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CONSISTENCY OF ESTIMATOR FOR

NONPARAMETRIC REGRESSION UNDER NEGATIVELY

SUPERADDITIVE DEPENDENT RANDOM VARIABLES

LIWANG DING ∗ AND CAOQING JIANG

(Communicated by X. Wang)

Abstract. In this article, we discuss the complete consistency and strong consistency of wavelet
estimators in nonparametric regression model with negatively superadditive dependent random
variables, which improve and extend some existing ones. Finally, some numerical simulations
are carried out to confirm the theoretical results.

1. Introduction

Consider the estimation of a standard nonparametric regression model involving a
regression function g(·) which is defined on [0,1] :

Yni = g(tni)+ εni, i = 1,2, . . . ,n, n � 1, (1.1)

where tni are nonrandom design points, tni ’s are denoted t(ni) and taken to be ordered
0 � t(n1) � · · · � t(nn) � 1, εni are random errors. For each n � 1, (εn1,εn2, . . . ,εnn)
have the same distribution as (ε1,ε2, . . . ,εn) .

In order to introduce wavelet estimator, we state two definitions here.

DEFINITION 1.1. Sr is said to be Schwarz space, if Sr is continuous differentiable
for r -times function space, and the function in Sr rapidly decreasing at infinity, i.e. for
h ∈ Sr , there exists a constant Cpr > 0 such that∣∣∣h(k)(t)

∣∣∣� Cpk(1+ |t|)−p, k = 0,1, · · · ,r, p ∈ Z, t ∈ R.

DEFINITION 1.2. A function space Hγ (γ ∈ R) is said to be Sobolev space with
order γ , i.e. if h ∈ Hγ then ∫ ∣∣∣ĥ(ω)

∣∣∣2 (1+ ω2)γdω < ∞,
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where ĥ is the Fourier transform of h .
Let φ(·) be a given scaling function in the Schwarz space with order l . A mul-

tiresolution analysis of L2(R) consists of an increasing sequence of the closed subspace
{Vm,m ∈ Z} , where Z is the integer set and L2(R) is a set of square integral functions
over the real line. Since {φ(x− k),k ∈ Z} is an orthogonal family of L2(R) and V0 is
the subspace spanned, if we define

φmk(x) = 2m/2φ(2mx− k), k ∈ Z,

then {φ0k,k ∈ Z} is an orthogonal basis of V0 , and {φmk,k ∈Z} is an orthogonal basis
of Vm . The associated integral kernel of Vm is given by

Em(t,s) = 2mE0(2mt,2ms) = 2m ∑
k∈Z

φ(2mt− k)φ(2ms− k).

For model (1.1), a natural nonparametric wavelet estimator of g(·) is defined as

gn(t) =
n

∑
i=1

Yni

∫
Ani

Em(t,s)ds, (1.2)

where Ani = [sn(i−1),sni] , sn0 = 0, snn = 1, sni = (tni + tn(i+1))/2, i = 1, . . . ,n. Hence
t(ni) ∈ Ani for 1 � i � n .

As we know that regression model (1.1) has many applications in practical prob-
lems, such as, filtering and prediction in communications and control systems, pattern
recognition, classification and econometrics, and an important tool of data analysis. The
weighted function estimates have been investigated to estimate the regression function
g(·) . For instance, see, Priestley and Chao (1972), Stone (1977), Georgiev (1988) and
the references therein for the independent case; Roussas and Tran (1992), Liang and
Jing (2005), Wang et al. (2014), Shen et al. (2015) and Yang et al. (2018), Ding
(2020), Shen et al. (2021), Ding et al. (2022) for the various dependence cases.

The wavelet method in nonparametric curve estimation has become a well-known
technique. The major advantage of the wavelet method is its adaptability to the degree
of smoothness of the underlying unknown function. Due to its ability to adapt to local
features of unknown curves, many authors have applied wavelet procedures to estimate
the nonparametric model without repeated measurements. So in order to meet practical
demands, since the 90s of the twentieth century, some authors have considered using
wavelet method to estimate g(·) . See recent works, for example, Antoniadis et al.
(1994) under independent errors; Li et al. (2011), Shen et al. (2021) and Ding et al.
(2022) under ϕ -mixing errors, Zhou and Lin (2014) under α -mixing errors, Wang et
al. (2021) under extended negatively dependent errors and so on.

DEFINITION 1.3. (c.f. Kemperman 1977) A function φ : R
n → R is called su-

peradditive if φ(x∨y)+ φ(x∧y) � φ(x)+ φ(y) for all x,y ∈ R
n , where ∨ stands for

componentwise maximum, and ∧ denotes componentwise minimum.

