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MORE ACCURATE FORM OF HALF-DISCRETE
HILBERT-TYPE INEQUALITY WITH A GENERAL KERNEL

MINGHUI YOU*, WEI SONG AND FEI DONG

(Communicated by M. Krni¢)

Abstract. In this work, by constructing a new kernel function in general form which includes
both the homogeneous and the non-homogeneous cases, a half-discrete Hilbert-type inequal-
ity involving the newly constructed kernel function is established. Additionally, the equivalent
Hardy-type inequalities are considered, and all the constant factors in the newly obtained in-
equalities are proved to be the best possible. Furthermore, by specializing the kernel function
and introducing some special functions such as Beta function and Gamma function, some exist-
ing results and new examples are presented at the end of the paper.

1. Introduction

Let p>1, ay,v, >0 and a = {a,}
follows:

The sequence space [, , is defined as

oo
n=nq*

oo P

ly:=<a:|alpy:= Ea{;vn < oo
n=nq

Specially, we abbreviate ||a||,, to ||a|, and I, to [, for v, =1.

Let S be a measurable set and p > 1. Suppose that f(x) and u(x) are two non-
negative measurable functions defined on §. The function space L, is defined as
follows:

1

Lpu(S) =4 £ [y = [ / f”(x)u(x)dx] " .

Specially, if p(x) =1, then || f||,x and L, ,(S) are abbreviated as ||f]|, and L,(S)
respectively.
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Consider a pair of conjugate parameters (p,q),
valued functions f,g >0, f,g € L,(R™). Then

+2=1(p>1), and two real-

1.1
P g

= [ f(x)g(y) T
J R sy < el L

The discrete form corresponding to (1.1) is as follows:

> S amb T
> D < ——xllall,lblly, (1.2)
mlm— m+n sz

p

where a = {an};m_; €1, b={bn},_, €y, and the constant factor ="+ in both (1.1)
U
and (1.2) is the best possible.
Generally, inequalities (1.1) and (1.2) are referred to as Hilbert-type inequalities
[5]. Additionally, we have some other classical Hilbert-type inequalities, such as the
following two related to logarithmic mean:

2
e & logZ T
DID M <<sz> lall, 1B, (1.3)
p

2
00 oolog_
| = <x>g<y>dxdy<<sil’fg) 11l (14)
P

Although these classical inequalities have been proposed by mathematicians for
more than 100 years, their parameter extensions, more accurate forms and high dimen-
sional generalizations have always attracted many researchers (see [2, 4, 9, 10, 16, 21,
22,23, 24, 26]). Moreover, by the introduction of new kernel functions and param-
eters, and using the techniques of modern analysis, a large number of new discrete
and integral Hilbert-type inequalities have been established in the past 30 years (see
[3,6,9, 17, 18, 19, 24, 27, 28, 29]).

It should be pointed out that Hilbert-type inequalities also appear in half-discrete
form, such as the following two [20, 25]:

2
= > log2 T
~ay - , 1.
Jy 0 X e < () 171, lall (15)
° — dp T
/ 1) 3 20 < gl (16)

Regarding other half-discrete inequalities, we refer to [1, 7, 8].

In addition to the above-mentioned Hilbert-type inequalities with specific kernel
functions, some general forms of Hilbert-type inequalities have also been established
by researchers in the past few years (see [11, 12, 13, 14]). However, these results with
general form are usually obtained on the premise that the kernel function is homoge-
neous. In this paper, we will construct a general kernel function including both the
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homogeneous and non-homogeneous cases, and then establish a new more accurate
half-discrete Hilbert-type inequality involving the newly constructed kernel function.
Detailed definitions and lemmas will be presented in Section 2, and the main result and
some examples will be presented in Section 3 and Section 4, respectively.

2. Definitions and lemmas

DEFINITION 2.1. Let x,y > 0, and define Beta function [30] as follows:

- ~1
B(x,y) ::/0 (l_z:deZB(y,x).

