u, 1)u™ d —/ak ,Du™ d
P /0 (ﬁ% );L(u Ju e u+gvf3£ ”—;3 2 (u, D™ P du
V1
1 1

1

B AMtE-1 1/°° M—E-1

= Uk (u, D™ 0 du+ ——= [ Lo ky (u,)u™ P d

o |y bl g Jug e
V1

Then we obtain

o

1
1 1 B e_ 1 © _e_
— /Vf kl(u,l)ulr‘rq 1dl/t+%/11x k;L(u,l)uM »Ldu
Vi ?

o | 1€ Jo

1 1
- 1 P —Be— 1 _pe\?
< 81<M<8”1a£1”2+a”1a5)p <3V1 Be 1‘/2_'_5‘/1 ﬁs)q.

For € — 0", by Fatou lemma (cf. [14]), we find

uf

1 1 . 1 B M+E—1
() = — |1 /w lim &y (u, )i
(Xﬁ l( 1) (Xﬂ EL%L ‘ulag 0 EL%L l(u )l/l q u

. L= M—E—1
ey L L
LB
1 1 4
. B M+E-1
< — lim —/Vlk u, u™" " du
06[3 Pt ”fce 0 QL( )

1 1
= M—E_1 L\7? [1\4
ot < (DY (1)
vbe J4 o B
1
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namely, mkk(xl) < M. Hence, M = (A1) is the best possible constant
factor of (14).

The lemma is proved. [

1
ﬁl/pogl/qlwL

REMARK 2. Setting /11 A )LZ + 1 = % + %, we find

~ 7L—7L A A=A A
Ml =" B 2 A 2
q q p
~ 1 1 1 ~ 1 1 1
M —+—=— < ozt o=x,
"Spaqa a8 P gB B B

and by Holder’s inequality (cf. [13]), we obtain

~ ~ A=dy A
o<kl(/1—/12):kl(al):kl< > 2+;1)

- Aig - hdgt mt
:/ ey (u, ) 77 1du=/ ko, 1) (7 ) (T )du
0 0

1 1
< </ ky (u, l)uk_kz_ldu) ! (/ ky (u, l)ull_ldu) !
0 0

= (k (k= 22))7 (k. (A1) < oo. (17)

We can reduce (13) as follows:

1
ki (A—22) L

oo N . afn P
1< BT ) | 3 W R
ﬂl/P(xl/q A mZ:‘l " ‘u:r’Hri
S Sya(1-Biy)—1_bi 5
> Z(Vn_v)tI( —BAz)— —| (18)
n=1 anrl
1
kP (l 1
LEMMA 5. If the constant factor gl/ﬂal/q kj (A1) in (13) is the best possible,

then. A +2A, = A.

1
%k" (A1) in (13) is the best possible, then by

(18) and (14) (for A; = 11 o = 12 ), we have the following inequality:

Proof. 1f the constant factor

1 ~

kP (A —Ap) 1 ky (A1)
2 g A\M
Bl/rol/a ki () < Bl/rat/a’

1 1 R
namely, k)’f (A— /lz)kz (A1) <k (A1). We observe that inequality (17) keeps the form of
equality if and only if there exist constants A and B, such that they are not both zero
and (cf. [13]) Aur 21 = ByM=1 ge. in R, . Assuming that A # 0, it follows that
MM = B/A a.e. in Ry, and then A — A; — A, =0, namely, 4, + 4, = 1.

The lemma is proved. [
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3. Main results and some particular cases

THEOREM 1. Inequality (18) (or (13)) is equivalent to the following inequality:

= { Z (Vn - a)pﬁiz_lanrl

oo PYp
Z kl((Um - ﬁ)a7 (Vn - Q)ﬁ)am] }

n=1 m=1
1 1
k(A — JLQ - al, ]P
A p(1— al) 1_%m
< | Zw R (19)
ﬂl/pal/q = #r’éﬁ

If the constant factor in (18) is the best possible, then, so is the constant factor in (19).

roof. Assuming that 1s valid, older’s inequality (cf. , we fin
P A ing that (19) is valid, by Holder’s inequality (cf. [13]) find

= | (v, -9 7+ = -
oy L i 5 bl 0= e
n=1 Vit
_S\i-Bh bn
xl(v,, v 1/1?]
n+1
1
=) ~ q q
ngZ(Vn—O)q“—/“z) ! l; 1] : (20)
n=1 anrl

Then by (19), we obtain (18).
On the other hand, assuming that (18) is valid, we set

b, = (Vn - v)pﬁlz_lvn+l [2 kl((Um - ﬁ)a’ (Vn - v)ﬁ)am‘| , neN.
m=1

If J =0, then (19) is naturally valid; if J = oo, then it is impossible that to make (19)
valid, namely, J < oo. Suppose that 0 < J < . By (18), it follows that

3. (v, -p O
n=1 Vi
1 1
kj(A—2A2) L & . ah |”
=7 =< ST () | 3, (U - R
P m -
ﬂl/Pal/tI = ‘uYIr’Hri
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- b
S\g(1-BAy)—1_On

I= |3 -y ]
n=1 n+1
1 1
k”(l«—ﬁq 1 oo ap P
A q p(1—aA)—1_Gm

< k Al 2 ! ‘| s
ﬁl/Pal/q = ”m+1

namely, (19) follows, which is equivalent to (18).

