SOME GENERALIZATIONS OF NUMERICAL RADII AND SCHATTEN p-NORMS INEQUALITIES

Yonghui Ren and Changsen Yang

(Communicated by M. Krnić)

Abstract

In this paper, we present some generalizations and further refinements for the numerical radii of sectorial matrices and Schatten p-norms inequalities of accretive-dissipative matrices, which generalized some results of Kittaneh et al. Moreover, we also give some n-tuple power inequality for sectorial matrices by Yang [22].

1. Introduction

Let \mathbb{H} be a complex Hilbert space with inner product $\langle.,$.$\rangle and B(\mathbb{H})$ be the collection of all bounded linear operator on \mathbb{H}. For $A \in B(\mathbb{H}), A^{*}$ denote the conjugate of A, it is called accretive if $\Re A>0$, and A is an accretive-dissipative if $\Re A>0$ and $\mathfrak{J} A>0$. Here $\mathfrak{R} A=\frac{1}{2}\left(A+A^{*}\right)$ and $\mathfrak{J} A=\frac{1}{2 i}\left(A-A^{*}\right)$ are the real part and imaginary parts of A, respectively. The numerical radius of $A \in B(\mathbb{H})$ is defined by

$$
w(A)=\sup \left\{|\langle A x, x\rangle|: x \in \mathbb{C}^{n},\|x\|=1\right\}
$$

and the operator norm of A is denoted by

$$
\|A\|=\sup \left\{|\langle A x, y\rangle|: x \in \mathbb{C}^{n},\|x\|=\|y\|=1\right\}
$$

It is well known that

$$
\begin{equation*}
\frac{1}{2}\|A\| \leqslant w(A) \leqslant\|A\| . \tag{1.1}
\end{equation*}
$$

The inequalities in (1.1) are sharp. The first inequality becomes an equality if $A^{2}=0$. The second inequality becomes an equality if A is normal.

Let $\mathbb{M}_{n}(\mathbb{C})$ denote the set of $n \times n$ complex matrices. The numerical range of $A \in \mathbb{M}_{n}(\mathbb{C})$ is defined by

$$
W(A)=\left\{\langle A x, x\rangle: x \in \mathbb{C}^{n},\|x\|=1\right\} .
$$

Keywords and phrases: Sectorial matrices, numerical radii, accretive-dissipative.

If $W(A) \subset(0, \infty)$, we say that A is positive and we write $A>0$. In addition, a matrix $A \in \mathbb{M}_{n}(\mathbb{C})$ is said to be sectorial if, for some $\alpha \in\left[0, \frac{\pi}{2}\right)$, we have

$$
W(A) \subset S_{\alpha}:=\{z \in \mathbb{C}: \Re z>0,|\Im z| \leqslant(\Re z) \tan \alpha\} .
$$

It is well known that if $W(A) \subset S_{\alpha}$, then

$$
\begin{equation*}
W\left(A^{t}\right) \subset S_{\alpha} \tag{1.2}
\end{equation*}
$$

for $t \in(0,1)$. In fact, Drury [5] showed that

$$
\begin{equation*}
W\left(A^{t}\right) \subset S_{t \alpha} \tag{1.3}
\end{equation*}
$$

under the same conditions as in (1.2). Moreover, Nasiri and Furuichi [18] proved that $W(A) \subseteq S_{\alpha}$ implies $W\left(A^{-1}\right) \subseteq S_{\alpha}$ when A is nonsingular.

Kittaneh [11, 12] improved (1.1) as follows

$$
\begin{equation*}
w(A) \leqslant \frac{1}{2}\left|\left\|A \left|+\left|A^{*}\right| \| \leqslant \frac{1}{2}\left(\|A| |+\| A^{2} \|^{\frac{1}{2}}\right)\right.\right.\right. \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{4}\left\|A^{*} A+A A^{*}\right\| \leqslant w^{2}(A) \leqslant \frac{1}{2}\left\|A^{*} A+A A^{*}\right\| \tag{1.5}
\end{equation*}
$$

where $|A|=\left(A^{*} A\right)^{\frac{1}{2}}$ is the absolute value of A. El-Haddad and Kittaneh [6] showed the following generalizations of the first inequality in (1.4) and the second inequality in (1.5),

$$
\begin{equation*}
w^{r}(A) \leqslant \frac{1}{2}|\| A|^{2 \alpha r}+\left|A^{*}\right|^{2(1-\alpha) r}| | \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
w^{2 r}(A) \leqslant\left\|\alpha|A|^{2 r}+(1-\alpha)\left|A^{*}\right|^{2 r}\right\| \tag{1.7}
\end{equation*}
$$

where $0<\alpha<1$ and $r \geqslant 1$. Let $A \in B(\mathbb{H})$ with the cartesian decomposition $A=B+i C$ and $r \geqslant 2$. Then the authors [6] got the following inequality

$$
\begin{equation*}
w^{r}(A) \leqslant 2^{\frac{r}{2}-1}| ||B|^{r}+|C|^{r} \| . \tag{1.8}
\end{equation*}
$$