DEFINITION 1.4. (c.f. Hu 2000) A random vector X = (X1,X2, · · · ,Xn) is said to
be negatively superadditive dependent (NSD) if

Eφ(X1,X2, · · · ,Xn) � Eφ(X∗
1 ,X∗

2 , · · · ,X∗
n ), (1.1)
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where X∗
1 ,X∗

2 , · · · ,X∗
n are independent such that X∗

i and Xi have the same distribution
for each i , and φ is a superadditive function such that the expectations in (1.1) exist.

A sequence {Xn,n � 1} of random variables is said to be NSD if for all n � 1,
(X1,X2, · · · ,Xn) is NSD.

The definition of NSD random variable sequence was introduced by Hu (2000),
which was based on the class of superadditive functions. Hu (2000) presented an exam-
ple illustrating that NSD does not imply NA, and subsequently presented an open prob-
lem whether NA implies NSD. Christofides and Vaggelatou (2004) solved this open
problem and indicated that NA implies NSD. The concept of NSD extends the con-
cept of NA. Eghbal et al. (2010) derived two maximal inequalities and strong law of
large numbers of quadratic forms of NSD random variables. Shen (2012) studied mo-
ment inequality, Kolmogorov-type inequality and H á jek-R ényi-type inequalities for
NSD sequence. As a consequence, she obtained Khintchine-Kolmogorov convergence
theorem, three series theorem and Marcinkiewicz strong law of large numbers, extend-
ing the corresponding results for independent sequence and NA sequence. Shen et
al. (2013) obtained almost sure convergence theorem and strong stability for weighted
sums of NSD random variables. Shen et al. (2014) gave the Rosenthal-type inequal-
ity for NSD random variables and its applications. Wang et al. (2014) investigated
complete convergence for arrays of rowwise NSD random variables and gave its appli-
cations to nonparametric regression model (1.1). Zheng et al. (2015) obtained some
results on the complete convergence for sequences of NSD random variables by using
some inequalities and the truncated method, which extended the corresponding conclu-
sions for weighted sums of NA random variables with identical distribution to the case
of sequences of NSD random variables with nonidentical distribution. Xue et al. (2015)
investigated the complete moment convergence for maximal partial sum of NSD ran-
dom variables under some more general conditions. Wang and Hu (2015) discussed the
strong consistency of M -estimates of the regression parameters in a linear model with
NSD random errors. The result improves the moment condition and generalises the
case of independent random errors to that of NSD random errors. Wang et al. (2015)
presented some basic properties for NSD random variables, and then studied the com-
plete convergence for weighted sums of NSD random variables and applied it to obtain
the complete consistency for the LS estimators in the EV regression model with NSD
errors under mild conditions, and so on. However, there are very few literatures on
consistency for the wavelet estimator of nonparametric regression model (1.1) based on
NSD random errors.

By using the wavelet method, we continue to discuss the consistency properties for
the estimator of nonparametric regression model with NSD errors. The complete con-
sistency and strong consistency of the wavelet estimator of nonparametric regression
model are presented in this article.

The concept of complete convergence was introduced by Hsu and Robbins (1947)
as follows: a sequence {Xn,n � 1} of random variables converges completely to a
constant C if for all ε > 0,

∞

∑
n=1

P(|Xn−C| > ε) < ∞.
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By the Borel-Cantelli lemma, this implies that Xn → C a.s. , and so complete conver-
gence is a stronger concept than almost sure convergence.

The structure of the rest article is as follows. In Section 2, we give some basic
assumptions and main results. Some preliminary lemmas are stated in Section 3. Proofs
of the main results are provided in Section 4. Some numerical simulations are presented
in Section 5.

Throughout the paper for any function g , we use c(g) to denote all continuity
points of the regression function g on [0,1] . Let C denote positive constants which
may be different in various places. an = O(bn) stands for an � Cbn . Let I(·) be the
indicator function. All limits are taken as the sample size n tends to ∞ , unless specified
otherwise.

2. Assumptions and main results

For easy reference, the assumptions used in this article are listed below:
(A1) g(·) ∈ Hν , ν > 3/2, and g(·) satisfies the Lipschitz condition of order 1;
(A2) φ(·) ∈ Sr , and φ(·) satisfies the Lipschitz condition with order 1 and

|φ̂(ε)−1| = O(ε) as ε → 0, where φ̂ (·) is the Fourier transform of φ(·) ;
(A3) max1�i�n |sni− sn(i−1)| = O(n−1) . When n → ∞ , then m → ∞ , n2−m → ∞ .

REMARK 2.1. Assumptions (A1)–(A3) are general basic assumption conditions
of wavelet estimation, which have been used by many authors, one can refer to Anto-
niadis et al. (1994), Li et al. (2011), Zhou and Lin (2014), Wang et al. (2021) or Shen et
al. (2021) so we can see that the assumptions in this article are suitable and reasonable.

