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Abstract. In this paper, we present some generalizations and further refinements for the numer-
ical radii of sectorial matrices and Schatten p-norms inequalities of accretive-dissipative ma-
trices, which generalized some results of Kittaneh et al. Moreover, we also give some n-tuple
power inequality for sectorial matrices by Yang [22].

1. Introduction

Let H be a complex Hilbert space with inner product (.,.) and B(H) be the col-
lection of all bounded linear operator on H. For A € B(H), A* denote the conjugate
of A, it is called accretive if RA > 0, and A is an accretive-dissipative if RA > 0 and
SA > 0. Here RA = J(A+A*) and SA = 5.(A—A*) are the real part and imaginary
parts of A, respectively. The numerical radius of A € B(H) is defined by

w(A) = sup{|(Ax,x)| : x € C", [|x]| = 1},
and the operator norm of A is denoted by
Al = sup{|(Ax,y)| : x € C", [|x[[ = [[y[| = 1}.
It is well known that

1
S1IAIL < w(4) < 1Al (L

The inequalities in (1.1) are sharp. The first inequality becomes an equality if A = 0.
The second inequality becomes an equality if A is normal.

Let M, (C) denote the set of n x n complex matrices. The numerical range of
A € M, (C) is defined by

W(A) = {{Ax,x) :x e C", ||x|]|=1}.
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If W(A) C (0,00), we say that A is positive and we write A > 0. In addition, a matrix
A € M, (C) is said to be sectorial if, for some o € [0, %), we have

W(A) CSq:={z€C:Rz>0,[3z] < (Rz)tanar}.
It is well known that if W(A) C S, then
W(A") C Sq (1.2)
for r € (0,1). In fact, Drury [5] showed that
W(A") C S (1.3)

under the same conditions as in (1.2). Moreover, Nasiri and Furuichi [18] proved that
W(A) C S, implies W(A~!) C S, when A is nonsingular.
Kittaneh [1 1, 12] improved (1.1) as follows

1 1
w(A) < SllIAl+ 1A%l < 5 (1Al +]14%]]2) (1.4)

N =

and

1 1
Z|\A*A+AA*H <w?(A) < EHA*A—FAA*H, (1.5)

where |A] = (A*A)% is the absolute value of A. El-Haddad and Kittaneh [6] showed
the following generalizations of the first inequality in (1.4) and the second inequality in
(1.5),

1 21—
w(A) < EHIAIQ"”HA 2= (1.6)
and
w? (A) < ||l AP+ (1= a)|A*]7]], (1.7)

where 0 < or < 1 and > 1. Let A € B(H) with the cartesian decomposition A = B+iC
and r > 2. Then the authors [6] got the following inequality

w'(A) <2718 +|C|"]. (1.8)

In 2007, Yamazaki [21] proved w(A) = supgcg ||R(e®®A)||. As an alternative
formula for the numerical radius, the identity has been used by many researchers. Very
recently, Sheikhhosseini et al. [19] defined the weighted numerical radius as

wy(A) = SUEH%((Z"GA)\L
€

where 0 <v< 1 and R, (A) =vA+ (1 —v)A*. Here, the function wy(-) : B(H) — [0,00)
is a norm. They [19] also defined 3,(A) = —ivA +i(1 —v)A*. New definition of the
weighted numerical radius extended some existed results. For example [19],

1T (A)[| <wy(A) and  [[3,(A)]] < wi(A) (1.9)
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are coincides with the results ||R(A)|| < w(A) and [|3(A)|| < w(A) when v =1, ob-
tained by Kittaneh et al. [13]. In addition, it is clear w(A) = w 1 (A).

Bedrani et al. [1] extended the well known power inequality w(A¥) < wk(A) (A €
M, (C)) for k=1,2,--- ) to accretive matrices as follows

cos(ror) cos' (a)w' (A) < w(A") < sec(rar) sec™ (o)w' (A), (1.10)

where A € M,,(C), W(A) C Sy and 1 € (0,1).
On the other hand, Kittaneh and Sakkijha [14] presented the following Schatten
p-norm inequalities for accretive-dissipative matrices T,S € M, (C),

_p 3p_
27 2([ITN+1ISIB) < T +SI5 <27~ (ITI[5 +[1S115) (L.11)

for p> 1.
Recently, Yang [22] showed the following n-tuple power inequality for sectorial
matrices

<2xA ) cos™ <2xA ) (1.12)

((ZxA)) cos™ (o) sec(tor)w <2fo> (1.13)

where A; € M,(C) are such that W(A;) C S¢, x; are positive real numbers with
S _xj=land1€[-1,0].

