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Lp BOUNDEDNESS FOR MAXIMAL SINGULAR INTEGRALS

WITH MIXED HOMOGENEITY ALONG COMPOUNDS CURVES

SHAOYONG HE ∗ AND YAN XU

(Communicated by N. Elezović)

Abstract. In this paper, we study the maximal truncated singular integral operators with rough
kernel along certain compound curves, which contain many classical model examples. We prove
the Lp boundedness of such maximal singular integral operators under very weak conditions on
the integral kernels both on the unit sphere and the radial direction. The main results essentially
improve and extend certain previous results.

1. Introduction and main results

Let Rn , n � 2, be the n -dimension Euclidean space and let Sn−1 be the unit sphere
in Rn equipped with the induced Lebesgue measure dσ . Now we give a function

F(x,t) :=
n
∑
i=1

x2
i t

αi where (x,t)∈Rn×(0,∞) , and αi � 1 for j = 1, · · · ,n. It is clear that

for each fixed x ∈ Rn , the function F(x,t) is a decreasing function in t > 0. Moreover,
there is a unique function ρ : Rn →R such that F(x,ρ(x)) = 1. Fabes and Rivière [10]
showed that (Rn,ρ) is a metric space which is often called the mixed homogeneity
space related to {α j}n

j=1 . For λ > 0, let Aλ be the diagonal n× n matrix, that is
Aλ = diag{λ α1 , · · · ,λ αn}. For a function ϕ : R+ → R+ , where R+ = (0,∞) , we shall
let Aϕ : Rn → Rn be the mapping

Aϕ(y) = Aϕ(ρ(y))y
′

where y′ = Aρ(y)−1y ∈ Sn−1.

Note that the change of variables related to the spaces (Rn,ρ) is given by the
transformation

x1 = ρα1 cosθ1 · · ·cosθn−2 cosθn−1,

x2 = ρα2 cosθ1 · · ·cosθn−2 sinθn−1,

· · · · · · · · · · · · · · · ,
xn−1 = ραn−1 cosθ1 sinθ2,

xn = ραn sinθ1.
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Therefore, it is easy to check that

dx = ρα−1J(x′)dρdσ(x′),

where ρα−1J(x′) is the Jacobian of the above transform and α = ∑n
j=1 α j. Further-

more, we can check that J(x′) ∈C∞(Sn−1) and there exists M > 0 such that

1 � J(x′) � M, x′ ∈ Sn−1.

We would like to mention that if α1 = α2 = · · · = αn = 1, then ρ(x) = |x| .
Let Ω be a real valued and measurable function on Rn with Ω ∈ L1(Sn−1) and

satisfy

Ω(Aλ x) = Ω(x),∀λ > 0, and
∫

Sn−1
Ω(y′)J(y′)dσ(y′) = 0. (1.1)

For a suitable function h on (0,∞) , we define the parabolic singular integral operator
Th by

Th( f )(x) = p.v.
∫

Rn

Ω(y)h(ρ(y))
ρ(y)α h(ρ(y)) f (x− y)dy. (1.2)

For h(t) ≡ 1, we denote Th = T . For α1 = α2 = · · · = αn = 1, the operator T
reduced to the classical singular integral operator, which has been received an increas-
ing interest in recent years, see e.g., [5, 6, 9, 11, 12, 15, 16, 18, 20] et al. For αi � 1,
i = 1, · · · ,n , Fabes and Rivière [10] first initiated the singular integrals with mixed ho-
mogeneity and established the Lp boundedness of these singular integral operators for
1 < p < ∞ when Ω ∈C1(Sn−1) . In 1976, Nagel, Rivière and Wainger [19] improved
the result of [10] to the case Ω ∈ L log+ L(Sn−1) . Inspired by the ideas in [12], Chen,
Ding and Fan [7] extended further the condition to the case Ω ∈H1(Sn−1) . To this end,
Chen, Wang and Yu proved that T is bounded on Lp(Rn) for 2β

2β−1 < p < 2β provided

that Ω ∈ Fβ (Sn−1) for some β > 1, where

Fβ (Sn−1) :=
{

Ω ∈ L1(Sn−1) : sup
ξ ′∈Sn−1

∫
Sn−1

|Ω(y′) |(log
1

|〈y′,ξ ′〉|
)β

dσ(y′) < +∞
}

.

We would like to remark that the function class Fβ (Sn−1) was originally introduced in
Walsh’s paper [22] and developed by Grafakos and Stefanov [15].