Our main results can be given below:

THEOREM 2.1. Let {εni,1 � i � n,n � 1} be an array of zero mean NSD random
variables, which is stochastically dominated by a random variable X with E|X |5/2 < ∞ .

Assume that assumptions (A1)–(A3) hold. Suppose further that 2m = O(n
1
3 ) . Then for

any t ∈ c(g) ,
gn(t) → g(t) completely, as n → ∞.

THEOREM 2.2. Let {εni,1 � i � n,n � 1} be an array of zero mean NSD random
variables, which is stochastically dominated by a random variable X with E|X |2/p+1 <
∞ for some 0 < p < 1 . Assume that assumptions (A1)–(A3) hold. Suppose further that
2m = O(n1−p log−δ n) for some δ > 1 . Then for any t ∈ c(g) and every ε > 0 ,

∞

∑
n=1

P(|gn(t)−g(t)|� ε) < ∞,

and thus,
gn(t) → g(t) a.s., as n → ∞.

REMARK 2.2. The moment condition E|X |5/2 < ∞ in Theorem 2.1 is weaker
than E|X |3 < ∞ in Ding (2020). Therefore, Theorem 2.1 extends and improves the
corresponding ones in Ding (2020).



CONSISTENCY OF ESTIMATOR FOR NONPARAMETRIC REGRESSION 1263

3. Some lemmas

In this section, we will present some important lemmas which will be used to prove
the above main results. The first one comes from Hu (2000).

LEMMA 3.1. If (X1,X2, · · · ,Xn) is NSD and g1,g2, · · · ,gn are nondecreasing func-
tions, then (g1(X1),g2(X2), · · · ,gn(Xn)) is NSD.

The next one was provided by Li et al. (2011).

LEMMA 3.2. Assume that the assumptions (A1)–(A3) are satisfied. Then

(i)
∣∣∣∫Ani

Em(t,s)ds
∣∣∣= O(2m/n) , i = 1,2, · · · ,n;

(ii)
n
∑
i=1

∣∣∣∫Ani
Em(t,s)ds

∣∣∣� C, i = 1,2, · · · ,n;

(iii)
n
∑
i=1

(∫
Ani

Em(t,s)ds
)2

= O(2m/n) , i = 1,2, · · · ,n.

The Rosenthal-type inequality for NSD random variables comes from Hu (2000).

LEMMA 3.3. Let p � 1 and {Xn,n � 1} be a sequence of NSD random variables
with E|Xi|p < ∞ for each i � 1 . Then for all n � 1 ,

E

(
max

1�k�n

∣∣∣∣∣ k

∑
i=1

Xi

∣∣∣∣∣
p)

� 23−p
n

∑
i=1

E|Xi|p, for 1 < p � 2,

and

E

(
max

1�k�n

∣∣∣∣∣ k

∑
i=1

Xi

∣∣∣∣∣
p)

� 2

(
15p
ln p

)p
⎧⎨⎩ n

∑
i=1

E|Xi|p +

(
n

∑
i=1

E|Xi|2
)p/2

⎫⎬⎭ , for p > 2.

The Bernstein-type inequality for NSD random variables was used in Wang and
Hu (2015).

LEMMA 3.4. Let {Xn,n � 1} be a sequence of NSD random variables such that
EXn = 0 and |Xn| � b a.s. for all n � 1 , and some b > 0 . Let B2

n = ∑n
i=1 EX2

i . Then
for all ε > o,

P

(∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣> ε

)
� 2exp

{
− ε2

2(2B2
n +bε)

}
.

For convenience, we give the definition of stochastic domination here.

DEFINITION 3.1. A sequence {Xn,n � 1} of random variables is said to be stochas-
tically dominated by a random variable X if there exists a positive constant C such that

P(|Xn| > x) � CP(|X | > x)

for all x � 0 and n � 1.
By the definition of stochastic domination and integration by parts, we can get the

following property for stochastic domination. For the details of the proof, one can refer
to Wu (2006).
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LEMMA 3.5. Let {Xn,n � 1} be a sequence of random variables which is stochas-
tically dominated by a random variable X . Then, for any α > 0 and b > 0 , the follow-
ing two statements hold:

E|Xn|α I(|Xn| � b) � C1 (E|X |αI(|X | � b)+bαP(|X | > b)) ,

E|Xn|α I(|Xn| > b) � C2E|X |αI(|X | > b),

where C1 and C2 are positive constants. Consequently, E|Xn|α � CE|X |α , where C is
a positive constant.

The last one can be found in Walter (1994).

LEMMA 3.6. Assume that φ ∈ Sr , then
(i)
∫ 1
0 Em(x,y)dy → 1 as x ∈ [0,1] for m → ∞;

(ii) sup
m�1

∫ 1
0 |Em(x,y)|dy < ∞;

(iii)
∫ 1
0 |Em(x,y)|I(|x− y| > ε)dy → 0 as x ∈ [0,1] for ∀ ε > 0, m → ∞ .

