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Abstract. In this paper, we are interested in generalized numerical radius inequalities for the
off-diagonal part of a positive semidefinite block matrix. These inequalities produce a new set of
inequalities for products and sums of matrices and some inequalities related to sectorial matrices.

1. Introduction

Let Mn(C) denote the space of n×n complex matrices. A Hermtian matrix A ∈
Mn(C) is called positive semidefinite if 〈Ax,x〉 � 0 for all x ∈ Cn . We write A � 0 to
mean that A is positive semidefinite. For Hermitian matrices A,B ∈ Mn(C), we write
A � B to mean that A−B is positive semidefinite. A real-valued function f (t) on [0,∞)
is called matrix monotone if for all A,B ∈ Mn(C), A � B � 0 implies f (A) � f (B).

Due to the importance of comparing matrices in many areas of mathematics, in-
cluding operator theory, mathematical analysis, and mathematical physics, this topic
has been the focus of the current study. However, as the above order is a partial order
on Mn(C) , researchers have referred to numerical values related to elements in Mn(C).
Although these comparisons are weaker than the partial order mentioned before, they
nonetheless show their use and value.

A norm N(.) on Mn(C) is said to be unitarily invariant if it has the basic property
N(UAV ) = N(A), where A∈ Mn(C) and U,V ∈Mn(C) are unitary, it is called weakly
unitarily invariant if N(UAU∗) = N(A), where A ∈ Mn(C) and U ∈ Mn(C) is unitary,
and it is called normalized if N(diag(1,0, . . . ,0)) = 1. Examples of such norms are the
usual operator norm defined by ‖A‖ = max

‖x‖=1
‖Ax‖ = s1(A) and the Schatten p -norms

defined by ‖A‖p =
(

∑n
j=1 sp

j (A)
) 1

p
, p � 1, where s1(A) � s2(A) � . . . � sn(A) are

the singular values of A , that is, the eigenvalues of the positive semidefinite matrix
|A| = (A∗A)1/2 , arranged in decreasing order and repeated according to multiplicity.
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For A ∈ Mn(C), the numerical range of A is defined by

W (A) = {〈Ax,x〉 : x ∈ C
n,‖x‖ = 1} .

Notice that A � 0 if and only if W (A) ⊆ [0,∞).
The numerical radius of A is defined by

w(A) = max{|〈Ax,x〉| : x ∈ C
n,‖x‖ = 1} .

It is well known that w(.) defines a norm on Mn(C) . In fact, for every A∈ Mn(C), we
have

w(A) � ‖A‖ � 2w(A),

which indicates that the numerical radius and the operator norm are equivalent. The
norm w(.) is self-adjoint and weakly unitarily invariant, but it is not unitarily invariant.

A useful formula for the numerical radius of a matrix A ∈ Mn(C) was given in
[17] as follows:

w(A) = max
θ∈R

∥∥∥Re(eiθ A)
∥∥∥ .

Abu-Omar and Kittaneh [1] defined the generalized numerical radius induced by
a norm N(.) on Mn(C)) by

wN(A) = max
θ∈R

N
(
Re(eiθ A)

)
for every A ∈ Mn(C) .

Several generalizations of the numerical radius have been discussed in [3], [4], [7],
[10], [16], [19], and references therein.

One of the topics that has attracted the attention of researchers in recent years is
proving matrix inequalities involving positive semidefinite block matrices of the form

T =
[

A B
B∗ C

]
, where A,B,C ∈ Mn(C).

An estimation of the numerical radius of the off-diagonal part of T was given by
Burqan and Al-Saafin [12] as follows:

w(B) � 1
2
‖A+C‖ . (1.1)

Burqan and Abu-Rahma [13] generalized the inequality (1.1) as follows:

wr(B) � 1
2
‖Ar +Cr‖ for r � 1. (1.2)

An interesting generalization of the inequality (1.2) introduced by Yang [18] is as
follows:

f (w(B)) � 1
2
‖ f (A)+ f (C)‖ ,
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where f is an increasing geometrically convex function on [0,∞) .
In an attempt to extend the definition of positive definite matrices, sectorial matri-

ces were established in [6]. For α ∈ [0, π
2 ), let

Sα = {z ∈ C : Re(z) > 0, |Im(z)| � tan(α)Re(z)} .

