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REPRESENTATIONS OF ELEMENT AS SUM OF

PRIMITIVE ROOT AND LEHMER NUMBER IN Zp

BO ZHANG, JIANKANG WANG, YONGLI SU AND ZHEFENG XU ∗

(Communicated by A. Filipin)

Abstract. Let p be an odd prime and Zp the residue class ring modulo p . In this paper, we study
representations of any element of Zp as the sum of a Lehmer number and a primitive root in Zp ,
and give an explicit inequality better than asymptotic formula for the number of representations.
From this inequality, we obtained that each element of Zp can be represented as the sum of
a Lehmer number and a primitive root for p > 2.5× 1014 . Moreover, using the algorithm we
provided, we examined all the cases when p < 106 by computer. We also analyzed the time
complexity of the algorithm and illustrated that it is extremely difficult to verify all the cases up
to the bound 2.5× 1014 , and conjectured that any given element n ∈ Zp can be represented as
the sum of a Lehmer number and a primitive root in Zp for all primes p except 2, 3, 5, 7, 11,
19, 31.

1. Introduction

Let q > 2 be an odd integer and Zq denote the residue class ring modulo q . For
any x ∈ Zq with (x,q) = 1, there is one and only one x ∈ Zq that satisfies xx ≡ 1
(mod q) , where x is a Lehmer number if x and x are of opposite parity. Let L(q)
denote the set of Lehmer numbers in Zq , then we have

L(q) = {x|x ∈ Zq,(x,q) = 1,2 � (x+ x)}.

For an odd prime p , D. H. Lehmer proposed a problem to find |L(p)| , or at least to say
something nontrivial about it (see Problem F12 of [7]). W. P. Zhang [16] obtained an
asymptotic estimate of the number of elements of L(p) :

|L(p)| = p
2

+O(p
1
2 ln2 p).

Many scholars also gave some interesting propositions about Lehmer numbers, see [9]–
[12], [15]–[16]. Y. M. Lu and Y. Yi [10] define a generalization of Lehmer numbers, and
studied the number of representations of an integer as sum of three generalized Lehmer
numbers by applying circle method. Subsequently, I. E. Shparlinski [12] proved that
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if N is sufficiently large, then N can be represented as the sum of two the generalized
Lehmer numbers by using the estimation of exponential sums.

Let G(p) be the set of primitive roots modulo p . As shown in [13], for any given
g∈ G(p) , Andrew Odlyzko asked what values of M we have such that each element of
Zp can be represented as the following form

gx −gy (mod p), 1 � x,y � M.

Many scholars studied this question and gave lower bounds of M , see [1], [5]–[6].
S. W. Golomb [8] conjectured that there exists a constant q0 such that for all

p > q0 every nonzero n ∈ Zp can be represented as the sum of two primitive roots in
Zp . J. P. Wang [14] solved the part of this conjecture. S. D. Cohen and G. L. Mullen [2]
proved a generalization of Golomb’s conjecture. Furthermore, for any given divisors
k, l of p−1 and given nonzero γ,δ ∈Zp , S. D. Cohen and W. P. Zhang [3] obtained the
asymptotic formula of the number of representations of n ∈ Zp as γak +δbl (mod p) ,
where (a,b)∈G(p)×G(p) . In this paper, we will study the representations of elements
of Zp as the sum of a Lehmer number and a primitive root in Zp . Our question is, for
any given element n ∈ Zp , how many pairs (l,g) ∈ L(p)×G(p) such that

n ≡ l +g (mod p). (1)

Let F(n, p) denote the number of solutions of the equation (1) . For any odd integer
m � 3 define the positive number Tm by

Tm =
2∑(m−1)/2

j=1 tan
(

π j
m

)
m logm

.

Then, we have the following results

THEOREM 1. Let p > 3 be a prime. For any given element n ∈ Zp we have the
inequality ∣∣∣∣F(n, p)− φ(p−1)

2

∣∣∣∣ <
3φ(p−1)
2(p−1)

T 2
p 2ω(p−1)√p ln2 p+1.

where φ(m) is Euler totient function, ω(m) denotes the number of distinct prime fac-
tors of m.