4. Proofs of the main results

Proof of Theorem 2.1. Let φ ∈ Sr , g ∈ L1(R) , when m → ∞ , we have∫ 1

0
Em(t,s)g(s)ds → g(t), as t ∈ [0,1]. (4.1)

And since g is continuous in [0,1] , g is uniformly continuous in [0,1] . For given
ε > 0, there exists a δ > 0 such that |t− s| � δ , |g(t)−g(s)|� ε for any |t− s| � δ .
Denote M = supt∈[0,1] g(t) , and hence M < ∞ .

∣∣∣∫ 1
0 Em(t,s)g(s)ds−g(t)

∣∣∣
=
∣∣∣∫ 1

0 Em(t,s)g(s)ds− ∫ 1
0 Em(t,s)g(t)ds+

∫ 1
0 Em(t,s)g(t)ds−g(t)

∣∣∣
�
∫ 1
0 |Em(t,s)||g(s)−g(t)|ds+M

∣∣∣∫ 1
0 Em(t,s)ds−1

∣∣∣
.= T1 +T2,

by Lemma 3.6(i), when m → ∞ , we have T2 → 0 as t ∈ [0,1] .

T1 =
∫ 1
0 |Em(t,s)||g(s)−g(t)|I(|t− s|� δ )ds+

∫ 1
0 |Em(t,s)||g(s)−g(t)|I(|t− s|> δ )ds

.= T3 +T4,

by Lemma 3.6(iii), when m → ∞ , we have T4 � 2M
∫ 1
0 |Em(t,s)|I(|t − s| > δ )ds → 0

as t ∈ [0,1] , and we have that T3 � ε
∫ 1
0 |Em(t,s)|ds by choosing δ . By Lemma 3.6(ii),

there exists a constant C > 0 such that
∫ 1
0 |Em(t,s)|ds � C as t ∈ [0,1] . Therefore,

T3 � Cε as t ∈ [0,1] . Consequently, (4.1) is proved.
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Moreover, since φ ∈ Sr , g ∈ L1(R) , max1�i�n(sni − sn(i−1)) = O(n−1) , we have

Egn(t)−g(t) =
n

∑
i=1

∫
Ani

Em(t,s)dsg(tni)−g(t)→ 0, as t ∈ [0,1], n → ∞, m → ∞.

(4.2)
In fact, note that∣∣∣∣ n

∑
i=1

∫
Ani

Em(t,s)dsg(tni)−g(t)
∣∣∣∣

=
∣∣∣∣ n

∑
i=1

∫
Ani

Em(t,s)dsg(tni)−
∫ 1
0 Em(t,s)g(s)ds+

∫ 1
0 Em(t,s)g(s)ds−g(t)

∣∣∣∣
�
∣∣∣∣ n

∑
i=1

∫
Ani

Em(t,s)dsg(tni)−
∫ 1
0 Em(t,s)g(s)ds

∣∣∣∣+ ∣∣∣∫ 1
0 Em(t,s)g(s)ds−g(t)

∣∣∣
.= T5 +T6.

Since g is uniformly continuous in [0,1] , for any ε > 0, there exists a δ > 0 and
|s− t| � δ such that |g(s)− g(t)| � ε . Note that max1�i�n(sni − sn(i−1)) = O(n−1) ,
there exists a N such that max1�i�n(sni − sn(i−1)) � δ for all n � N . Then for n � N
we have

T5 =

∣∣∣∣∣ n

∑
i=1

∫
Ani

Em(t,s)(g(s)−g(tni))ds

∣∣∣∣∣� ε
∫ 1

0
|Em(t,s)|ds � εC, as t ∈ [0,1].

Meanwhile, it follows by (4.1) that T6 → 0 as t ∈ [0,1] . Hence, (4.2) is proved. That is
to say

|Egn(t)−g(t)| → 0, as t ∈ [0,1], n → ∞. (4.3)

For fixed design point t ∈ [0,1] , without loss of generality, we suppose that the

weights
∫
Ani

Em(t,s)ds > 0 in what follows (otherwise, we use
(∫

Ani
Em(t,s)ds

)+
and(∫

Ani
Em(t,s)ds

)−
instead of

∫
Ani

Em(t,s)ds , respectively, and note that
∫
Ani

Em(t,s)ds =(∫
Ani

Em(t,s)ds
)+−

(∫
Ani

Em(t,s)ds
)−

). Noting that

|gn(t)−g(t)| � |gn(t)−Egn(t)|+ |Egn(t)−g(t)|

=
∣∣∣∣ n

∑
i=1

∫
Ani

Em(t,s)dsεni

∣∣∣∣+ |Egn(t)−g(t)|.
(4.4)