For the general operator Th , in the Euclidean setting, that is α1 = · · · = αn = 1,
Fefferman first studied the singular integral operator Th and established the Lp bound-
edness of Th for 1 < p < ∞ , provided that Ω ∈ Lip(Sn−1) and h ∈ L∞(R+) . Sub-
sequently, many works on the Lp boundedness for 1 < p < ∞ for Th were obtained
[9, 12, 13, 20]. For example, Duoandikoetxea and Francia [9] showed that Th is of type
(p, p) for 1 < p < ∞ , provided that Ω ∈ Lq(Sn−1) and h ∈ Δ2(R+) , where Δγ (R+)
denotes the set of all measurable functions h defined on R+ satisfying the condition

‖h‖Δγ := sup
R>0

(
R−1

∫ R

0
|h(r)|γdr

)1/γ
< ∞.
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It is easy to see that L∞ = Δ∞ � Δγ2 � Δγ1 for 0 < γ1 < γ2 < ∞. Fan and Pan [12]
extended the result of [9] to the singular integrals along polynomial mappings provided
that Ω ∈ H1(Sn−1) and h ∈ Δγ (R+) for γ > 1 with |1/p− 1/2| < min{1/2,1/γ ′} ,
where γ ′ denotes its dual exponent. In 2009, Fan and Sato[13] obtained that Th is
bounded on Lp(Rn) for some β > max{γ ′,2} with |1/p− 1/2|< min{1/γ ′,1/2}−
1/β , provided that h ∈ Δγ(R+) for γ > 1 and Ω satisfies the following size condition:

sup
ξ ′∈Sn−1

∫∫
Sn−1×Sn−1

|Ω(x′)Ω
(
y′
) |(log

1
|〈x′ − y′,ξ ′〉|

)β
dσ(x′)dσ(y′) < +∞. (1.3)

For the sake of simplicity, we denote

WFβ (Sn−1) := {Ω ∈ L1(Sn−1) : Ω satisfies (1.3)}.
It should be pointed out that the condition (1.3) was originally introduced by Fan and
Sato in more general form in [13]. Moreover, Fβ (Sn−1) ⊂WFβ (Sn−1) was proved for
n = 2.

Very recently, Liu and Wu [18] considered a family of operators which is broader
than Th . To be more precise, let PN be a non-negativepolynomial on R with PN(0)= 0,
where N is the degree of PN . For suitable mappings h and φ defined on R+ , they
studied the parabolic singular integral operators Th,Ω,P,φ along the compound curves
{APN(φ)(u) : u ∈ Rn} defined by

Th,Ω,P,φ ( f )(x) = p.v.
∫

Rn

Ω(y)h(ρ(y))
ρ(y)α h(ρ(y)) f (x−APN(φ)(y))dy. (1.4)

Clearly, Th is the special case of Th,Ω,P,φ for PN(t) = φ(t) = t . In particular, for
α1 = · · ·= αn = 1, APN(φ)(u) = PN(φ(|u|))u′. Moreover, they established the following
result.

THEOREM A. ([18]) Let PN(t) be a real polynomial on R of degree N satisfying
PN(0) = 0 with PN(t) > 0 for t �= 0 , and let φ ∈ ℑ , where ℑ is the set of functions φ
satisfying the following conditions:

1. φ is continuous strictly increasing function on (0,∞) and φ ∈ C1 ;

2. there exists Cφ , cφ > 0 such that tφ ′(t) � Cφ φ(t) and φ(2t) � cφ φ(t) for all
t > 0 .

Suppose that h ∈ Δγ(R+) for some γ > 1 and Ω ∈ WFβ (Sn−1) for β > max{γ ′,2}
and satisfies (1.1). Then Th,Ω,P,φ defined as in (1.4) is bound on Lp(Rn) for p satisfying
in |1/p−1/2|< 1/max{γ ′,2}−1/β .

As is well-known, the maximal truncated singular integrals is concerned to the
existence a.e. of pointwise limit. Our main purpose of this paper is to resolve this issue
by establishing the Lp boundedness of T ∗

h,Ω,P,φ , where

T ∗
h,Ω,P,φ ( f )(x) = sup

ε>0

∣∣∫
ρ(y)>ε

Ω(y′)
ρ(y)α h(ρ(y)) f (x−PN(φ(y))y′)dy

∣∣. (1.5)
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For ε > 0, denote by

T ε
h,Ω,P,φ ( f )(x) =

∫
ρ(y)>ε

Ω(y′)
ρ(y)α h(ρ(y)) f (x−PN(φ(y))y′)dy

the truncated singular integral operator associated with Th,Ω,P,φ . Such operator in the
Euclidean setting, have been studied for example in R. Fefferman [14], Duoandikoetxea
and Francia [9], Fan and Pan [12], where the Lp boundedness for 1 < p < ∞ under
different assumptions of Ω . It should be pointed that the authors in [1, 4] studied the
boundedness of maximal truncated singular integral operators defined by polynomial
mappings and rough kernels on product spaces.

We have the following results concerning T ∗
h,Ω,P,φ .

THEOREM 1.1. Let T ∗
h,Ω,P,φ be given by (1.5). Let PN(t) be a real polynomial

on R of degree N with PN(0) = 0 and PN(t) > 0 for t �= 0 , and let φ ∈ ℑ . Assume
that h ∈ Δγ for γ � 2 and Ω ∈ WFβ (Sn−1) for β > 3 and satisfies (1.1). Then for
γ ′(β−1)
γ ′+β−3 < p < β −1 there exists a constant C > 0 such that

‖T ∗
h,Ω,P,φ ( f )‖Lp � C‖ f‖Lp .