From φ(p−1) < p−1 and Lemma 2 in section 2, we have

COROLLARY 1. Let p be a prime large enough. Then, there holds

F(n, p) =
φ(p−1)

2
+O

(√
p2ω(p−1) ln2 p

)
.

COROLLARY 2. Any given element n ∈ Zp can be represented as the sum of a
Lehmer number and a primitive root in Zp if p > 2.5×1014 .

In section 4, according to the analysis of algorithm time complexity, if the prime
p is selected as the order of 1014 magnitude, the time required to execute the algorithm
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is 1.44× 1017 years by using the tianhe-2 supercomputer. Therefore, it is impossible
to completely verify all prime numbers in limited time.

REMARK. When p < 106 , we verify the representation of each element of Zp by
numerical computation, and find any given element n ∈ Zp can be represented as the
sum of a Lehmer number and a primitive root except p = 2,3,5,7,11,19,31.

CONJECTURE 1. For all primes p except 2, 3, 5, 7, 11, 19, 31, any given element
n ∈ Zp can be represented as the sum of a Lehmer number and a primitive root in Zp .

2. Some lemmas

In this section, we give some lemmas for the proof of theorem.

LEMMA 1. Let χ be any Dirichlet character modulo an odd prime p. Then, for
arbitrary integers n,r,s with (rs, p) = 1 , we have

∣∣∣∣∣
p−1

∑
x=1

χ(x+n)exp

(
rx+ sx

p

)∣∣∣∣∣ < 3
√

p.

Proof. This is another form of Lemma 4 in [4]. �

LEMMA 2. For any odd integer m � 2 we have

2
π

(
0.548
lnm

)
� Tm � 2

π

(
1+

1.549
lnm

)
.

In particular, if m � 1637 , then T 2
m � 1

2

Proof. See Lemma 1 of [4]. �

LEMMA 3. Let p be an odd prime and let χ be any Dirichlet character modulo
p. Then, for arbitrary integers n,∣∣∣∣∣

p−1

∑
x=1

(−1)x+xχ(x+n)

∣∣∣∣∣ < 3T 2
p
√

p ln2 p

holds.

Proof. Notice that the trigonometric identity

p

∑
a=1

exp

(
ma
p

)
=

{
p, if (m, p) = p;

0, if (m, p) = 1;
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then we have

p−1

∑
x=1

(−1)x+xχ(x+n)

=
1
p2

p−1

∑
x=1

p−1

∑
b=1

xb≡1( mod p)

χ(x+n)
p−1

∑
c=1

p−1

∑
d=1

(−1)c+d
p

∑
r=1

exp

(
r(x− c)

p

)

×
p

∑
s=1

exp

(
s(b−d)

p

)

=
1
p2

p−1

∑
r=1

p−1

∑
s=1

{
p−1

∑
x=1

χ(x+n)exp

(
rx+ sx

p

)}

×
{

p−1

∑
c=1

(−1)c exp

(−rc
p

)}{
p−1

∑
d=1

(−1)d exp

(−sd
p

)}
. (2)

For any integer r with (r, p) = 1,

p−1

∑
a=1

(−1)a exp

(−ar
p

)
=

1− exp
(

r
p

)
1+ exp

(
r
p

) =
isin

(
πr
p

)
cos

(
πr
p

) .

Moreover,
p−1

∑
a=1

∣∣∣∣∣∣
sin

(
πa
p

)
cos

(
πa
p

)
∣∣∣∣∣∣ = 2

(p−1)/2

∑
j=1

tan

(
π j
p

)
= Tpp ln p.