Throughout this paper, we assume every function is continuous and all functions
satisfy the following conditions : J is a subinterval of (0,e) and f :J — (0,e0).

In this paper, we intend to give some generalizations and further refinements of
inequalities (1.5)—(1.11). Moreover, we also show the reverse of (1.12)—(1.13).

and

2. Main results

In order to get our results, we will list some necessary lemmas in front of each
theorem. Firstly, we give a generalization and further refinements of the first inequality
in (1.5).

THEOREM 1. Let A € B(H) and 0 < v < 1. Then
* * 1
V(1= v)[|A"A+AAT[] < 3 ([[Re(4) +S(A)|P +[[Re(A) = S (A)]) < wi(A).

Proof. We have the following chain of inequalities
v(l —v)||A*A+AA™|

1
= ZH4V(1 —Vv)(A"A+AAY)||

= %H(%(A) +3(4))7 + (Ry(4) = 3u(4))?|
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< IO + 300+ 1R (4) — 3u(4))?])
< (I9R(A) + S,(A)|P + 9%, (4) ~ S,(4) )

= SRR +15.)IP))

< 02 +12(A)) (by (19))

=wi(A). O

Next, we give a generalization of the inequality (1.6). Before that, we need a

lemma which is known as the generalized mixed Schwarz inequality.

LEMMA 1. ([15]) Let A€ B(H) and 0 <v < 1. Then for all x,y € H, we have

[(Ax, )P < (JAP"xx) (|4 [P0y, ).

LEMMA 2. ([7] p. 118) (Operator Jensen inequality for convex function [17]).

Let A € B(H)) be a self-adjoint operator with Sp(A) C [m,M] for some scalars m < M.
If f(t) is a convex function on [m,M], then

f({Ax,x)) < (f(A)x,x)

for every unit vector x € H.

then

f([(Ax,x)]) <

THEOREM 2. Let A € B(H) and f be an increasing convex function. If 0 <v < 1,

fw(4)) < %I\f(IAI”)+f(|A*\2“’v))H-

Proof. For every unit vector x € H, we have

F({APx 02 (A" P x)2) (by Lemma 1)
2y %|2(1—v)
<f<<|A| x,x>+<2\A | x,x)) (by AM — GM inequality)

N

FUAP2) + (AP x,x)))

(FIAP ) + (F(1A"PI)x,x)) (by Lemma2)

N
N == N~
~ — —

(FOAP) + £(JA PO )x,x).
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Hence

[[x[|=1
< s (U0 0P

1
= SR + 7 (AP O

REMARK 1. Itis clear that the inequality (1.6) is a special case of Theorem 2 for
f(t)=1t" when r > 1.

We now give a generalization of the inequality (1.7).

LEMMA 3. ([15]) Let A € B(H) be positive, and let x € H be any unit vector.
Then
(Ax,x)" for 0 <v< 1

(A"x,x)
"< (A"x,x) for v=1.

<
(Ax,x)" <

THEOREM 3. Let A € B(H) and f be an increasing convex function. If 0 <v < 1,
then

FOWA)) < f(AP) + (L =w)f(AP)]].

Proof. For every unit vector x € H, we have

F(Ax,X)[7) < F((AP"x,x) (JA P Vx,x)) (by Lemma 1)
< f(<|A|2x,x>V<|A*|2x X>l_v) (by Lemma 3)
< F((APx ) + (1 =) (AP, )

<vf ((JAPx,x)) + (1= )£ (A", x))

v(f(AP H>+ L=v)(f(1A*]*)x,x)

= ((f(IAP) + (1 =) F(IA"P)x.x).