A matrix A ∈ Mn(C) whose numerical range is a subset of a sector Sα , for some α ∈
[0, π

2 ), is called a sectorial matrix. In this case, the smallest possible such α is called the
index of sectoriality. Notice that a sectorial matrix A with α = 0 is a positive definite
matrix. Alakhrass and Sababheh [2] have presented a special treatment of sectorial
matrices under Lieb functions. This treatment has produced several inequalities for the
blocks of sectorial matrices.

In this paper, we are interested in establishing new upper bounds for wN(.) of the
off-diagonal part of the positive semidefinite block matrix T . These bounds produce a
new set of inequalities related to the generalized numerical radius, including products
and sums of matrices that imply many well known results in the literature.

2. Lemmas

The following lemmas are essential to obtain and prove our results. The first
lemma follows from the fact that A +C � ±(B+B∗) for any positive semidefinite

block matrix of the form

[
A B
B∗ C

]
. This lemma was proved in [11]. The second lemma

is a norm inequality for matrix monotone functions and can be found in [14]. The third
lemma has been proved in [5]. The fourth lemma can be found in [15], and the fifth
lemma is a new characterization of the sectorial matrices in terms of certain positive
semidefinite blocks (see [2]).

LEMMA 2.1. Let A,B,C ∈ Mn(C) be such that

[
A B
B∗ C

]
� 0 and let N(.) be a

unitarily invariant norm on Mn(C) . Then

N(B+B∗) � N(A+C).

LEMMA 2.2. Let f (t) be a nonnegative matrix monotone function on [0,∞) and
let N(.) be a normalized unitarily invariant norm on Mn(C) . Then for every A ∈
Mn(C) ,

f (N(A)) � N ( f (|A|)) .

LEMMA 2.3. Let f (t) be a nonnegative matrix monotone function on [0,∞) and
let N(.) be a unitarily invariant norm on Mn(C) . Then for every positive semidefinite
A,B ∈ Mn(C) ,

N( f (A+B) � N( f (A)+ f (B)).
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LEMMA 2.4. Let A ∈ Mn(C) and 0 < ν < 1 . Then[
|A|2ν A

A∗ |A∗|2(1−ν)

]
� 0.

LEMMA 2.5. Let A ∈ Mn(C) and α ∈ [0, π
2 ). Then the following statements are

equivalent:

i. W (A) ⊂ Sα .

ii.

[
sec(α)Re(A) A

A∗ sec(α)Re(A)

]
� 0.

3. Main results

At the beginning of this section, we introduce an estimation for the generalized
numerical radius of the off-diagonal part of the positive semidefinite block matrix T.

THEOREM 3.1. Let A,B,C ∈ Mn(C) be such that

[
A B
B∗ C

]
� 0 and let f (t) be a

nonnegative matrix monotone function on [0,∞) . Then

f (2wN(B)) � N ( f (A)+ f (C))

for every normalized unitarily invariant norm N(.).

Proof. Since

[
A B
B∗ C

]
� 0, we have

[
A eiθ B

e−iθ B∗ C

]
� 0 for all θ ∈ R. In fact, if

U =
[

I 0
0 eiθ I

]
, then U is unitary and

[
A eiθ B

e−iθ B∗ C

]
= U

[
A B
B∗ C

]
U∗ � 0.

Now, by Lemma 2.1, we have

N(eiθ B+ e−iθB∗) � N(A+C).

Since f is a matrix monotone function, we have

f
(
2N(Re(eiθ B))

)
� f (N(A+C)) ,

and so by Lemma 2.2, it follows that

f
(
2N(Re(eiθ B))

)
� N( f (A+C)).
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Thus, in view of Lemma 2.3, we have

f (2wN(B)) = f

(
2max

θ∈R
N(Re(eiθ B))

)

= max
θ∈R

f
(
2N(Re(eiθ B))

)
� N( f (A+C)),

� N( f (A)+ f (C)).

This completes the proof. �

Using the fact that if

[
A B
B∗ C

]
� 0, then

[
XAX∗ XBY

Y ∗B∗X∗ Y ∗CY

]
=

[
X 0
0 Y ∗

][
A B
B∗ C

][
X 0
0 Y ∗

]∗
� 0

for all X ,Y ∈ Mn(C) , we have the following corollary.

COROLLARY 3.2. Let A,B,C,X ,Y ∈ Mn(C) be such that

[
A B
B∗ C

]
� 0 and let

f (t) be a nonnegative matrix monotone function on [0,∞) . Then

f (2wN(XBY )) � N ( f (XAX∗)+ f (Y ∗CY ))

for every normalized unitarily invariant norm N(.).