According to (2) and Lemma 1, it follows that∣∣∣∣∣
p−1

∑
x=1

(−1)x+xχ(x+n)

∣∣∣∣∣ =
1
p2

p−1

∑
r=1

p−1

∑
s=1

∣∣∣∣∣
p−1

∑
x=1

χ(x+n)exp

(
rx+ sx

p

)∣∣∣∣∣
×

∣∣∣∣∣
p−1

∑
c=1

(−1)c exp

(−rc
p

)∣∣∣∣∣
∣∣∣∣∣
p−1

∑
d=1

(−1)d exp

(−sd
p

)∣∣∣∣∣
�

3
√

p

p2

p−1

∑
r=1

p−1

∑
s=1

∣∣∣∣∣∣
sin

(
πr
p

)
cos

(
πr
p

)
∣∣∣∣∣∣
∣∣∣∣∣∣
sin

(
πs
p

)
cos

(
πs
p

)
∣∣∣∣∣∣

<3T 2
p
√

p ln2 p.

This proves Lemma 3. �

LEMMA 4. Let p be an odd prime, c be an integer with (c, p) = 1 . Then

∑
d|p−1

μ(d)
φ(d)

d

∑
h=1

(h,d)=1

e

(
h ind c

d

)
=

⎧⎨
⎩

p−1
φ(p−1)

, if c is a primitive root modulo p;

0, otherwise.



REPRESENTATIONS OF ELEMENT AS SUM 1327

where ind c satisfies c≡ gind c (mod p) for a fixed primitive root modulo pα , μ(c) is
the Möbius function.

Proof. See [16]. �

3. Proof of theorems

We will use above lemmas to prove our results. Firstly, we make a simple trans-
formation of F(n, p) . In the process of proof, let L = L(p) and G = G(p) for conve-
nience. In fact, |G| = φ(p−1) and

|L| = p−1
2

− 1
2

p−1

∑
a=1

(−1)a+a.

From the definition of F(n, p) , we can write

F(n, p) =
p−1

∑
a=1
a∈L

p−1

∑
b=1
b∈G

a+b≡n( mod p)

1

=
1
p

p

∑
c=1

exp

(−cn
p

) p−1

∑
a=1
a∈L

exp

(
ac
p

) p−1

∑
b=1
b∈G

exp

(
bc
p

)

=
(p−1)φ(p−1)

2p
+

1
p

p−1

∑
c=1

exp

(−cn
p

) p−1

∑
a=1
a∈L

exp

(
ac
p

) p−1

∑
b=1
b∈G

exp

(
bc
p

)

− φ(p−1)
2p

p−1

∑
a=1

(−1)a+a

=
(p−1)φ(p−1)

2p
+E(n, p). (3)

Next, we estimate the error term E(n, p) , and have

E(n, p) =
1
2p

p−1

∑
c=1

exp

(−cn
p

) p−1

∑
a=1

(
1− (−1)a+a

)
exp

(
ac
p

) p−1

∑
b=1
b∈G

exp

(
bc
p

)

− φ(p−1)
2p

p−1

∑
a=1

(−1)a+a

=
φ(p−1)
2p(p−1)

p−1

∑
c=1

exp

(−cn
p

) p−1

∑
a=1

(
1− (−1)a+a

)
exp

(
ac
p

)

×
p−1

∑
b=1

∑
d|p−1

μ(d)
φ(d)

d

∑
h=1

(h,d)=1

e

(
h ind b

d

)
exp

(
bc
p

)
− φ(p−1)

2p

p−1

∑
a=1

(−1)a+a
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=− φ(p−1)
2p(p−1)

p−1

∑
c=1

exp

(−cn
p

) p−1

∑
b=1

∑
d|p−1

μ(d)
φ(d)

d

∑
h=1

(h,d)=1

e

(
h ind b

d

)
exp

(
bc
p

)

− φ(p−1)
2p(p−1)

p−1

∑
c=1

exp

(−cn
p

) p−1

∑
a=1

(−1)a+a exp

(
ac
p

)

×
p−1

∑
b=1

∑
d|p−1

μ(d)
φ(d)

d

∑
h=1

(h,d)=1

e

(
h ind b

d

)
exp

(
bc
p

)
− φ(p−1)