If the constant factor in (18) is the best possible, then so is constant factor in (19) .
Otherwise, by (20) (for A; +A; = A ), we would reach a contradiction that the constant
factor in (14) is not the best possible.

The theorem is proved. [J

THEOREM 2. If U(eo) = V(eo) = oo, then the following statements (i), (ii), (iii),
(iv) and (v) are equivalent:

1 1
(i) Both k] (A — A2)k; (A1) and k; (% + %) are independent of p,q;
(i1) We have the following inequality:

1 1 A=A A
km—az)kz(mm( ; 2+—1);

q
(i) Ay + A4, =A;

1
315,, v k" (A1) in (18) (resp. (19)) is the best possible.

If the statement (iii) follows, namely, A; + A, = A, then we have the following

inequality equivalent to (14) with the best possible constant factor l% :

(iv) the constant factor

- - Py 7
{Z(Vn — V)PPl lz o, (U — )%, (Vi —v>ﬁ>am] }

n=1 m=1
1
k(M) | < pl—ar)—1_am_|"
< Blralla E(U —pyre Wt 2n

1 1
Proof. (i) = (ii). Since both kJ (A — A2)k{ (A1) and ky (=22 +21) are indepen-
dent of p,q, we find

(/1 Az)kq(xl)_hm hmk"(x M)k 7 (M) = kg (M),

p—>o<>q_>1+
and by Fatou lemma (cf. [14]), we have the following inequality:

kj, (x_b—l—&) = lim lim kj (x_lz—F&)
p

p q P=og—1t q

1 1
> ky (M) =k (A — L)kj (Ar).
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(it) = (ii). If k” A - lg)k" (M) < kk(% + %), then (17) keeps the form of
equality. Based on the proof of Lemma 5, it follows that A; +4; = A.

(iif) = (i). If A1 + 22 = A, then we have
(/l b A

+2) =~k ()

1 1
KL (= 2)k] (A1) = ks

1 1
Both &} (A — A2)k; (A1) and kl(% + %) are independent of p,q.
Hence, it follows that (i) < (ii) < (iii).
(iii) = (iv). By Lemm 4 and Theorem 1, we obtain the conclusions.
(iv) = (iii). By Theorem 1 and Lemma 5, we obtain 4| + A, = A.
Therefore, the statements (i), (i), (iii), (iv) and (v) are equivalent.
The theorem is proved. [J

REMARK 3. ()ForA=a=08=1,A; = JLl — in (14) and (21), we have the
following equivalent inequalities with the best p0551ble constant factor:

oo oo 1 oo aﬁ[ % oo bz é
ZZ (U — [,V — )amb<k1<q) > Y1 @

m=1 ”m-‘rl n=1 anrl
1

" - b
[zvm(EklU —H,Va—V)a )] <k1($><2%>. (23)

m=1 ”m-‘rl

(ii)For A=a=B=1, 4 =1, 1, =1 in (14) and (21), we have the following
equivalent dual forms of (22) and (23) with the best possible constant factor:

S S ki (U~ i.Ve— V)b
n=1m=1

oo p ) ag/l P o . q_2 bz q
< kl ( ) Z ‘up 1 Z(Vn - V) vq_l ’ (24)
m=1 m+1 n=1 n+1
1

oo i
lE(Vn— p= Vn+1 (2 k1 Q)am> ]
n=1

1
1 g
p

(iii) For p = g = 2, both (22) and (24) reduce to

=

P
> (Un— )22
m=1 'uerl

(25)

o oo 1 oo 2 o 2
> > ki(Un— 1, Vi — V)ambn <k1<2)<2 Dn ) n) , (26)

n=1m=1
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and both (23) and (25) reduce to the equivalent form of (26) as follows:

23 1
oo o0 R R 1 oo a2 2
D Vit (2 kl(Um—u7Vn—v)am> <k <§> (2 m ) Q@
n=1 m=1 m=1 M1

4. Operator expressions and some particular inequalities

We set functions

9(m) = (Up = BP0 () 1= (v, — )Rl L
My Vatt
wherefrom,

v P(n) = (V,—v)PP2~ly, | (mneN).
Define the following real normed spaces:

1

oo P
a={am}m-1;llallp.e (Zq) Iam”> <o,

lpo :

m=1
1
oo q
lyy = § b= 1{bu},_1:11bllgy (Z n)|bx q) <o),
n=1
1

oo P
Lyyi-v = e={enhipsllellp gy = (ZW cnl”> <o

n=1

Assuming that a € [, ¢, setting

c= {Cn}:to:hcn = 2 k)L((Um _.a)a7(vn _v)ﬁ)am7 n €N,

m=1

we can rewrite (19) as follows:

k”(?L x)

lellpi-r < iz 4 )l < =

namely, c €[, y1-p.