4. Inequalities for sums and products of matrices

In this section, we introduce several new inequalities for the generalized numerical
radii associated with products and sums of matrices.

Using the fact

[
A A1/2B1/2

B1/2A1/2 B

]
=

[
A1/2 0
B1/2 0

][
A1/2 0
B1/2 0

]∗
� 0,

Theorem 3.1 produces the following result.

THEOREM 4.1. Let A,B ∈ Mn(C) be positive semidefinite matrices and let f (t)
be a nonnegative matrix monotone function on [0,∞) . Then

f (2wN(A1/2B1/2)) � N ( f (A)+ f (B))

for every normalized unitarily invariant norm N(.).
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In particular, for f (t) = t and N(.) = ‖.‖ , we have

w(A1/2B1/2) � 1
2
‖A+B‖ ,

which can be also concluded from the arithemetic-geometric mean inequality for ma-
trices (see, e.g., [8]).

Since the sum of positive semidefinite matrices is also positive semidefinite, it
follows by Lemma 2.4 that[

|A|2ν + |B|2ν A+B

A∗ +B∗ |A∗|2(1−ν) + |B∗|2(1−ν)

]
� 0.

Thus, Theorem 3.1 yields the following result.

THEOREM 4.2. Let A,B ∈ Mn(C) be positive semidefinite and let f (t) be a non-
negative matrix monotone function on [0,∞) . Then

f (2wN(A+B)) � N
(

f (|A|2ν + |B|2ν)+ f (|A∗|2(1−ν) + |B∗|2(1−ν))
)

for 0 < ν < 1 and every normalized unitarily invariant norm N(.).

In the following theorem, we establish a generalized numerical radius inequal-
ity for matrices that produces a new inequality for the generalized numerical radii of
commutators.

THEOREM 4.3. Let A,B,C,D,X ,Y ∈ Mn(C) and let f (t) be a nonnegative ma-
trix monotone function on [0,∞) . Then

f (2wN(X(AC∗ +BD∗)Y )) � N ( f (X(AA∗ +BB∗)X∗)+ f (Y ∗(CC∗ +DD∗)Y ))

for every normalized unitarily invariant norm N(.).

Proof. We know that[
AA∗ +BB∗ AC∗ +BD∗

CA∗ +DB∗ CC∗ +DD∗

]
=

[
A B
C D

][
A B
C D

]∗
� 0

for all A,B,C,D ∈ Mn(C) . So, by Corollary 3.2, we have

f (2wN(X(AC∗ +BD∗)Y )) � N ( f (X(AA∗ +BB∗)X∗)+ f (Y ∗(CC∗ +DD∗)Y ))

for every X ,Y ∈ Mn(C) and every normalized unitarily invariant norm N(.). �

By letting X =Y = I , C∗ = B and D∗ =±A in Theorem 4.3, we get the following
generalized numerical radius inequality for commutators

f (2wN((AB±BA) � N ( f ((AA∗ +BB∗)+ f (B∗B+A∗A)) .
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It is known (see, e.g., [9, p. 120]) that a nonnegative function f (t) on [0,∞) is
matrix monotone if and only if it is matrix concave. Consequently, for such a function,
we have

f (γX) � γ f (X) (4.1)

for all X � 0 and γ � 1.

In view of Lemma 2.5 and the inequality (4.1) , Theorem 3.1 can be employed to
prove the following result.

THEOREM 4.4. Let A∈Mn(C) be such that W (A)⊂ Sα for some α ∈ [0, π
2 ) and

let f (t) be a nonnegative matrix monotone function on [0,∞) . Then

f (2wN(A)) � 2sec(α)N ( f (ReA))

for every normalized unitarily invariant norm N(.).

In particular for N(.) = ‖.‖and f (t) = t, we have

w(A) � sec(α)‖ReA‖ ,

which has been obtained earlier in [2], using a different analysis.
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[19] A. ZAMANI, P. WÓJCIK, Another generalization of the numerical radius for Hilbert space operators,
Linear Algebra Appl. 609 (2021), 114–128.

(Received April 6, 2023) Baha’a Al-Naddaf
Department of Mathematics

Zarqa University
Zarqa, Jordan

e-mail: balnaddaf@gmail.com

Aliaa Burqan
Department of Mathematics

Zarqa University
Zarqa, Jordan

e-mail: aliaaburqan@zu.edu.jo

Fuad Kittaneh
Department of Mathematics

The University of Jordan
Amman, Jordan

e-mail: fkitt@ju.edu.jo

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