DEFINITION 2.2. For x > 0, define Gamma function [30] as follows:
I'(x):= / 7 leTidz.
0
In particular, if x € N, then T'(x) = (x — 1)!.
LEMMA 2.3. [15] Let f™®)(x) € C(0,e0), (—1)7fU)(x) >0 (j=0,1,2,3,4), and
fU(e0) =0 (j=0,1). Then
- ° 1 1
X flm) < [ fx)drr 3£(0) = 75 0.
m=0 0

LEMMA 2.4. Let ¢ #0, 0< B <1, and 0 < By< 1. Suppose that 0 < a < 1,
S=(a,) for  <0,and a>1, S=(0,a) for o« > 0. Let

b;f_zmax{zﬁm,sﬁw 3BY@a—Bn)}-

Let x : RY — RY be a four-order differentiable function, (—1)7x)(u) >0, j =
1,2,3,4, and

lim k(uw)u? = lim & (u)u’*' =0.

u—0t u—0"
(u=ee) )
Let
K(xy) =k (¥*(+5) ), x>0,y>0, 2.1
Cli,y) = / e ()u”~du. 2.2)
0
Then
_ C(x,y)
= [ K(xe,n)x*" ldy< ——— % neN, 2.3
o= [ Kxn)x oo " (2.3)
o(x) := X‘K()c,n)(n—i—b)ﬁy_1 < Clx.7) xeRT. 2.4

n=0 ﬂxa}/ 7
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Proof. For a < 0, setting x* (n+ b)l3 = u, and using (2.2), it follows that
/ (x,n)x*" tdx = / *(n+b) ) x*7 " Ldx

e - r—1
< |(x|(n—|—b)ﬁy/0 K(u)u’"du

C(x,7)

“Ta|(m+b)pr ()

Therefore, (2.3) is obtained for o < 0. Similarly, (2.3) can also be proved for o > 0.
For arbitrary x > 0, y > 0, let

K(x,y) = (z), z=x%(y+b)P.

In view of 0 < B < 1, we get 5 az >0 and (—1)/ 8_Z 0, j =2,3,4. Observing that
(— 1)Jd"f>0 j=1,2,3,4, wehave

JK dxdz
2.6
dy  dz dy 26)
K &k [9z\* dk 9’z
g _SR (&) [koe 2.7
2 dz? <8y) + dz 0y? >0, @7)
3 3 3 2 2 3
8_:d_K % d_K%Q+d_Kﬁ<O’ (2.8)
ay3  dz? \dy dz2 dy 0y?  dz 9y3
P (30 P (36) Pa | ()’
ay*  dz* \ dy dz3 \dy/) 0y? dz2 \ 0y?
d’x 9z I3z dx 9%z
CROLTL CRIZ 2.
dz2 dy dy’  dz 8y4>0 29)
That is,
JIK
-1 =1,2,3,4. 2.1
(=1)/ EN >0, j 3, (2.10)
Let
F(x,y) = K(x,y)(y+b)P7" = K(x,y)h(y).
Owing to 0 < yf3 < 1, it follows that
dJ
1y S0, j=1234 .11
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By Leibniz’s formula for higher derivative, and using (2.10) and (2.11), we get

afF / ade ’h

Additionally, in view of

->0, j=1,2,3,4. (2.12)

lim k(u)u? = lim & (u)u?*! =0,

U— oo U—o0

we have

limF (x,y) = X% im K (u)u”

y—roo U—oo

1
»BZO’

/ _ 20 _2 _ 20 / _2
limF, (x,y) = (By— Dx_“"" lim k(u)u’ B + Bx "5 limk ()™ "5 = 0.
y—soo

U—o0 U—>o00

By Lemma 2.3, we obtain

o - | |
:,EZ)F(X7”)</0 F(x7y)dy+§F(x70) 12Fy(x 0)

:/ F(x,y)dy + iK(x,O)bﬁ7_2(6b —By+1)— Ly (x,0)pP71
0 12 12"

_ [ Lo (B pBT2(6p — B (B yopBrB—
_/O Fxy)dy+ e (x8 ) 07266 — By-+ 1) — £ (375 ) 1 .