2p

p−1

∑
a=1

(−1)a+a

=−Σ1−Σ2−Σ3. (4)

By calculating each term in (4), for n �= 0 we have

|Σ1| =
∣∣∣∣∣ φ(p−1)
2p(p−1)

p

∑
c=1

exp

(−cn
p

) p−1

∑
b=1

∑
d|p−1

μ(d)
φ(d)

d

∑
h=1

(h,d)=1

e

(
h ind b

d

)
exp

(
bc
p

)

− φ(p−1)
2p(p−1)

p−1

∑
b=1

∑
d|p−1

μ(d)
φ(d)

d

∑
h=1

(h,d)=1

e

(
h ind b

d

)∣∣∣∣∣
�φ(p−1)

2p−2

∣∣∣∣∣ ∑
d|p−1

μ(d)
φ(d)

d

∑
h=1

(h,d)=1

e

(
h ind n

d

)∣∣∣∣∣
+

φ(p−1)
2p(p−1)

∣∣∣∣∣
p−1

∑
b=1

∑
d|p−1

μ(d)
φ(d)

d

∑
h=1

(h,d)=1

e

(
h ind b

d

)∣∣∣∣∣
�1

2
+

φ(p−1)
2p

<
3
4
. (5)

If n = 0 then we also have |Σ1| < 3
4 . For Σ2 and Σ3 , we can write

Σ2 + Σ3

=
φ(p−1)
2p(p−1)

p

∑
c=1

exp

(
(a+b−n)c

p

) p−1

∑
a=1

(−1)a+a
p−1

∑
b=1

∑
d|p−1

μ(d)
φ(d)

d

∑
h=1

(h,d)=1

e

(
h ind b

d

)

− φ(p−1)
2p(p−1)

p−1

∑
a=1

(−1)a+a
p−1

∑
b=1

∑
d|p−1

μ(d)
φ(d)

d

∑
h=1

(h,d)=1

e

(
h ind b

d

)
+

φ(p−1)
2p

p−1

∑
a=1

(−1)a+a

=
φ(p−1)
2(p−1)

p−1

∑
a=1
a �=n

(−1)a+a ∑
d|p−1

μ(d)
φ(d)

d

∑
h=1

(h,d)=1

e

(
h ind n−a

d

)
.
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From the fact that the map which takes a with (a, p) = 1 to e
(

h ind a
d

)
is a Dirichlet

character modulo p with order d and Lemma 3, it follows that

|Σ2 + Σ3| � φ(p−1)
2(p−1)

∣∣∣∣∣ ∑
d|p−1

μ(d)
φ(d)

d

∑
h=1

(h,d)=1

p−1

∑
a=1

(−1)a+aχh,d(n−a)

∣∣∣∣∣
<

3φ(p−1)
2(p−1)

T 2
p 2ω(p−1)√p ln2 p. (6)

Combining (4)–(6) we have

|E(n, p)| < 3φ(p−1)
2(p−1)

T 2
p 2ω(p−1)√p ln2 p+

3
4
. (7)

From (3) and (7) , we immediately get

∣∣∣∣F(n, p)− φ(p−1)
2

∣∣∣∣ <
3φ(p−1)
2(p−1)

T 2
p 2ω(p−1)√p ln2 p+1.

So Theorem 1 is proved.
For Corollary 2, if n ∈ Zp can be represented as the sum of a Lehmer number and

a primitive root in Zq then F(n, p) > 0. Thus,
√

p > 3T 2
p 2ω(p−1) ln2 p . From Lemma

2 we have p > ee3.5 ≈ 2.5×1014.

4. Numerical computation

In this section, we will verify whether each element in Zp = {0,1,2, · · · , p− 1}
can be represented as the sum of a Lehmer number and a primitive root.

4.1. Lehmer numbers and primitive roots

First, we need to calculate the Lehmer number set L = L(p) = {l1, l2, · · · , lk} and
a primitive root g module p .