The bound C may depend on N,φ ,γ and β , but it is independent of the coefficients of
PN .

THEOREM 1.2. Let PN , φ be as in Theorem 1.1. Suppose that h ∈ Δγ for 1 <
γ < 2 and Ω ∈WFβ (Sn−1) for β > 3γ ′/2 satisfying (1.1). Then T ∗

h,Ω,P,φ defined as in

(1.5) is bound on Lp(Rn) for p satisfying 2β 2+β γ−γ2

2β 2−2β γ+γ2 < p < 2( β
γ ′ − 1

2)) . The bound is

independent of coefficients of PN ,but may depend on N,φ ,γ,β .

REMARK 1.1. It should be pointed out the introduce of the compound curves
PN(φ(t)) originates from Al-Salman’s works [1, 2]. In the current paper, our theorems
show that the Lp -boundedness of the maximal singular integral operator, whose kernel
has the additional roughness in the radial direction due to the presence of h , depends
on the index γ , which characterize the roughness of h . Moreover, that our results are
new even for the case α1 = · · ·αn = 1, the Euclidean setting.

REMARK 1.2. For any φ ∈ ℑ , it is easy to check that there exists a constant Bφ
such that φ(2r) � Bφ φ(r) for all r > 0 (see [2, 3, 17, 21]). We note that model examples
for functions φ ∈ ℑ are tσ (σ > 0) , t ln(1+t) ,t ln ln(e+t) and real-valued polynomials
P on R with positive coefficients and P(0) = 0 (see [2]).

The paper is organized as follows. In Section 2 we will introduce some notations
and give some technical lemmas. The proofs of our main results will be given in Section
3. Before proving the theorem, we want to say a few words. Although we can follow
the ideas from [9, 11, 12, 15, 16, 18], for instance, the Littlewood-Paley theory without
any modifications. We understand that the underlying space in this note is a special
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homogeneous group. Moreover, we find that the methods and techniques are not an
easy process of copy and paste, which may be more complex, such as the proof of
Lemmas 2.4 and 2.5.

Throughout this paper, the letter C , sometimes with certain parameters, will stand
for positive constants not necessarily the same one at each occurrence, but are indepen-
dent of the essential variables. In what follows, we let p′ denote the conjugate index of
p which satisfies 1

p + 1
p′ = 1 for p � 1. For a measure σ , we denote by |σ | the total

variation of σ .

2. Some notations and preliminary lemmas

In this section, we will establish some necessary notations and lemmas. We
first introduce some relevant notations and definitions. For given positive polynomial
PN(t) = ∑N

i=1 βit i , we let

(PN(t))αk =
Nαk

∑
i=1

ai,kt
i for k ∈ {1,2, · · · ,n}

for x,ξ ∈ Rn,

APN(φ)(x) ·ξ =
n

∑
k=1

(PN(φ (p(x))))αk x′k ·ξk =
n

∑
k=1

Nαk

∑
i=1

ai,kφ(p(x))ix′k ·ξk

where φ ∈ ℑ . We denote N = max{Nαk : 1 � k � n} and αi,k = 0 whenever i > Nαk.
Hence, we can write

APN(φ)(x) ·ξ =
n

∑
k=1

Nαk

∑
i=1

ai,kφ(p(x))ix′k ·ξk =
N

∑
i=1

(
Li (ξ )x′

)
φ(p(x))i,

where Li(ξ ) = (ai,1ξ1,ai,2ξ2, · · · ,ai,nξn) . For ν ∈ {0,1, · · · ,N} , we set

Qν(x) =
( ν

∑
i=1

ai,1φ(p(x))ix′1,
ν

∑
i=1

ai,2φ(p(x))ix′2, · · · ,
ν

∑
i=1

ai,nφ(p(x))ix′n
)
.

Therefore,

Qν (x) ·ξ =
ν

∑
i=1

(
Li (ξ )x′

)
φ(p(x))i.

Let Ej = {ξ ∈ Rn : 2 j < ρ(ξ ) � 2 j+1} . For any ν ∈ {1,2, · · · ,N} , we define the
measures {σν

r } and {|σν
r |} as follows,

σ̂ ν
j (ξ ) =

∫
Ej

Ω(u)
ρ(u)α h(ρ(u))e−iξ ·Qν(u)du,

∣̂∣∣σν
j

∣∣∣(ξ ) =
∫

Ej

|Ω(u)h(ρ(u))|
ρ(u)α e−iξ ·Qν (u)du. (2.1)
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It is easy to check that σ̂0
j (ξ ) = 0 and

Th,Ω,P,φ ( f )(x) = ∑
j∈Z

σN
j ∗ f (x).

Now we introduce some lemmas, which will play key roles in the proofs of our main
theorems.