(2.13)
Furthermore, setting x*(y+b)P = u, we get
1 oo
By—1lg, — _ = y—1
/ F(x,y)dy = / *(y+b) )(y—i—b) dy = ﬁx‘”’/xabﬁ K(u)u’"du
1 oo X pB
:W /0 K(u)uyfldu—/o ic(u)u? " tdu| . (2.14)
By the formula of integration by parts, and observing that K”(u) >0, and
lim k(u)u? = lim & (w)u?™' =0
Hm wcu)u’ = Lm « (u)u :
it follow that
x%pP (xabﬁ)y 1 X% B ,
K (u)u?du = apb) — —/ K (u)u¥du
J () [ K w
(xbB)” (xepB)"
= K (x%0P) - Lk (x*bP
Y (x > Yy +1) <x )
1 xah'B //( ) ,erld
+7/ K (u)u u
Y(y+1) Jo
(xobB)” (xepB)"
> T ge(x%pP) - L (x6P) . 2.15
Y (x > Yy +1) <x ) -
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Applying (2.15) to (2.14), and using (2.2), we get

> C(x,y) bBY x®pBTHB
Flx,y)dy < ——2 — Z e (x@pP) 4+ ———— i (x*bP). 2.16

/0 (ey)dy < 5 e ~ By (’“ ) By(r+1) (’“ ) (2.16)
Combining (2.13) and (2.16), we get
Clk,y) P72
Bxxr  12By

xabﬁ)/‘s’ﬁ*z ,
—_— oy 2 2
T2y (x b >[12b B*y(y+1)]. 2.17)

@(x) < i (168 ) (1267 — 66y + B2~ )

By virtue of

b> s max {2 V370 10,387+ 3BT B7)}

we have
120 — 6bBy+ Py’ — By =12 [b— = (3Br+ W)]
XP——(wy—:wﬂmwwﬂ>a 2.18)

126 = BPy(y+1) = 12 (b——\/37/ y+1 ) (b+ﬁ\/37 y+1> 0. (219

Applying (2.18) and (2.19) to (2.17), and in view of k¥ > 0, K <0, we get (2.4).
Lemma 2.4 is proved. [J

LEMMA 2.5. Let 0 20, 0< B <1, y> 1, and 0 < yB < 1. Suppose that
0<a<l, S=(a,») fora<0,anda>1, S=(0,a) for o« >0. Assume that b > 0,
and x(u), K(x,y) are defined via Lemma 2.4. For an arbitrary positive natural number
[ which is large enough, set
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Proof. Observing that 0 < By < 1, and using (2.6), we have
- _ra [ _1-B
L>/x°‘7 1+m/ K(x,y)(y+b)P" 1" @ dydx. (2.21)
1 0

Setting x*(y + b)P = u, we obtain

| o o 1
L> —/xT_l [/ i (u)u” . ldu} dx
BJi B
1 a_y & y—L 1 1 a_y 1 y—L 1
=—[xI / K(u)u' @ du dx+—/xl / K(u)u' @ "du|dx
ﬁ 1 1 ﬂ 1 xpP

l > 1 1 [ @ 1 1
= Tof] K(u)u?” a0~ du+ B xr ! [/ ; k(u)u’ 4 1du] dx. (2.22)
1 1 X%h

If o > 0, by Fubini’s theorem, then we have

a 1 — 1 1 — 1 uéb}i a
/x771 [/ K(u)u? du}dx:/ K(uu? / x7 dx | du
1 xepB 0 0
B
7 ! 1
- / k() 7 du. (2.23)
o Jo