DEFINITION 2. Define a more accurate Hilbert-type operator 7" : [y o — 1, 1-p
as follows: For any a € [, ¢, there exists a unique representation Ta = ¢ € [, y1-p,
satisfying for any n € N,Ta(n) = ¢,. Define the formal inner product of Ta and be
lg.y» and the norm of T as follows:

(Ta,b) : 2 (Zkﬂt 7(Vn_a)ﬁ)am> by =1,

n=1 \im=1
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T]| = sup ———.
a(£0)el,  lallpe

By Theorem 1 and Theorem 2, we have

THEOREM 3. If a€lp ¢, b E€lyy, ||allpe, |b]]lqy >0, then we have the follow-
ing equivalent inequalities:
k” (A—=%) 1
(Ta,b) < Wk i (A0)llallp.ol1b]lg.y (28)
” k(A —22) 1
[Tall, y1-» < W’% (A llal[p.e- (29)

Moreover; if U(oo) =V (eo) = oo, then, Aj + Ay = A if and only if the constant factor
1

» 1
kglgiafi] kj (A1) in (28) (resp. (29)) is the best possible, namely,
ka (A1)
HTH:ﬁl/Pal/f{. (30)
EXAMPLE 1. We set k; (x,y) = (cxiy)k (¢,A >0; x,y >0). Then we find

1
[e(Un =)+ (Vo= V)P

ForO<o,B<1,0<A, A—A < é, 0<M, -2 < %, kj, (x,y) is a positive
homogeneous function of degree —A such that k; (x,y) is a strictly decreasing and
strictly convex function with respect to x,y > 0, and for y=21;, A — A,

I, (Un — )%, (Viy, V)P =

u?v1

° 1
= _— —= —B —_ R .

In view of Theorem 3, it follows that if U(e0) = V(e0) = oo, then, A; + A, = A if

and only if
k(A1) 1

H H:ﬁl/l’al/‘l_ﬁl/l’al/qc?’ (2'172'2)

EXAMPLE 2. We set k; (x,y) = (x()iyv (¢>0,0<A<1;xy>0). Then we
find

(U —1)* _7v)B
k;L((Um—ﬁ)aa(Vm_v)ﬁ) _ [cl(rllg (ijﬁ) lf) /[((V V)>ﬁ]}l

ForO0<o,B<1,0< Ay, A — /lz\a,0<7L2,7L /llgﬁ kj, (x,y) is a positive
is a

homogeneous function of degree —A such that k) (x,y) i trictly decreasing and
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strictly convex function with respect to x,y > 0 (cf. [25], Example 2.2.1), and for
y=Mh,A—-2

= In(cu) _ 1 T 2
k%) :/0 (cu)* — 1uy du= cr Lin(ny/?t)} € Ry

In view of Theorem 3, it follows that if U(e0) = V(o) = oo, then, A; + A, = A if
and only if

(TR AV R W PO S
~ BlUral/a  Bl/ral/act [sin(my/A)|
EXAMPLE 3. For s € N, we set k (x,y) = L 0<cp €+ <oy,

1 (/5 /)
k=1

0 <A <1;x,y>0). Then we find
1

TH(Un =)+ (V= V)P

ke (U — )%, (Vi —V)P) =

For 0<o,B<1,0<A, A—2A4 < $70 < M, A—A < %, ky (x,y) is a positive
homogeneous function of degree —A such that k; (x,y) is a strictly decreasing and
strictly convex function with respect to x,y > 0, and for y = A;, A — A,, by Example
1 of [29], it follows that

s “ ul!
W= [
0

H (ul/"'—kck)
k=1
s ﬁl—l N 1
TZTS’)/ Z Ck — € R+.
/lsm (k) €T Gk

In view of Theorem 3, it follows that if U (o) = V(e0) = oo, then, A; + A, = A if
and only if

(s) A’ K SA s
k(M) 1 s - 1
HTH_Bl/pal/q ﬁl/pal/qxsnl(n'\ll gck ) H

In particular, for ¢; = -+ = ¢y = ¢, we have kj (x,y) = m a

O = [ Stk sk
kl (7’)_/0 (t)L/_y_FC).\'dt— ;LCAZS/AB< A 5 2’ .

If s = 1, then we have k) (x,y) =

1
1
(U — )% + c(V, — v)B2

ka (Un = )%, (Va, =V)P) =
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and
K () 1 ™

T|| = = :
7] Bl/ralt/a ﬁl/ml/mcb/lsjn(%’“)

5. Conclusions

In this paper, by means of the weight coefficients, the idea of introduced parame-
ters and Hermite-Hadamard’s inequality, a more accurate Hardy-Hilbert-type inequal-
ity with the general homogeneous kernel and the discrete intermediate variables is ob-
tained, which is a more accurate extension of inequality (4). The equivalent forms are
given in Theorem 1. The equivalent statements of the best possible constant factor re-
lated to some parameters are considered in Theorem 2. Some particular cases are given
in Remark 3. As applications, the operator expressions and some examples are given in
Theorem 3 and Example 1-3. The lemmas and theorems provide an extensive account
of this type of inequalities.
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