Taking supremum over x € H with ||x|| = 1, we can get Theorem 3. [J

/

N

REMARK 2. In arecent paper, the authors [9] presented the following numerical
radius inequalities

Fw?(A)) < f(W(IAHA*I))+%|\f(|AI2)+f(IA*I2)II 2.1)

1
2
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under the same conditions as in Theorem 3. We now prove (2.1) improves Theorem 3
when v = % . In fact, we only need to prove

1
f(w(lAlla™)) < 5\|f(|A|2)+f(|A*\2)\|~ (2.2)
Estimate

F(IAIA x,x)) = f

<

(147 x, lA]))

1A% x| - [ ] A ]

AP 2) 3 (AP, 2) )

<MWMWHA%M)
2

o~ — —

(404 Prn) +7 (04 Px)
(L0 Pyer) + (AP
= LA + £OA" ) ).

Taking the supremum over unit vectors x € H with ||x|| = 1 implies the desired in-
equality (2.2).

Before give the generalization of the inequality (1.8), we show the definition
of geometrical convexity: a function f is said geometrically convex if f(a’b'™") <
(f(@)"(f(&)' " for 0<v< L.

LEMMA 4. ([8] p. 26) Fora,b>0,0<v<1,and r#0, let M,(a,b,v) = (va"+
(1— v)b’)% and let My(a,b,v) = a"b'~". Then

M, (a,b,v) < Mg(a,b,v) for r <s.

THEOREM 4. Let A € B(H) with the cartesian decomposition A = B+iC and f
be an increasing geometrically convex function. If f is convex and f(1) =1, then

fr<W\(/f%)) < Hf(IBI’)ﬂsz(C’)

)

where r > 2.

Proof. For every unit vector x € H, we have

f(%) =f<<<Bx’x>2‘;<Cx,x>2>%>

< f( ( (Blx,x)* + <|C|x,x>2> %>

2



GENERALIZATIONS OF NUMERICAL RADII AND SCHATTEN p-NORMS INEQUALITIES

Blx,x)" +(|C
< <<< )"+ {|Clx, )" ) (by Lemma 4)

! 2
<f< \B\xx’; IClx, x)" ))
<f< 1B|x, %) ; (C|"x, x) )) by Lomma 3
(f(<B’H>)42rf(<IC|’ x)))
< << (\B\’>x7x>;< (|c|f)x,x>>%
_ <<<f<|B|’> +§<|C|’>>x,x>)%

Since f is continuous and increasing, we have

() (o )

( Axx|)
= su
lIxll= 1

< sup (UUBI) HA(CI))x2)
I I=1 2

:‘ SB[ + f(C]")

2
REMARK 3. The inequality (1.8) comes from Theorem 4 when f(z) =

i

as desired. [

Next, we give a generalization of the inequality (1.9) as promised.

THEOREM 5. Let T = (g‘g) Then

max  319862A) 1+ 02| 5118, ¢24) = Su(eB)] | } <7,

where A,B€ B(H), 6 c Rand 0 <v<1

Proof. Let Mg = R,(¢T) and U = <(I) (I)> . Then we have
. B 0 R, (ePA) +R,(B)
Mo +UMpU = (E)Tv(e"eA)—HRV(eieB) 0 :

1377
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With the fact ( )H H( ) ’:max{|A|,|B|},weget
|Ru(eA) +R,(e"B)|| = [|[Mo + UM U |
<||Mp||+||UMpU||
< 2|[Mo|
< ZWV(T)7
that is
JIIR(OA) + 9, (7B | < (7). 23)
Similarly,
o B 0 i(3,(eA) — 3, (e9B))
Mo —U MU = (i(Sv(eieA) ~3,(eB)) 0 '
We obtain
14(e°4) = 3,(e°B)[| = [1i(S(eA) = S, (eB)) |
= [|Mg —U"MyU||
<||Mp|[+|UMU||
< 2WV(T)7
that is
1 . .
E|\£’sv(e"’A) —3,(e®B)|| <wy(T). O (2.4)

REMARK 4. We can get the inequalities (1.9) by (2.3) and (2.4) when A = B and
A = —B, respectively.

Next, we give some n—tuple numerical radii inequalities for sectorial matrices
which generalized (1.10).

LEMMA 5. ([4]) Let A € M, (C) with W(A) C Sq and t € [0,1]. Then
cos? (0)R(A") < R'(A) < R(A).
LEMMA 6. ([1]) Let A € M,,(C) be such that W(A) C Sy,. Then
cos(a)w(A) < w(RA) < w(A).