If o <0, by Fubini’s theorem again, then we obtain

o 1 1 o o
/xT_l [/ K(u)uy_%_ldu} dx = / K(u)uy_é_1 (/1 5 xT_ldx> du
1 xbB 0 uo b

Tt

—m 0 K(M)M

Combining (2.22), (2.23) and (2.24), we arrive at (2.20). Lemma 2.5 is proved. [

3. Main results

THEOREM 3.1. Let a0 #0, 0< B <1 and 0 < By < 1. Supposethat 0 < a< 1,
S=(a,) for  <0,and a>1, S=(0,a) for o« > 0. Let

b;f_zmax{zﬁm,sﬁw 3BY@a—Bn)}-

Let p > 1, %—Fé =1, u(x) =x*1==1 and v, = (n+b)1'=PN=1. Suppose that
f(x), an >0 with f(x) € Lpu(S) and a = {a,};;_y € lyy. Let x(u), K(x,y) and
C(K,y) be defined via Lemma 2.4. Then the following inequalities hold and are equiv-
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alent:

L= S o ([ Kesmsoon) < [l poeten] Il G

n=0

. (3.2)

L= /xqw— (21(” a )qu< [\ a|—%ﬁ—%c:(;<,y)} lal|?
L::ngban/sl((x,n X)dx = /f K(x,n)a,dx

1o
<lo[ 7B »C(xV)flpulla

q.vs (3-3)
where the constant | o, |7$ ﬁféC(K, y) in (3.1), (3.2) and (3.3) is the best possible.

Proof. By Holder’s inequality and inequality (2.3), it follows that

( /S K(x,n) f(x)dx)p
G [
/K e T P () d (/SK(x,n)x‘Wldx> -

)P~ /S Kl m 72 2 (x)dx

C 9 p-l pl—ay)
<[%} /SK("””X S, (3.4)

Plugging (3.4) back into the left hand side of inequality (3.1), and using Lebesgue term-
by-term integration theorem, we get

p-1 1:1
] /f pe ZKxn )(n+b)P7dx. (3.5)

Ll\|:
=0

\al

Applying (2.4) to (3.5), we arrive at (3.1). In a similar way, it can also be proved
inequality (3.2) holds true. In fact, by the use of Holder’s inequality again and (2.4),

we obtain
- q
(2 K(x,n)a,,) =
n=0

< [@x)]) lZKxn Yn+b) P
n=0

g—1 oo a(1-BY)
< [Cng(;Z)} ZK x,n)(n+b) g al. (3.6)
x

oo

S K(n)(n+b) 7 ((n+b) = )r

n=0

(1 /3)’) o
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By Lebesgue term-by-term integration theorem and (2.3), it follows that

-1 = (1-By)
Lr < {%] Y on0)" 7 af [ Kl
n=0 S

1 1 q
<[lal 1B rcw )] lalf,.

Inequalities (3.1) and (3.2) are proved. Moreover, we will prove (3.3) via (3.1).
In fact, we can first get two expressions of L by Lebesgue term-by-term integration
theorem, and then it follows from Holder’s inequality that

I 20 [(n+ byPY /S K(x,n) f(x)dx] [an(n+b)"3 yﬂ

q L
=L/|a

1 oo
L [Z al(n+b)a1-Pn-1 g (3.7)

n=0

Plugging (3.1) back into (3.7), we get (3.3). Conversely, assume (3.3) is valid, and set
b={b,};_,, where

by i= (n+b)PP7-! ( /S K(x,n) f(x)dx) "

By virtue of (3.3), we obtain
_1
L= S b [ KComy @t <l @8 BHCOs DIl bl

—la |77 B C )|l pul! - (3.8)

It follows from (3.8) that (3.1) holds true. Therefore, inequality (3.1) is equivalent to
(3.3). For the sake of proving the equivalence of inequalities (3.1), (3.2) and (3.3), it is
suffices to prove (3.2) is equivalent to (3.3). In fact, if (3.2) is supposed to be true, then