Based on the definition of Lehmer number. The key to find Lehmer numbers is to
find x ∈ Zp for non-zero element x ∈ Zp , then we just need to judge whether x and x
is opposite to parity. Since x satisfies xx ≡ 1 (mod p) , there are p−1 cases for x as
follows,

xx = p+1,xx = 2p+1, · · ·,xx = (p−1)p+1

For x must belong to {2,3, · · · , p − 1} , the only thing we need to do is verifying
whether one of the upper p−1 cases belong to {2,3, · · · , p−1} .
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Algorithm 1 Finding Lehmer numbers

Input: A prime p , define a 3-dimension zero matrix: out = zeros(p−2,3) ,
put {2,3, · · · , p−1} in the first column;

Output: Lehmer number set L .
1: for j = 1,2, · · · , p−2 do
2: out( j,1) = j+1
3: end for
4: for j = 1,2, · · · , p−2 do
5: if out( j,3) == 0 then
6: for i = 1,2, · · · , p−2 do
7: x = out( j,1); x inv = (ip+1)/x ;
8: if 1 < x inv < p & x inv is an integer & x+x inv ≡ 1 (mod 2) then
9: out( j,2) = x inv ; out( j,3) = 1; out(x inv−1,2) = x ;

out(x inv−1,3) = 1; terminate loop(i)
10: end if
11: end for
12: end if
13: end for
14: for j = 1,2, · · · , p−2 do
15: if out( j,3) = 1 then
16: put out( j,1) ∈ L ;
17: end if
18: end for

Time Complexity Analysis of Algorithm 1. The second step of the algorithm
only performs the assignment operation, the operational time may not be considered.
The third step of the algorithm has two layers of loops. The outer loop (j loop) needs
to be executed p− 2 times, and the inner loop (i loop) needs to be executed at most
p−1 times. Inside the loop, statement x inv = ip+1

x (1 � i � p−1) includes one mul-
tiplication and one division; at the same time, in the subsequent judgment statements,
whether x inv is an integer can generally be judged by module 1 remainder, includ-
ing one division; while x+ x inv ≡ 1 (mod 2) includes one addition and one division.
Thus, each loop includes three divisions, one multiplication and one addition. So, the
algorithm performs a total of 3(p−1)(p−2) divisions, (p−1)(p−2) multiplications
and (p−1)(p−2) additions, and the time complexity is O(p2) .

For primitive roots, we calculate cqi (mod p) (1 � i � k) for all proper divisors
{q1,q2, · · · ,qk} of φ(p− 1) one by one. As long as there is a certain one cqi ≡ 1
(mod p) , it shows that c is not a primitive root module p . If all cqi �≡ 1 (mod p) then
c is a primitive root.

Algorithm 2 Finding primitive roots

Input: A prime p , all proper divisors {q1,q2, · · · ,qk} of φ(p−1) ;
Output: A primitive root g .
1: for n = 2, · · · , p−1 do
2: flag=1; t = n ;
3: for k = 2, · · · ,qm do
4: t ≡ t ×n (mod p) ;
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5: if t = 1 then
6: f lag = 0; terminate loop(k)
7: end if
8: end for
9: if f lag = 1 then

10: then g = n ; terminate loop(n)
11: end if
12: end for

Time Complexity Analysis of Algorithm 2. The main part of the algorithm con-
sists of two layers of loops. The outer loop needs to be executed at most p− 2 times,
and the most executed times of inner loop is equal to maximum prime factor, its possi-
ble value is p/2. Inside the loop the calculation is t ×n , then module p , that includes
one multiplication and one division. Therefore, during the execution of the algorithm,
the total number of multiplication and division operations is at most p(p− 1) times,
thus the time complexity is O(p2) .

4.2. Represented as the sum of a Lehmer number and a primitive root

For any n∈Zp , we should traverse the elements li (1 � i � k) in L , and calculate
the difference between n and li . Denote ai ≡ n− li (mod p) . Now, we only need to
check whether ai is a primitive root, if it is, then n can be represented, otherwise it
cannot be represented. We know that if g is a primitive root module p then all primitive
roots can be expressed as the set {g j|1 � j � p−1,( j, p−1) = 1} . So we can find all
numbers j that is coprime with p−1, then check whether ai is equal to g j .