LEMMA 2.1. [18] Let h ∈ Δγ for 1 < γ � ∞. Suppose that Ω ∈WFβ (Sn−1) for
some β > 0 and satisfies (1.1). Then for j ∈ Z , ν ∈ {1,2, . . . ,N} and ξ ∈ Rn , there
exists a C > 0 such that

1. sup
j∈Z

|σ̂ ν
j (ξ )| � C;

2. |σ̂ ν
j (ξ )− σ̂ ν−1

j (ξ )| � C|φ(2 j+1)
ν
Lν (ξ )|;

3. for
∣∣φ(2 j+1)νLν (ξ )

∣∣� 1 ,

|σ̂ ν
j (ξ )| � C

(
log
∣∣(φ(2 j+1))νLν (ξ )

∣∣)−β/γ ′
for 1 < γ � 2,

|σ̂ ν
j (ξ )| � C

(
log
∣∣φ(2 j+1)μLν(ξ )

∣∣)−β/2
for γ > 2.

Let |σν
j | be defined as in (2.1), we define the maximal function by

σ∗
ν f (x) = sup

j∈Z

∣∣∣∣σν
j

∣∣∗ f (x)
∣∣ . (2.2)

LEMMA 2.2. [18] Let h ∈ Δγ (R+) for some γ > 1 , and let Ω ∈ L1(Sn−1) . Then
the maximal function defined in (2.2) is bounded on Lp(Rn) for p > γ ′.

Clearly, Lemma 2.2 reveals that for 1 < γ < 2, the range of p is shrunk to p >
γ ′ > 2. It is natural to enlarge its range. We first recall the following lemma.

LEMMA 2.3. If ‖σ∗
ν f ‖Ls �C‖ f‖Ls and 1

2s =
∣∣∣ 12 − 1

q

∣∣∣ , then for arbitrary function

sequence {g j} we have∥∥∥∥∥∥
(

∑
j∈Z

∣∣σν
j ∗ g j

∣∣2) 1
2

∥∥∥∥∥∥
Lq

� C

∥∥∥∥∥∥
(

∑
j∈Z

∣∣g j
∣∣2) 1

2

∥∥∥∥∥∥
Lq

.

LEMMA 2.4. Let h ∈ Δγ(R+) for 1 < γ < 2 . Suppose that Ω ∈WFβ (Sn−1) for
β > 3γ ′/2 . Then for ν ∈ {0,1, · · · ,N}, the operator σ∗

ν satisfies

‖σ∗
ν f‖Lp � C‖ f‖Lp (2.3)

for β+γ ′
β < p < β+γ ′

γ ′ .
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Proof. We prove this lemma by induction on ν .
Case 1. It is easy to check that σ∗

0 ( f )(x) � C| f (x)| , which yields the estimate
(2.3) for ν = 0.

Case 2. Let m ∈ {0,1, · · · ,N} and suppose that (2.3) holds for ν = m− 1. We
will prove (2.3) for ν = m. Let ψ ∈ S(Rn) such that ψ(t)≡ 1 for |t|� 1 and ψ(t)≡ 0
for |t| > 2. Define the measures {τν

j } by

τ̂ν
j (ξ ) = σ̂ ν

j (ξ )−ψ(|φ(2 j+1)νLν(ξ )|)σ̂ ν−1
j (ξ )

for ν ∈ {1, · · · ,N} . By Lemma 2.1, we obtain that∣∣∣τ̂ν
j (ξ )

∣∣∣� C min{1,
(
log
∣∣∣(φ(2 j+1))

ν
Lν(ξ )

∣∣∣)−β/γ ′}. (2.4)

Obviously, we have

σ∗
m f (x) � sup

j∈Z

∣∣τm
j ∗ | f |(x)∣∣+CM(

σ∗
m−1 f

)
(x)

�
(
∑
j∈Z

|τm
j ∗ f (x)|2) 1

2 +CM(
σ∗

m−1 f
)
(x),

where M is the Hardy-Littlewood maximal operator. It follows from our assumption
and the Lp mapping properties of M that

‖M(
σ∗

m−1 f
)
(x)‖Lp � C‖ f‖Lp

for β+γ ′
β < p < β+γ ′

γ ′ . Thus, it suffices to prove

‖(∑
j∈Z

|τm
j ∗ f (x)|2) 1

2 ‖Lp � C‖ f‖Lp (2.5)

for β+γ ′
β < p < β+γ ′

γ ′ . By the well-known Rademacher’s function, (2.5) follows from
the following lemma. �

LEMMA 2.5. Let Vm
ε ( f )(x) = ∑

j∈Z
ε j

(
τm

j ∗ f (x)
)

with ε = {εk} , ε j = 1 or −1 .

Then

‖Vm
ε f ‖Lp � C‖ f‖Lp

for β+γ ′
β < p < β+γ ′

γ ′ .

Proof. For any ν ∈ {1,2, · · · ,N} , we choose a sequence of nonnegative functions
{Ψk}k∈Z in C∞

0 (R+) such that

1. supp(Ψk) ⊂
[
φ(2k+1)−ν

,φ(2k−1)−ν
]
;
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2. 0 � Ψk � 1, ∑k∈Z Ψk(t)2 = 1,
∣∣∣(d/dt) jΨk

∣∣∣ � C|t|− j , for all t > 0 and j =
1,2, · · · .