LEMMA 7. ([3]) Let Aj,As,---A, > 0. Then for every non-negative concave
Sfunction f on [0,0)
|< |~

Iz

ilfm»
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THEOREM 6. Let A; € M,(C) with W(A;) C Sq and t € [0,1]. Then
k k
cos’ (a)w' (ZAi> <w (2A’;> .
i=1 i=1
Proof. Under the conditions, we have the following chain of inequalities

cos' (o)w' (lﬁlA,) < (m(lﬁlAi)) (by Lemma 6)

k

< || Y9 (A) ‘ (by Lemma 7)
i=1
k

<Y %A ‘ (by Lemma 5)
i-1

- [z
(o)

k
Sw(ZA?) (by Lemma 6). [
i=1

COROLLARY 1. Let A € M, (C) with W(A) C Sq and t € [0,1]. Then
cos' (a)w' (A) < w(A").
Proof. Let k=1 in Theorem 6. [

REMARK 5. Corollary 1 is a refinement of the left-hand side in (1.10).

k k
Next, we present some relations between w( ZA?) and w (( S A,-)t) when A;
i=1 i=1

are sectorial matrices, which can be regarded as a complement of Theorem 6.

LEMMA 8. ([4]) Let A € M, (C) with W(A) C Sq and t € [—1,0]. Then

R(A") < R'(A) < cos? (a)R(A").
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LEMMA 9. ([16]) Let A1,Az,---A, = 0. Then for every non-negative convex
function f on [0,0) with f(0) =0 and for every unitarily invariant norm ||| - |/,

> f(4)) H < H'f( 24))
= =
THEOREM 7. Let A; € M, (C) with W(A;) C Sq and t € [—1,0]. Then

sec? (o) cos( (ZA’) < w( XIA i) )

where i=1,2,--- k.

Proof. Compute

w((lﬁlA,-)f) > w<9t((§A,->f)> (by Lemma 6)

i=1

(by Lemma 8)

= sec” (o) (ém(A,-))’

> sec” () i‘ﬁ’ (A,)H (by Lemma 9)

i=1

> sec” (1) éiﬁ(A’;)

‘ (by Lemma 8)
= sec” () %(iAi)

_ sec ( (ZA’))

> sec? (o) cos(o <2A’) (by Lemma 6). [

We now give a reverse of Theorem 7.

THEOREM 8. Let A; € M, (C) with W(A;) C Sq and t € [0,1]. Then

((ZA) ) sec” (o) sec(ror)w (ZAt)

where i =1,2,--- k.
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Proof. We have the following chain of inequalities

k k
w((ZAi)Z) < sec(to)w (9?((2&)’)) (by (1.3) and Lemma 6)

i=1 i=1

< sec” (o) sec(tor) (EK(zk‘(Al))[H (by Lemma 5)

- sec(toc)H‘ﬁ((zAi)t)

i=1

= sec” (o) sec(1ax) (ESR(A,-))t

i=1

k
< sec” (o) sec(tor) || D R (A

) ‘ (by Lemma 7)

< sec? (o) sec(tar) zk‘(iﬁ(Af) (by Lemma 5)

= seth(O{) SCC(ZOC) %(iAi)

= sec” (o) sec(ra)w ( ZA’ )

< sec” (o) sec(ro)w <2At> (by Lemma 6). [

Next, we give some generalizations and further refinements of Schatten p-norms
inequalities (1.11) for accretive-dissipative matrices.

LEMMA 10. ([10]) Let A,B be positive and f be an increasing convex function
on [0,0). Then for every unitarily invariant norm ||| - |||,

[I[r(a+B)[|| < [[lr@a+B)[|| <[||lf(V2|a+iB)]|
LEMMA 11.([2]) Let A1,A3,---A, be positive and p > 1. Then

n
2 A
j=1

n

Y Il <

p n
<n LY 14,12,
r J=1

THEOREM 9. Let T1,Ts,--- T, € M,(C) be accretive-dissipative. Then for every
increasing convex function f on [0,0) with f(0) =0 and p > 1, we have

el

p

> AT,
=1
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Proof. Let Tj=A;+iB;, j=1,2,---,n, be the Cartesian decompositions of T;.
Then we have

n P n n P
2 3n| = |z 1z
j=1 P j=1 J=1 p
> f(iAj—i—iBj) ’ (by Lemma 10)
J=1 j=1 p
n P
~|lr(Z+e0)
J=1 p
> if(Aj—i-Bj) ’ (by Lemma 9)
j=1 p
>i f(Aj+Bj) ’ (by Lemma 11)
j=1 p
>i f(|A;+iBj|) ! (by Lemma 10)
=1
Jn ) p
=2 ||f(mh|| - O
j=1 P

REMARK 6. The left-hand side in (1.11) follows as a special case of Theorem 9
with f(r) =¢ and n=2.