Hence, by (4.4), we can see that in order to prove the main result, we only need to show
that

n

∑
i=1

∫
Ani

Em(t,s)dsεni → 0 completely as n → ∞. (4.5)

Namely, it suffices to show that for all ε > 0,

∞

∑
n=1

P

(∣∣∣∣∣ n

∑
i=1

∫
Ani

Em(t,s)dsεni

∣∣∣∣∣> ε

)
< ∞. (4.6)
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For every fixed n � 1, take

Xni = −I
(∫

Ani
Em(t,s)dsεni < −1

)
+
∫
Ani

Em(t,s)dsεniI
(∣∣∣∫Ani

Em(t,s)dsεni

∣∣∣� 1
)

+I
(∫

Ani
Em(t,s)dsεni > 1

)
, i = 1,2, . . . ,n.

We can easily obtain that for any given ε > 0,(∣∣∣∣∣ n

∑
i=1

∫
Ani

Em(t,s)dsεni

∣∣∣∣∣> ε

)
⊂
(

max
1�i�n

∣∣∣∣∫
Ani

Em(t,s)dsεni

∣∣∣∣> 1

)⋃(∣∣∣∣∣ n

∑
i=1

Xni

∣∣∣∣∣> ε

)
,

this yields

∞
∑

n=1
P

(∣∣∣∣ n
∑
i=1

∫
Ani

Em(t,s)dsεni

∣∣∣∣> ε
)

�
∞
∑

n=1

n
∑
i=1

P
(∣∣∣∫Ani

Em(t,s)dsεni

∣∣∣> 1
)

+
∞
∑

n=1
P

(∣∣∣∣ n
∑
i=1

Xni

∣∣∣∣> ε
)

.= J +K.

(4.7)

Hence, to prove (4.6), it suffices to prove that J < ∞ and K < ∞ .
By Lemma 3.2(ii) and E|X |5/2 < ∞ , we know that

∞
∑

n=1

n
∑
i=1

P
(∣∣∣∫Ani

Em(t,s)dsεni

∣∣∣> 1
)

� C
∞
∑

n=1

n
∑
i=1

P
(∣∣∣∫Ani

Em(t,s)dsX
∣∣∣> 1

)
� C

∞
∑

n=1

n
∑
i=1

∣∣∣∫Ani
Em(t,s)ds

∣∣∣E|X |I
(∣∣∣∫Ani

Em(t,s)dsX
∣∣∣> 1

)
� C

∞
∑

n=1
E|X |I (|X | > n2/3

)
� C

∞
∑

n=1

∞
∑

k=n
E|X |I (k2/3 � |X | < (k+1)2/3

)
= C

∞
∑

k=1

k
∑

n=1
E|X |I (k2/3 � |X | < (k+1)2/3

)
= C

∞
∑

k=1
kE|X |I (k2/3 � |X | < (k+1)2/3

)
� C

∞
∑

k=1
E|X |5/2I

(
k2/3 � |X | < (k+1)2/3

)
� CE|X |5/2 < ∞,

(4.8)

implying that J < ∞ .
Next, we will consider K < ∞ . Firstly, we will prove that∣∣∣∣∣ n

∑
i=1

EXni

∣∣∣∣∣→ 0, as n → ∞. (4.9)
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Clearly, from Eεni = 0, 2m = O(n
1
3 ) , Lemmas 3.2, 3.5 and E|X |5/2 < ∞ , one has

∣∣∣∣ n
∑
i=1

EXni

∣∣∣∣ � ∣∣∣∣ n
∑
i=1

E
∫
Ani

Em(t,s)dsεniI
(∣∣∣∫Ani

Em(t,s)dsεni

∣∣∣� 1
)∣∣∣∣

+
n
∑
i=1

P
(∣∣∣∫Ani

Em(t,s)dsεni

∣∣∣> 1
)

=
∣∣∣∣ n

∑
i=1

E
∫
Ani

Em(t,s)dsεniI
(∣∣∣∫Ani

Em(t,s)dsεni

∣∣∣> 1
)∣∣∣∣

+
n
∑
i=1

P
(∣∣∣∫Ani

Em(t,s)dsεni

∣∣∣> 1
)

� C
n
∑
i=1

E
∣∣∣∫Ani

Em(t,s)dsεni

∣∣∣5/2
I
(∣∣∣∫Ani

Em(t,s)dsεni

∣∣∣> 1
)

� C
n
∑
i=1

∣∣∣∫Ani
Em(t,s)ds

∣∣∣5/2
E|X |5/2I

(∣∣∣∫Ani
Em(t,s)dsX

∣∣∣> 1
)