Define the operator Sk by

Ŝk( f )(ξ ) = Ψk (|Lν(ξ )|) f̂ (ξ ).

Then

Vm
ε ( f )(x) = ∑

j∈Z

ε j
(
τm

j ∗ f (ξ )
)

= ∑
j∈Z

ε j

(
τm

j ∗ ∑
k∈Z

S j+kS j+k f (x)

)
= ∑

k∈Z
∑
j∈Z

ε jS j+k
(
τm

j ∗ S j+k f
)
(x)

= ∑
k∈Z

Vm
k ( f )(x). (2.6)

By the Littlewood-Paley theory and Plancherel’s theorem, we have

‖Vm
k ( f )‖L2 � C

∥∥(∑
j∈Z

|τm
j ∗ S j+k f |2) 1

2
∥∥

L2

� C ∑
j∈Z

∫
Λ j+k

|τ̂m
j (ξ )|2| f̂ (ξ )|2dξ ,

where
Λ j+k = {ξ ∈ Rn : φ(2 j+k+1)−ν � |Lν (ξ )| � φ(2 j+k−1)−ν}.

By (2.4), we get

‖Vm
k ( f )‖L2 � CBk‖ f‖L2 , (2.7)

where

Bk =

⎧⎪⎪⎨⎪⎪⎩
|k|−β/γ ′ , k � −2

1, −2 < k � 2

B(2−k)ν
φ , k > 2.

This together with (2.6) yields

‖Vm
ε ( f )‖L2 � C‖ f‖L2 .

Hence,

‖(∑
j∈Z

|τm
j ∗ f (x)|2) 1

2 ‖L2 � C‖ f‖L2 .



Lp BOUNDEDNESS FOR MAXIMAL SINGULAR INTEGRALS 1343

Applying Lemma 2.3 with s = 2, and q = q0 = 4, we obtain that

‖Vm
k f‖Lq0 � C‖(∑

j∈Z

|τm
j ∗ S j+k f |2) 1

2 ‖Lq0 � C‖(∑
j∈Z

S j+k f |2) 1
2 ‖ � C‖ f‖Lq0 , (2.8)

where the middle inequality is a application of Lemma 2.3 and the first and last inequal-
ities follow from the Littlewood-Paley theorem.

Interpolating between estimates (2.7) and (2.8) we obtain that

‖Vm
k f‖Lp � CB

θp
k ‖ f‖Lp ,

where 1/p = θp/2+(1− θp)/q0 . Observe that Vm
ε = ∑kV

m
k maps Lp → Lp for all

p ’s for which p′1 < p < p1, where p1 = 4β
β+γ ′ . Then

‖(∑
j∈Z

|τm
j ∗ f (x)|2) 1

2 ‖Lp1 � C‖ f‖Lp1 , for p ∈ (p′1, p1).

Now continuing this way, together with bootstrapping argument, we can obtain ulti-
mately that

‖Vm
ε f‖Lp � C‖ f‖Lp , for

β + γ ′

β
< p <

β + γ ′

γ ′
.

This completes the proof of Lemma 2.5. �
Now we take a radial Schwartz function ϕ ∈ S(Rn) such that ϕ(t)≡ 1 for |t|� 1

and ϕ(t) ≡ 0 for |t| > 2. Define the measure {ων
j } by

ω̂ν
j (ξ ) = σ̂ ν

j (ξ )Πν(ξ )− σ̂ ν−1
j (ξ )Πν−1(ξ ) (2.9)

for ν ∈ {1,2, · · · ,N} , where Πν(ξ ) = ΠN
k=ν+1ϕ(φ(2 j+1)k

Lk(ξ )) . It is easy to see that

σN
j =

N
∑
ν=1

ων
j . (2.10)

LEMMA 2.6. [16] For j ∈ Z and ν ∈ {1,2, · · · ,N} , there exists a constant C >
0 , which is independent of the coefficients of PN , such that

1.

|ω̂ν
j (ξ )| � C|φ(2 j+1)

ν
Lν (ξ )|;

2. for
∣∣φ(2 j+1)νLν (ξ )

∣∣� 1 ,

|ω̂ν
j (ξ )| � C

(
log
∣∣(φ(2 j+1))νLν(ξ )

∣∣)−β/γ ′
for 1 < γ � 2,

|ω̂ν
j (ξ )(ξ )| � C

(
log
∣∣φ(2 j+1)μLν (ξ )

∣∣)−β/2
for γ > 2.
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For any fixed ν ∈ {1,2, · · · ,N} , the operator ω∗
ν is defined by

ω∗
ν f (x) = sup

j∈Z

∣∣|ων
j | ∗ f (x)

∣∣
Applying Lemmas 2.2 and 2.4, it is easy to establish the following lemma.

LEMMA 2.7. Let Ω ∈WFβ (Sn−1) , h ∈ Δγ (R+) . ω∗
ν satisfies

‖ω∗
ν f‖Lp � C‖ f‖Lp , p > γ ′.