Algorithm 3 Verification that any element n ∈ Zp is represented as the sum of a Lehmer
number and a primitive root

Input: A prime p , L(p) = {l1, l2, · · · , lk} , a primitive root g module p ;
Output: Whether n ∈ Zp can be represented.
1: for n = 0,1,2, · · · , p−1 do
2: flag=0
3: for l = l1, l2, · · · , lk do
4: a ≡ n− li (mod p) ;
5: for j = 1,2, · · · , p−2 do
6: if ( j, p−1) = 1 and g j ≡ a (mod p) then
7: flag=1 terminate loop(l)
8: end if
9: end for

10: if flag=0 then
11: output (n cannot be decomposed) terminate loop(n)
12: end if
13: end for
14: end for

Time Complexity Analysis of Algorithm 3. The execution process of the algo-
rithm includes three layers of loops. In the innermost layer, it is necessary to verify
whether j and p− 1 is coprime or not first, here, in order to judge the coprime, we
use the algorithm of rolling division, and the time complexity of rolling division is
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O(log p) , then we need to calculate g j , because the step size of j is 2, each cycle only
needs to multiply g2 on the basis of the previous calculation. Thus, the calculation g j

requires at most p−1
2 multiplications. Obviously, the time complexity of calculating g j

is much higher than that of judging coprime, so it can be considered that the number
of multiplications in the innermost layer is about p−1

2 . The maximum number of the

middle layer is the number of elements in Lehmer number set, which is about p−1
2 . The

maximum number of the outermost layer is p , so the whole number of multiplication

calculation times is (p−1)p2

4 , and the time complexity is O(p3) .

In view of the time complexity of O(p3) and the number of multiplications (p−1)p2

4 ,
we should use the tianhe-2 supercomputer, which has the fastest calculation speed
reaching 54.9 million billion times per second at present, that is 5.49× 1016 times
per second. If the prime is selected as the order of 1014 magnitude, the time required to
execute the above algorithm is 0.25×1042

5.49×1016 ≈ 4.55× 1024 seconds, to convert into years,

that is 4.55×1024

365×24×60×60 ≈ 1.44×1017 years.

Using algorithm 3, we have fully verified for primes below the order of 106 mag-
nitude, the algorithm runs on a computer being configured by inter core (TM) cpui5-
8250,1.8Gz, The calculation time is listed in Table 1 and all primes which cannot be
represented are given in Table 2.

Table 1: Calculation Time
Range of prime Time (second)

[2,5000] 452.976560
[5001,10000] 2760.886042
[10001,11000] 1123.306742
[11001,12000] 1169.932487

Table 2: Numbers which cannot be represented
Prime Lehmer numbers Primitive roots Number which cannot be expressed

3 [] [2] 0,1,2
5 [2,3] [2,3] 2,3
7 [] [3,5] 0,1,2,3,4,5,6
11 [3,4,7,8] [2,6,7,8] 7,8
19 [4,5,14,15] [2,3,10,13,14,15] 2,3,4,12,13
31 [12,13,18,19] [3,11,12,13,17,21,22,24] 7,13,14,17,18,19,20,27,28

For example: if we select p = 11, and subtract the elements in Lehmer number
set with 7 respectively, then we have 7−{3,4,7,8} = {4,3,0,10} module 11, each
number of {4,3,0,10} do not belong to primitive root module 11, so 7 cannot be ex-
pressed as the sum of a Lehmer number and a primitive root module 11. Conversely
if we subtract the elements in Lehmer set with 5 respectively. Conversely if p = 5,
we can get 5− {3,4,7,8} = {2,1,9,8} , because number 2 and 8 belong to primi-
tive root set, we have 5 = 3(Lehmer number)+2(primitive root), and 5 = 8(Lehmer
number)+8(primitive root).
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