� C
∣∣∣∫Ani

Em(t,s)ds
∣∣∣3/2 n

∑
i=1

∣∣∣∫Ani
Em(t,s)ds

∣∣∣E|X |5/2I(|X | > n2/3)

� Cn−1E|X |5/2I(|X | > n2/3) → 0, as n → ∞,

(4.10)

which leads to (4.9). Thus, to verify K < ∞ , we need to prove only that for all ε > 0,

K∗ =
∞

∑
n=1

P

(∣∣∣∣∣ n

∑
i=1

(Xni−EXni)

∣∣∣∣∣> ε/2

)
< ∞. (4.11)

It follows from Markov’s inequality, Lemma 3.3, Cr inequality and Jensen’s inequality
that for M � 2

K∗ � C
∞
∑

n=1
E

(∣∣∣∣ n
∑
i=1

(Xni −EXni)
∣∣∣∣M
)

� C
∞
∑

n=1

(
n
∑
i=1

E|Xni|2
)M/2

+C
∞
∑

n=1

n
∑
i=1

E|Xni|M

.= K1 +K2.

(4.12)
Taking M > 3, so that −M/3 < −1 and −2(M− 1)/3 < −1. Hence, we have by Cr

inequality and Lemma 3.5 that

K1 � C
∞
∑

n=1

{
n
∑
i=1

P
(∣∣∣∫Ani

Em(t,s)dsX
∣∣∣> 1

)
+

n
∑
i=1

E
∣∣∣∫Ani

Em(t,s)dsX
∣∣∣2 I
(∣∣∣∫Ani

Em(t,s)dsX
∣∣∣� 1

)}M/2

.

(4.13)

It follows from 2m = O(n
1
3 ) , Markov’s inequality, Lemma 3.2(i)(ii) and E|X |5/2 < ∞
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that

K1 � C
∞
∑

n=1

(
n
∑
i=1

∣∣∣∫Ani
Em(t,s)ds

∣∣∣2 E|X |2
)M/2

� C
∞
∑

n=1

(∣∣∣∫Ani
Em(t,s)ds

∣∣∣ n
∑
i=1

∣∣∣∫Ani
Em(t,s)ds

∣∣∣)M/2

� C
∞
∑

n=1
n−M/3 < ∞.

(4.14)

Combining (4.13) and (4.14), we have K1 < ∞ .
Applying the Cr inequality and Lemma 3.5, we get that

K2 � C
∞
∑

n=1

n
∑
i=1

{
E
∣∣∣∫Ani

Em(t,s)dsεni

∣∣∣M I
(∣∣∣∫Ani

Em(t,s)dsεni

∣∣∣� 1
)

+ P
(∣∣∣∫Ani

Em(t,s)dsεni

∣∣∣> 1
)}

� C
∞
∑

n=1

n
∑
i=1

P
(∣∣∣∫Ani

Em(t,s)dsX
∣∣∣> 1

)
+C

∞
∑

n=1

n
∑
i=1

E
∣∣∣∫Ani

Em(t,s)dsX
∣∣∣M I
(∣∣∣∫Ani

Em(t,s)dsX
∣∣∣� 1

)
.= K3 +K4.

(4.15)

It is easy to know that K3 < ∞ by (4.8).
In what follows, we will prove that K4 < ∞ . Write

Jn j =
{

i : [n( j +1)]−2/3 <

∫
Ani

Em(t,s)ds � (n j)−2/3
}

, n � 1, j � 1. (4.16)

On the other hand, we find that Jnk
⋂

Jn j = /0 for k 	= j and
⋃∞

j=1 Jn j = {1,2, . . . ,n} for
all n � 1. Writing �M for the cardinality of a set M , it follows

K4 � C
∞
∑

n=1

∞
∑
j=1

∑
i∈Jn j

E
∣∣∣∫Ani

Em(t,s)dsX
∣∣∣M I
(∣∣∣∫Ani

Em(t,s)dsX
∣∣∣� 1

)
� C

∞
∑

n=1

∞
∑
j=1

(�Jn j)(n j)−2M/3E|X |MI
(|X | � [n( j +1)]2/3

)
� C

∞
∑

n=1

∞
∑
j=1

(�Jn j)(n j)−2M/3
n( j+1)

∑
k=0

E|X |MI
(
k � |X |3/2 < k+1

)
= C

∞
∑

n=1

∞
∑
j=1

(�Jn j)(n j)−2M/3
2n
∑

k=0
E|X |MI

(
k � |X |3/2 < k+1

)
+C

∞
∑

n=1

∞
∑
j=1

(�Jn j)(n j)−2M/3
n( j+1)

∑
k=2n+1

E|X |MI
(
k � |X |3/2 < k+1

)
.= K5 +K6.