Furthermore, when 1 < γ < 2 , if β > 3γ ′/2 , then we have

‖ω∗
ν f‖Lp � C‖ f‖Lp , p ∈

(
β + γ ′

β
,

β + γ ′

γ ′

)
.

Proof. By the definition of ων
j in (2.9), we have

wν
j = σν

j ∗ϕν −σν−1
j ∗ϕν−1,

where ϕ̂ν(ξ ) = Πν(ξ ) . As ϕν ∈ S(Rn) , there holds∣∣|ων
j | ∗ f (x)

∣∣� Cσ∗
ν ∗M f (x)+Cσ∗

ν−1 ∗M f (x),

where M is the Hardy-Littlewood maximal operator. By Lemmas 2.2 and 2.4, Lemma
2.7 is proved. �

3. Proofs of main results

Proof of Theorm 1.1. For any ε > 0, there exists an integer k such that 2k−1 �
ε < 2k . Then by (2.10)

|Tε
h,Ω,P,φ f (x)| � ∣∣∫

ε�ρ(y)<2k

Ω(y)
ρ(y)α h(ρ(y)) f (x−APN(φ)(y))dy

∣∣+ sup
k∈Z

∣∣∑
j�k

σν
j ∗ f (x)

∣∣
� σ∗

ν (| f |)(x)+
N
∑
ν=1

sup
k∈Z

∣∣∑
j�k

ων
j ∗ f (x)

∣∣.
By Lemma 2.2, it suffices to obtain that∥∥∥∥∥sup

k∈Z
| ∑

j�k

wν
j ∗ f |

∥∥∥∥∥
Lp

� C‖ f‖Lp

for γ ′(β−1)
γ ′+β−3 < p < β − 1. Take a radial function Φ ∈ S(R) such that Φ(ξ ) = 1 when

|ξ | < 1 and Φ(ξ ) = 0 when |ξ | > Bφ . Let Φ̂k(ξ ) = Φ(φ(2k)ν |Lν (ξ )|). Then

∑
j�k

ων
j ∗ f (x) = Φk ∗ ∑

j∈Z

wν
j ∗ f (x)−Φk ∗

k−1

∑
j=−∞

wν
j ∗ f (x)+ (δ −Φk)∗ ∑

j�k

ων
j ∗ f (x)

=: J1,k f (x)+ J2,k f (x)+ J3,k f (x),
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where δ is the Dirac delta function. Thus,

sup
k∈Z

∣∣∣∣∑
j�k

ων
j ∗ f (x)

∣∣∣∣� sup
k∈Z

|J1,k f (x)|+ sup
k∈Z

|J2,k f (x)|+ sup
k∈Z

|J3,k f (x)|.

We obtain from Theorem A that∥∥∥∥ sup
k∈Z

|J1,k f |
∥∥∥∥

Lp
� C‖M(∑

j∈Z

wν
j ∗ f )‖Lp � C‖ f‖Lp (3.1)

for β
β−1 < p < β . Next, we estimate supk∈Z |J2,k f | . It holds that

sup
k∈Z

|J2,k f (x)| = sup
k∈Z

∣∣∣∣∣Φk ∗
+∞

∑
j=1

ων
k− j ∗ f (x)

∣∣∣∣∣
�

+∞

∑
j=1

sup
k∈Z

∣∣∣Φk ∗ων
k− j ∗ f (x)

∣∣∣
=:

+∞

∑
j=1

Hν
j f (x).

By Lemma 2.7, we have ∥∥Hν
j f
∥∥

Lp � C‖ f‖Lp , (3.2)

for each p > γ ′.
On the other hand, one can easily check that

Hν
j f (x) � (∑

k∈Z

|Φk ∗ων
k− j ∗ f (x)|2) 1

2 .

Hence, by the Plancherel’s theorem, we have

∥∥Hν
j f
∥∥2

L2 � C

∥∥∥∥∥∥
(

∑
k∈Z

∣∣∣Φk ∗ων
k− j ∗ f

∣∣∣2) 1
2

∥∥∥∥∥∥
2

L2

� C ∑
k∈Z

∫
|(φ(2k))νLν (ξ )|<Bφ

|ω̂ν
k− j(ξ )|2| f̂ (ξ )|2dξ

� C ∑
k∈Z

∫
Rn

|ω̂ν
k− j(ξ )|2| f̂ (ξ )|2χ{|(φ(2k))νLν (ξ )|<Bφ}dξ

� C sup
ξ∈Rn

∑
k∈Z

|φ(2k− j+1)νLν (ξ )|2χ{|(φ(2k))νLν (ξ )|<Bφ}‖ f‖2
L2

� CBφ
2(− j+1)‖ f‖2

L2 ,

where the last inequality is obtained by the properties of lacunary sequence. So∥∥Hν
j f
∥∥

L2 � CBφ
− j+1 ‖ f‖L2 . (3.3)
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By interpolation theorem between (3.2) and (3.3), we find a positive number θ2 such
that ∥∥Hν

j f
∥∥

Lp � CBφ
− jθ2 ‖ f‖Lp

for any p > γ ′ . Thus, ∥∥∥∥sup
k∈Z

|J2,k f |
∥∥∥∥

Lp

� C‖ f‖Lp ,

for p > γ ′. Finally, we estimate supk∈Z |J3,k f | . We have

sup
k∈Z

∣∣∣∣∣(δ −Φk)∗ ∑
j�k

ων
j ∗ f (x)

∣∣∣∣∣� ∑
j�0

sup
k∈Z

∣∣∣(δ −Φk)∗ων
j+k ∗ f (x)

∣∣∣ := ∑
j�0

Λ j( f )(x).