LEMMA 12. ([10]) Let A,B be positive and f be a non-negative increasing con-
cave function on [0,0). Then for every unitarily invariant norm ||| -

%|Hf(2|A+iBl>||| <[[lr@a+p)|ll<|llr(v21a+iB]l.

THEOREM 10. Let T1,T,--- T, € M,,(C) be accretive-dissipative. Then for every
non-negative increasing concave function f on [0,0) and p > 1, we have

el ;gm) F(V 1)

P ln P
<2-n? 2 .
r Jj=1 r

Proof. Let Tj =Aj+iBj, j=1,2,---,n, be the cartesian decompositions of T;.
Then we have

s|ireigm

P 1 n n
= ng(z | 24+ Bl)
4 J=1 J=1

< ' ‘f (Jﬁlf‘j + anlB.f)

P
p

P
(by Lemma 12)
P
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n

n p
zﬂm+m>
j=

p

p

(by Lemma 7)
P

p

Py
S
Y
M=

f(Aj+B;))

(by Lemma 11)

~.
Il
-

p

P
f(V21A;+iBj))
p

/AN
S
S
M

(by Lemma 12)

~.
I
—_

O

Il

S

S
M

P
F(V2113))
P

~.
I
—_

COROLLARY 2. Let T,S € M, (C) be accretive-dissipative and p > 1. Then we
have

)
T +S[15 <22 (|IT115+IS]15).
Proof. Let f(¢t) =t and n =2 in Theorem 10. O

REMARK 7. Corollary 2 is a refinement of the right-hand side in (1.11).

Next, we give a reverse of (1.12).

LEMMA 13. ([20]) Let Ay,A3,---Ar > 0 and x1,x2,- -, X be positive real num-
bers with lezlxj = 1. Then for every unitarily invariant norm ||| - ||| on M,(C),

Ml

for every non-negative concave function f on [0,e0).

THEOREM 11. Let Aj € M,(C) be such that W(A;) C Sq and x; be positive real
numbers with lec-zlxj = 1. Then

(z@ ) cos™ (ct) cos( (2x#>

where j=1,2,--- k and t € [0,1].

Proof. Compute

() (3(§)) s
Ja(gen)]
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= (é]ﬁfﬁ(f‘j))t

ix/'f"t (A7)

WV

‘ (by Lemma 13)

> Zx,cos (A’)

‘ (by Lemma 5)

:coszqa)Hm(gx,A;)

J=1

>cosz'f(oc)c0s(oc)w<zk‘( At> (by Lemma 6). [J

Next, we give a reverse of (1.13).

THEOREM 12. Let A; € Ml,(C) be such that W(A;) C S and x; be positive real
numbers with Zﬁzlxj =1. Then

((zx, )) > cos? (@)cos (ZxJA’)

where j=1,2,--- k and t € [0,1].

Proof. We have

((30))+(3(3) ) ovtemms
()
j=1

R <,i1x ,-A,») ' ' (by Lemma 5)

= (i?ﬁfﬁ(f\j))t

> cos? (at) cos( (ijAt) (by Theorem 11). [

WV
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REMARK 8. As we can see that inequalities (1.3) is stronger than (1.2). However,

it should be noticed that when 7 € [—1,0], inequality (1.3) implies & = 0 instead of

a € [0,%) with the definition of S, . Now, under the same conditions as in (1.13), we

rewrite it as follows:

w( (JilxjAj)t> < cos™ (o) sec(o)w (JﬁlxjA;) : (2.5)

The proof of (2.5) is consistent with the rest of (1.13).

Acknowledgement. The authors wish to express their sincere thanks to the referee
for his/her detailed and helpful suggestions which have improved the manuscript.
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