L — / O¢7+qf [ 2 K(x n)an‘| dx < Hf||PﬂL2 3.9)
=0

Apply (3.2) to (3.9), then it follows (3.3). On the contrary, Suppose that (3.3) holds
true, and set

o a-1
g(x) :=x90771 (2 K(x,n)an> .
n=0
Then

_1
L= /g K(x,n)andx <| o |74 B C(x,7) all,.y

1
—a| 78 (. p)allgnLs - (3.10)
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Inequality (3.1) follows naturally from (3.10), and the proof of the equivalence of in-
equalities (3.1), (3.2) and (3.3) is completed.
In order to complete the proof of Theorem 3.1, we also need to prove that the

constant | o \75 ﬁ_%C(K‘, y) in (3.1), (3.2) and (3.3) is the best possible. Assume that
there exists a real number ¢ satisfying

0<c<|a| 7 B7C(K,Y) 3.11)

so that (3.3) holds, that is,
Zan/sl((x,n X)dx = /f KGon)andx < | fllpullalgv.  (.12)
n=0

Replace f and a, in (3.12) with f and d, defined in Lemma 2.5, respectively. By
(2.20) and (3.12), it follows that

l > 1 =B (! yrd
— uu u u
o | J d“”/ K(u)ut

1 0
1

1
1 B\ 7
I \Nr( B, IbT
_ b1, , 3.13
C<| ) ( ' ﬁ) 19

That is,

1
_B_ _BN\ 74
© 1 5 ! 1 1 (Db b
[t s b7 [ 1du<cﬁ|a5< —+ B’) |
1 0

Letting [ — oo, and using (2.2), we have

c>la| 1 prC(Kk,Y). (3.14)

1 1
Combining (3.11) and (3.14), we get c =| oc | ¢ B~ 7 C(x,7), and it follows therefore
1 1
that | ot |~ B~ 7»C(k,y) in (3.3) is the best possible. Additionally, from the equivalence

of (3.1), (3.2) and (3.3), the constant | & |_$ ﬁféC(K, y) in (3.1) and (3.2) can also be
proved to be the best possible. Theorem 3.1 is proved. [



HALF-DISCRETE HILBERT-TYPE INEQUALITY 1285

4. Some examples

In this section, it is assumed that o, 3,7, a,b satisfy the conditions of Theorem
3.1, except where specially noted. Let k(u) take some specific functions, we can get
several examples as follows.

EXAMPLE 4.1. Let k(u) = A>y>0.Then (—1)/¥% >0, j=1,2,3,4,

(1+ (I4u)* >
lim k(u)u? = lim & (u)u’*' =0,
) )

and

o uy—l
Cle) = || = BrA=7) = B(ro)

Therefore, inequalities (3.1), (3.2), and (3.3) reduce to

S (n+ )PP [ [ (1 b)) f(x)dxr <[l 77800 Il

n=0

4.1
oo N q
/xW— [z(ux (n+5)") lan] dx<[\a|—%ﬁ—%3(y,r)]q||a 4. (42)
- o g\ * 1o
LI X (14400 ) "< o[ BB S pulalrs  43)

n=0
where p(x) =xP1=N=1 1y, = (n4+b)40-BY=1 and y4 1= 1.
If o < 0, replacing o with —a (o > 0), and x** f(x) with f(x), then inequalities
(4.1), (4.2) and (4.3) are transformed into the following three inequalities:

;E)(Wrb)pﬁyl [/aw (x"‘+(n+b)ﬁ>lf(x)dxr < {aﬁﬁ*%g(y,f)r“f”gw
4.4

/ x94T 1{2 <x +(n+bd ﬁ>_lanrdx< [O‘_éﬁ_%B( )] lallg.v, (4.5)

ind - 1 1
| s 2 x4 0P) s < a8 BB D) flpullal (4.6)
where p(x) = x?(1=2%)=1 and v, = (n+4 b)41-F1-1
Setting oo = 8, b=s (s € N*) in (4.6), we get a Hilbert-type inequality with a
homogeneous kernel of degree —B A as follows:

/amf(x)i <xﬁ +nﬁ)_}L andx < éB(% DI llp.ulla

- (4.7)
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Setting a =0 and s = 3 =1 in (4.7), then (4.7) is transformed into the result of Yang
[25]. If o > 0, setting o = f3 in (4.3), we get

(4.8)

/f i 1428 ( n+b)ﬁ]landx<%3(y,r)

EXAMPLE 4.2. Let x(u) = ¢ ** (A > 0) in Theorem 3.1. Obviously, K (u) sat-
isfies the conditions of Theorem 3.1 (Lemma 2.4). Additionally, we have

Clic,y) = /0 e Ry — A77T(y).