(3.4)

By Lemma 2.7, we obtain ∥∥Λ j( f )
∥∥

p � C‖ω∗
ν‖p � C‖ f‖p (3.5)

for p > γ ′ . Also, we have

‖Λ j( f )‖2
2

� C

∥∥∥∥∥∥
(

∑
k∈Z

∣∣∣(δ −Φk)∗ων
k+ j ∗ f

∣∣∣2) 1
2

∥∥∥∥∥∥
2

2

� C ∑
k∈Z

∫
|Lν (ξ )|�(φ(2k))−ν

∣∣∣ω̂ν
k+ j(ξ ) f̂ (ξ )

∣∣∣2 dξ

� C ∑
k∈Z

+∞

∑
i=0

∫
(φ(2k−i))−ν�|Lν (ξ )|�(φ(2k−i−1))−ν

∣∣∣ω̂ν
k+ j(ξ ) f̂ (ξ )

∣∣∣2 dξ

� C ∑
k∈Z

+∞

∑
i=0

∫
(φ(2k−i))−ν�|Lν (ξ )|�(φ(2k−i−1))−ν

(
log
∣∣∣(φ(2k+ j+1))νLν(ξ )

∣∣∣)−β ∣∣ f̂ (ξ )
∣∣2 dξ

� C ∑
k∈Z

+∞

∑
i=0

∫
(φ(2k−i))−ν�|Lν (ξ )|�(φ(2k−i−1))−ν

(
log
∣∣∣(φ(2k−i−1))−ν (φ(2k+ j+1))ν

∣∣∣)−β

× ∣∣ f̂ (ξ )
∣∣2 dξ

� C ∑
k∈Z

+∞

∑
i=0

∫
(φ(2k−i))−ν�|Lν (ξ )|�(φ(2k−i−1))−ν

(
logBφ

(i+ j+2)ν
)−β ∣∣ f̂ (ξ )

∣∣2 dξ

� C ∑
k∈Z

+∞

∑
i=0

(
1

i+ j +2

)β ∫
(φ(2k+i))−ν�|Lν (ξ )|�(φ(2k+i−1))−ν

∣∣ f̂ (ξ )
∣∣2 dξ

� C j1−β‖ f‖2
2.
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Then ∥∥Λ j( f )
∥∥

2 � C j
1−β

2 ‖ f‖2. (3.6)

It follows from (3.4) and interpolation between (3.5) and (3.6) that∥∥∥∥sup
k∈Z

|J3,k f |
∥∥∥∥

Lp

� C‖ f‖Lp

for any β > 3, p ∈ ( γ ′(β−1)
γ ′+β−3 ,β −1). This proves Theorem 1.1. �

Proof of Theorm 1.2. Following the same arguments as in Theorem 1.1,

|Tε
h,Ω,P,φ f (x)| � ∣∣∫

ε�ρ(y)<2k

Ω(y)
ρ(y)α h(ρ(y)) f (x−APN(φ)(y))dy

∣∣+ sup
k∈Z

∣∣∑
j�k

σν
j ∗ f (x)

∣∣
� σ∗

ν (| f |)(x)+
N
∑
ν=1

sup
k∈Z

∣∣∑
j�k

ων
j ∗ f (x)

∣∣.
By Lemma 2.2, it suffices to obtain that∥∥∥∥∥sup

k∈Z
| ∑

j�k

wν
j ∗ f |

∥∥∥∥∥
Lp

� C‖ f‖Lp

for 2β 2+β γ−γ2

2β 2−2β γ+γ2 < p < 2( β
γ ′ − 1

2 )) . Take a radial function Φ ∈S(R) such that Φ(ξ ) = 1

when |ξ | < 1 and Φ(ξ ) = 0 when |ξ | > Bφ . Let Φ̂k(ξ ) = Φ(φ(2k)ν |Lν (ξ )|). As the
proof of Theorem 1.1,

∑
j�k

ων
j ∗ f (x) = Φk ∗ ∑

j∈Z

wν
j ∗ f (x)−Φk ∗

k−1

∑
j=−∞

wν
j ∗ f (x)+ (δ −Φk)∗ ∑

j�k

ων
j ∗ f (x)

=: J1,k f (x)+ J2,k f (x)+ J3,k f (x),

where δ is the Dirac delta function. Then

sup
k∈Z

∣∣∣∣∑
j�k

ων
j ∗ f (x)

∣∣∣∣� sup
k∈Z

|J1,k f (x)|+ sup
k∈Z

|J2,k f (x)|+ sup
k∈Z

|J3,k f (x)|.