(4.17)
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It is easy to check that for all m � 1,

C �
n
∑
i=1

∫
Ani

Em(t,s)ds =
∞
∑
j=1

∑
i∈Jn j

∫
Ani

Em(t,s)ds �
∞
∑
j=1

(�Jn j)[n( j +1)]−2/3

�
∞
∑

j=m
(�Jn j)[n( j +1)]−2/3 �

∞
∑

j=m
(�Jn j)[n( j +1)]−2/3

[
n(m+1)
n( j+1)

]2(M−1)/3

�
∞
∑

j=m
(�Jn j)[n( j +1)]−2M/3[n(m+1)]−2(M−1)/3,

it is enough to show that for all m � 1,
∞

∑
j=m

(�Jn j)(n j)−2M/3 � Cn−2(M−1)/3m−2(M−1)/3. (4.18)

So that

K5 = C
∞
∑

n=1

∞
∑
j=1

(�Jn j)(n j)−2M/3
2n
∑

k=0
E|X |MI

(
k � |X |3/2 < k+1

)
� C

∞
∑

n=1
n−2(M−1)/3

2n
∑

k=0
E|X |MI

(
k � |X |3/2 < k+1

)
� C

2
∑

k=0

∞
∑

n=1
n−2(M−1)/3E|X |MI

(
k � |X |3/2 < k+1

)
+C

∞
∑

k=2

∞
∑

n=[k/2]
n−2(M−1)/3E|X |MI

(
k � |X |3/2 < k+1

)
� C+C

∞
∑

k=2
k1−2(M−1)/3E|X |MI

(
k � |X |3/2 < k+1

)
� C+C

∞
∑

k=2
E|X |M+3/2−(M−1)I

(
k � |X |3/2 < k+1

)
� C+CE|X |5/2 < ∞,

(4.19)

and

K6 = C
∞
∑

n=1

∞
∑
j=1

(�Jn j)(n j)−2M/3
n( j+1)

∑
k=2n+1

E|X |MI
(
k � |X |3/2 < k+1

)
� C

∞
∑

n=1

∞
∑

k=2n+1
∑

j�k/n−1
(�Jn j)(n j)−2M/3E|X |MI

(
k � |X |3/2 < k+1

)
� C

∞
∑

n=1

∞
∑

k=2n+1
n−2(M−1)/3(k/n)−2(M−1)/3E|X |MI

(
k � |X |3/2 < k+1

)
� C

∞
∑

k=2

[k/2]
∑

n=1
k−2(M−1)/3E|X |MI

(
k � |X |3/2 < k+1

)
� C

∞
∑

k=2
k1−2(M−1)/3E|X |MI

(
k � |X |3/2 < k+1

)
� C

∞
∑

k=2
E|X |M+3/2−(M−1)I

(
k � |X |3/2 < k+1

)
� CE|X |5/2 < ∞.

(4.20)
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Thus, we obtain the desired inequality (4.11) through (4.12)–(4.15), (4.17), (4.19) and
(4.20) immediately. The proof is completed. �

Proof of Theorem 2.2. Without loss of generality, we assume that
∫
Ani

Em(t,s)ds �
0. Otherwise, we will use

(∫
Ani

Em(t,s)ds
)+

and
(∫

Ani
Em(t,s)ds

)−
instead of

∫
Ani

Em(t,s)ds

respectively. Combining (4.3) with (4.4), we can see that in order to prove the main
result, we only need to show that

∞

∑
n=1

P

(∣∣∣∣∣ n

∑
i=1

∫
Ani

Em(t,s)dsεni

∣∣∣∣∣� ε/2

)
< ∞. (4.21)

Denote for 1 � i � n and n � 1 that

ε ′ni = −np/2I(εni < −np/2)+ εniI(|εni| � np/2)+np/2I(εni > np/2),

ε ′′ni = εni − ε ′ni = (εni −np/2)I(εni > np/2)+ (εni +np/2)I(εni < −np/2),

ε ′i = −np/2I(εi < −np/2)+ εiI(|εi| � np/2)+np/2I(εi > np/2),

ε ′′i = εi − ε ′i = (εi −np/2)I(εi > np/2)+ (εi +np/2)I(εi < −np/2).

Since Eεni = Eεi = 0, then

n

∑
i=1

∫
Ani

Em(t,s)dsεni =
n

∑
i=1

∫
Ani

Em(t,s)ds(ε ′ni −Eε ′ni)+
n

∑
i=1

∫
Ani

Em(t,s)ds(ε ′′ni −Eε ′′ni).