Then inequalities (3.1), (3.2), and (3.3) reduce to

=3

P 1 1
S weoysrt| [ereof a] < [la ) 552 m) I, @9

n=0

- q
/xW*I [Zelxa(n+h)”an] dx < [\ ol 5*%)Lfyr(y)}q\\a . (4.10)
S n=0

S Al (ntb)P P

Sf(x) e apdx <|a| 9 BTPATIT(y) v (4.11)
n=0
where p(x) = xP(1-eN=1 v — (n4 p)a1-Fn-1
If >0, setting = and b=1s (s € NT) in (4.11), we get

S ol 1

[ 10 T e e < gt @Il 4.12)

where p(x) = x?(1=BY-1 and v, = na(1-B7)-1,
If ¢ <0, setting ¢ = —f and b =5 (s € NT) in (4.11), we get the homogeneous
case:

@ - n)\B 1
J, 10 X < Tl el @13

where pt(x) = x?(1TBY=1 and v, = pa(1-B7)-1

EXAMPLE 4.3. Let k(u) = csch(Au) = m (A > 0) in Theorem 3.1. It can
be verified that

d Au —Au
LIy Pl ) (4.14)
du E—
2 2hu —2Au
A g e T (4.15)

du? (eku _ e—)Lu)3
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d3_K EPYE 3 423 | 93— hu o= 3Au <0 4.16)
du? (ehe — e—hu)? ’ '

d4 4Au 76 2Au 76 —2Au —4Au

O _ppeeHToe H70e 7 He T, 4.17)

du* (ern — e—xu)5

In addition to the conditions of Theorem 1, we also specify that y > 1, then we get

and

C(x,7) :/o csch(Auw)u’'du = 2/0 267(21#1)1””771(1”

e 'tV ldr

o [T @i 1y N Jo et de
2,;0/6 utdu= Z (kA + 1)7

=2 Gia+ Ay Zk“ A C(1,A). @.18)

Therefore, inequalities (3.1), (3.2), and (3.3) are transformed into

S (nb)PB7! Uscsch (22 (n—f—b)ﬁ)f(x)dxr <[lal7B7rcr )] IF1h 4

n=0
(4.19)

oo q
/xw—l [cheh <7an (n—l—b)ﬁ)an] dx < [| ol ﬁ—%c(y,x)]qnaugw (4.20)
S n=0

/S 1) Y, esch (A2 (n-+ b ) aude <| |4 BHCA) [l
n=0

avs (4.21)

where p(x) =x?(1=M)=1 and v, = (n+b)a1-BV-1

If o« >0, thenweset @ =, b=s and y=2m (s,m € N") in (4.21). Observing
that [30]:

I 2 n.2m 5
= 27" — 1)By,
kgg) (2k+1)2m (2m)! ( )
where B,, is the Bernoulli number, B; = %, B, = %, B3 = %, ---, we have

a & m By, [m\2m
/Of(x)nz:scsch(xxﬁnﬁ)andx<(z2 _I)W(ﬂ flpulalgy, — (422)

where u(x) — xp(1=2mB)—1 414 v, = pa(1-2mp)—1
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If ¢ <0, setting o =— and b =5 (s € NT) in (4.21), we get the homogeneous
case of (4.22):

T

“ lnﬁ om B, 2m
/a f(x) Y csch (Tﬁ) andr< (2 —1) 3 (I) Ifllpalallyv, — (4.23)
where ,LL()C) :xp(l+2m/3)—1 and v, = nq(1—2m[3)—1

EXAMPLE 4.4. Let x(u) =coth(Au)—1= T;M (A >1) in Theorem 3.1. By
Leibniz formula for higher derivative, and using (4.14), (4.15), (4.16) and (4.17), we
get

j (i) -
(1) ju'f_ cht( ) (eseh(A) T >0, j=1,2,3.4.