By Theorem A, ∥∥∥∥ sup
k∈Z

|J1,k f |
∥∥∥∥

Lp
� C‖M(∑

j∈Z

wν
j ∗ f )‖Lp � C‖ f‖Lp (3.7)
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for | 1p − 1
2 | < 1

γ ′ − 1
β . For the second term, it holds that

sup
k∈Z

|J2,k f (x)| = sup
k∈Z

∣∣∣∣∣Φk ∗
+∞

∑
j=1

ων
k− j ∗ f (x)

∣∣∣∣∣
�

+∞

∑
j=1

sup
k∈Z

∣∣∣Φk ∗ων
k− j ∗ f (x)

∣∣∣
=:

+∞

∑
j=1

Hν
j f (x).

From Lemma 2.7, we have ∥∥Hν
j f
∥∥

Lp � C‖ f‖Lp , (3.8)

for p ∈ (β+γ ′
β , β+γ ′

γ ′ ) . By interpolation theorem between (3.8) and (3.3), there exists a

positive number θ ′
2 such that∥∥Hν

j f
∥∥

Lp � CBφ
− jθ ′

2 ‖ f‖Lp

for any p ∈ (β+γ ′
β , β+γ ′

γ ′ ) . Hence,∥∥∥∥sup
k∈Z

|J2,k f |
∥∥∥∥

Lp

� C‖ f‖Lp ,

for p ∈ (β+γ ′
β , β+γ ′

γ ′ ) . For the third term supk∈Z |J3,k f | , we have

sup
k∈Z

∣∣∣∣∣(δ −Φk)∗ ∑
j�k

ων
j ∗ f (x)

∣∣∣∣∣� ∑
j�0

sup
k∈Z

∣∣∣(δ −Φk)∗ων
j+k ∗ f (x)

∣∣∣ := ∑
j�0

Λ j( f )(x).

(3.9)

By Lemma 2.7, we obtain ∥∥Λ j( f )
∥∥

p � C‖ω∗
ν‖p � C‖ f‖p (3.10)

for p ∈ (β+γ ′
β , β+γ ′

γ ′ ) . Moreover,

‖Λ j( f )‖2
2

� C

∥∥∥∥∥∥
(

∑
k∈Z

∣∣∣(δ −Φk)∗ων
k+ j ∗ f

∣∣∣2) 1
2

∥∥∥∥∥∥
2

2

� C ∑
k∈Z

∫
|Lν (ξ )|�(φ(2k))−ν

∣∣∣ω̂ν
k+ j(ξ ) f̂ (ξ )

∣∣∣2 dξ
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� C ∑
k∈Z

+∞

∑
i=0

∫
(φ(2k−i))−ν�|Lν (ξ )|�(φ(2k−i−1))−ν

∣∣∣ω̂ν
k+ j(ξ ) f̂ (ξ )

∣∣∣2 dξ

� C ∑
k∈Z

+∞

∑
i=0

∫
(φ(2k−i))−ν�|Lν (ξ )|�(φ(2k−i−1))−ν

(
log
∣∣∣(φ(2k+ j+1))νLν (ξ )

∣∣∣)− 2β
γ′ ∣∣ f̂ (ξ )

∣∣2 dξ

� C ∑
k∈Z

+∞

∑
i=0

∫
(φ(2k−i))−ν�|Lν (ξ )|�(φ(2k−i−1))−ν

(
log
∣∣∣(φ(2k−i−1))−ν(φ(2k+ j+1))ν

∣∣∣)− 2β
γ′

× ∣∣ f̂ (ξ )
∣∣2 dξ

� C ∑
k∈Z

+∞

∑
i=0

∫
(φ(2k−i))−ν�|Lν (ξ )|�(φ(2k−i−1))−ν

(
logBφ

(i+ j+2)ν
)− 2β

γ′ ∣∣ f̂ (ξ )
∣∣2 dξ

� C ∑
k∈Z

+∞

∑
i=0

(
1

i+ j +2

) 2β
γ′ ∫

(φ(2k+i))−ν�|Lν (ξ )|�(φ(2k+i−1))−ν

∣∣ f̂ (ξ )
∣∣2 dξ

� C j
1− 2β

γ′ ‖ f‖2
2.

Then ∥∥Λ j( f )
∥∥

2 � C j
1−β/γ′

2 ‖ f‖2. (3.11)

It follows from (3.9) and interpolation between (3.10) and (3.11) that∥∥∥∥sup
k∈Z

|J3,k f |
∥∥∥∥

Lp

� C‖ f‖Lp

for β > 3γ ′/2, 2β 2+β γ−γ2

2β 2−2β γ+γ2 < p < 2( β
γ ′ − 1

2)) . This proves Theorem 1.1. �
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