Hence, to obtain (4.21), it suffices to show that

J1
.=

∞

∑
n=1

P

(∣∣∣∣∣ n

∑
i=1

∫
Ani

Em(t,s)ds(ε ′ni −Eε ′ni)

∣∣∣∣∣� ε/4

)
< ∞, (4.22)

and

J2
.=

∞

∑
n=1

P

(∣∣∣∣∣ n

∑
i=1

∫
Ani

Em(t,s)ds(ε ′′ni −Eε ′′ni)

∣∣∣∣∣� ε/4

)
< ∞. (4.23)

It follows by Lemmas 3.2, 3.4, 2m = O(n1−p log−δ n) and E|X |2/p+1 < ∞ that∣∣∣∣∫
Ani

Em(t,s)ds(ε ′ni −Eε ′ni)
∣∣∣∣� Cn−p/2 log−δ n, (4.24)
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and

B2
n =

n
∑
i=1

E
∣∣∣∫Ani

Em(t,s)ds(ε ′ni −Eε ′ni)
∣∣∣2

�
n
∑
i=1

(∫
Ani

Em(t,s)ds
)2

E|ε ′i |2

�
n
∑
i=1

(∫
Ani

Em(t,s)ds
)2

E|εi|2

� C max
1�i�n

∣∣∣∫Ani
Em(t,s)ds

∣∣∣ n
∑
i=1

∣∣∣∫Ani
Em(t,s)ds

∣∣∣
� Cn−p log−δ n.

(4.25)

Noting that (εn1,εn2, . . . ,εnn) have the same distribution as (ε1,ε2, . . . ,εn) for each

n � 1, It is easily seen that
{∫

Ani
Em(t,s)ds(ε ′i −Eε ′i ),1 � i � n

}
are zero mean NSD

random variables by Lemma 3.1, we have by Lemma 3.4, (4.24) and (4.25) that

J1 =
∞
∑

n=1
P

(∣∣∣∣ n
∑
i=1

∫
Ani

Em(t,s)ds(ε ′i −Eε ′i )
∣∣∣∣� ε/4

)
�

∞
∑

n=1
2exp

{
− ε2/16

2(2Cn−p log−δ n+Cn−p/2 log−δ nε)

}
� C

∞
∑

n=1
n−2 < ∞,

which implies (4.22).
For J2 , we have by Markov’s inequality, Lemmas 3.2, 3.5, 2m = O(n1−p log−δ n)

and E|X |2/p+1 < ∞ that

J2 =
∞
∑

n=1
P

(∣∣∣∣ n
∑
i=1

∫
Ani

Em(t,s)ds(ε ′′i −Eε ′′i )
∣∣∣∣� ε/4

)
� C

∞
∑

n=1

n
∑
i=1

∣∣∣∫Ani
Em(t,s)ds

∣∣∣E|εi|I(|εi| > np/2)

� C
∞
∑

n=1
E|X |I(|X |> np/2)

= C
∞
∑

n=1

∞
∑

k=n
E|X |I(kp/2 < |X | � (k+1)p/2)

= C
∞
∑

k=1
E|X |I(kp/2 < |X | � (k+1)p/2)

k
∑

n=1
1

= C
∞
∑

k=1
kE|X |I(kp/2 < |X | � (k+1)p/2)

� C
∞
∑

k=1
E|X |2/p+1I(kp/2 < |X | � (k+1)p/2)

� CE|X |2/p+1 < ∞,

which yields (4.23). This completes the proof of the theorem. �
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5. Numerical simulation

In this subsection, we will study the finite sample performance of the wavelet
estimator gn(t) . The data are generate from model (1.1). For any fixed n � 3, let
normal random vector (εn1,εn2, · · · ,εnn) ∼ Nn(0,Λ) , where 0 represents zero vector
and

Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.04 −0.2 0 · · · 0 0 0
−0.2 1.04 −0.2 · · · 0 0 0

0 −0.2 1.04 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · 1.04 −0.2 0
0 0 0 · · · −0.2 1.04 −0.2
0 0 0 · · · 0 −0.2 1.04

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

.

It follows from Joag-Dev and Proschan (1983) that (εn1,εn2, · · · ,εnn) is a NA vec-
tor for each n � 3 with finite moment of any order, and thus a NSD vector. For sim-
plicity, choose the scale function ϕ(t) = I(0 � t � 1) , 2m = n1/3 , ti = (i−0.5)/n and
si = i/n for i = 1,2, . . . ,n. Taking the points t = 0.25,0.5,0.75 and the sample sizes
n as n = 100,200,400,800,1200, we compute gn(t)−g(t) with g(t) = sin2t for 500
times and obtain the boxplots of gn(t)−g(t) in Figure 1. It shows in the figures that the
differences converge to zero and the fluctuation ranges become smaller as n increases.
That is to say, the wavelet estimator gn(t) converges to the true function g(t) as the
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t)

Boxplots of g
n
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n
(t)−g(t) with t=0.75

Figure 1: The Boxplots of gn(t)−g(t) with g(t) = sin2t by 500 times.
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sample n increases. These simulation results show a good fit of the theoretical results
established in Section 2.
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