Similar to Example 4.3, we specify y > 1, and then we get

lim k(uw)u? = lim & (u)u’*' =0.
) s

Furthermore, we have

C(Ka Y) :/ (COth(?Lu) — l)u’)/ 1du =2 Z/ 2(k+1) )Luuy—ldu

0

o or
=2 ﬁ C (1. 4)- (4.24)

Therefore, inequalities (3.1), (3.2) and (3.3) reduce to

S (n+ by [ /S (coth (?on‘ (n+b)ﬁ) - 1) f(x)dx] ’

n=0
<[lal B rc )] Il (425)
/quo”’_l Lgb <coth (kx“ (n—l—b)ﬁ) — l) an] qu
<[l e e (ra)] laly, (4.26)
/S f(x)nia (coth (2% (n-+8)) = 1) aydx
<|o| 71 B rC (1,A) v (4.27)

where p(x) = xPI=N=1 "y, = (n4p)a01-F1-1
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Setting ¥ =2m (m € N1) in (4.27), in view of [30]

= 2 By
S (k+ 1) (2m)!

(27’[)2”'7
we have

/ i <C°th( ”“’)ﬁ) - 1) andx <| |77 B

Bm 7T\ 2m
2m (X) ”fHP:IJ”a”q,v,
(4.28)

where 1 (x) = xP(1-2ma) =1 apnd v, = (n+b)q(1—2m[3)—1

REMARK 4.5. If we take k(u) = sech(Au) or k(u) = 1 — tanh(Au)in Theorem
3.1, it can be shown that x(u) does not satisfy the condition (—1)’d >0, j=
1,2,3,4. Therefore, it can not be obtained any corresponding Hilbert-type 1nequahtles
with the kernel functions involving hyperbolic secant or hyperbolic tangent functions.

EXAMPLE 4.6. Let k(u) =log (1+1) in Theorem 3.1. It follows that

de 11 _ ¢ 1 Ly
du  w+1 w7 duz w2 (w1277

d*x 2 2 d*k 6 6
S Y’ Wi L B
du?  (u+1)3 du*  uwt (u+1)*

In addition to the conditions of Theorem 3.1, we also assume that 0 < y < 1. Then

lim k(uw)u? = lim & (u)u’t' =0.
u—0" u—0"
(u—eo) (u—co)

By the formula of integration by parts, we get

= 1 1= u?r!
C(x, :/1 14— Y—ld:—/ d
) 0 Og( u>u ! YJo 1+u "

1
=-By,l-y)= ————.
4 r1=7) ysin(yrm)

Hence, inequalities (3.1), (3.2) and (3.3) are transformed into

=

}Zb(n—i—b)pﬁy_l [/Slog (l +x‘“(n+b)7ﬁ> f(x)dx]p

[|a ST x )] Ti» (4.29)

ysm(yn
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o q
/x‘f‘”*l Y log (1 +x*°‘(n+b)7ﬁ> ay| dx
S n=0

11z g 430
q p—
< |:| (X| ﬁ ’)/Sll’l(}/ﬂ'):| Ha”q,V? ( . )
/f(x) Y log (1 +x (n—l—b)*ﬁ) apdx
S n=0
1 1. 131
q p—
<lal B lpulal @31)

where p(x) = x?(1=9"=1 and v, = (n+ )41 -BV-1,

If oo >0, setting o« =8 and b=s (s € NT) in (4.31), we get

a i 1 T
/0 f(x)g,slog (1 + W) andx < Bysin(ym) 1£llpullallg,v, (4.32)

where p(x) = x?(1=BY=1 and v, = na(1=BY)-1,

If o« <0, setting o = —f and b =15 (s € N*) in (4.31), we get

= < xP T
| s o 1435 Jasdr I lulalay, @33

< Bysin(yr

where ‘u(x) :xp(1+ﬁY)7l and vV, = n‘I(lfﬁy)fl'
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