In 2007, Yamazaki [21] proved $w(A)=\sup _{\theta \in \mathbb{R}}\left\|\mathfrak{R}\left(e^{i \theta} A\right)\right\|$. As an alternative formula for the numerical radius, the identity has been used by many researchers. Very recently, Sheikhhosseini et al. [19] defined the weighted numerical radius as

$$
w_{v}(A)=\sup _{\theta \in \mathbb{R}}\left\|\Re_{v}\left(e^{i \theta} A\right)\right\|,
$$

where $0 \leqslant v \leqslant 1$ and $\Re_{v}(A)=v A+(1-v) A^{*}$. Here, the function $w_{v}(\cdot): B(\mathbb{H}) \rightarrow[0, \infty)$ is a norm. They [19] also defined $\mathfrak{I}_{v}(A)=-i v A+i(1-v) A^{*}$. New definition of the weighted numerical radius extended some existed results. For example [19],

$$
\begin{equation*}
\left\|\mathfrak{R}_{v}(A)\right\| \leqslant w_{v}(A) \quad \text { and } \quad\left\|\mathfrak{I}_{v}(A)\right\| \leqslant w_{v}(A) \tag{1.9}
\end{equation*}
$$

are coincides with the results $\|\Re(A)\| \leqslant w(A)$ and $\|\mathfrak{I}(A)\| \leqslant w(A)$ when $v=\frac{1}{2}$, obtained by Kittaneh et al. [13]. In addition, it is clear $w(A)=w_{\frac{1}{2}}(A)$.

Bedrani et al. [1] extended the well known power inequality $w\left(A^{k}\right) \leqslant w^{k}(A)(A \in$ $\left.\mathbb{M}_{n}(\mathbb{C})\right)$ for $\left.k=1,2, \cdots\right)$ to accretive matrices as follows

$$
\begin{equation*}
\cos (t \alpha) \cos ^{t}(\alpha) w^{t}(A) \leqslant w\left(A^{t}\right) \leqslant \sec (t \alpha) \sec ^{2 t}(\alpha) w^{t}(A) \tag{1.10}
\end{equation*}
$$

where $A \in \mathbb{M}_{n}(\mathbb{C}), W(A) \subset S_{\alpha}$ and $t \in(0,1)$.
On the other hand, Kittaneh and Sakkijha [14] presented the following Schatten p-norm inequalities for accretive-dissipative matrices $T, S \in \mathbb{M}_{n}(\mathbb{C})$,

$$
\begin{equation*}
2^{-\frac{p}{2}}\left(\|T\|_{p}^{p}+\|S\|_{p}^{p}\right) \leqslant\|T+S\|_{p}^{p} \leqslant 2^{\frac{3 p}{2}-1}\left(\|T\|_{p}^{p}+\|S\|_{p}^{p}\right) \tag{1.11}
\end{equation*}
$$

for $p \geqslant 1$.
Recently, Yang [22] showed the following n-tuple power inequality for sectorial matrices

$$
\begin{equation*}
w^{t}\left(\sum_{j=1}^{k} x_{j} A_{j}\right) \leqslant \cos ^{2 t}(\alpha) w\left(\sum_{j=1}^{k} x_{j} A_{j}^{t}\right) \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
w\left(\left(\sum_{j=1}^{k} x_{j} A_{j}\right)^{t}\right) \leqslant \cos ^{2 t}(\alpha) \sec (t \alpha) w\left(\sum_{j=1}^{k} x_{j} A_{j}^{t}\right) \tag{1.13}
\end{equation*}
$$

where $A_{j} \in \mathbb{M}_{n}(\mathbb{C})$ are such that $W\left(A_{j}\right) \subset S_{\alpha}, x_{j}$ are positive real numbers with $\sum_{j=1}^{k} x_{j}=1$ and $t \in[-1,0]$.

Throughout this paper, we assume every function is continuous and all functions satisfy the following conditions : J is a subinterval of $(0, \infty)$ and $f: J \rightarrow(0, \infty)$.

In this paper, we intend to give some generalizations and further refinements of inequalities (1.5)-(1.11). Moreover, we also show the reverse of (1.12)-(1.13).

2. Main results

In order to get our results, we will list some necessary lemmas in front of each theorem. Firstly, we give a generalization and further refinements of the first inequality in (1.5).

Theorem 1. Let $A \in B(\mathbb{H})$ and $0 \leqslant v \leqslant 1$. Then

$$
v(1-v)\left\|A^{*} A+A A^{*}\right\| \leqslant \frac{1}{4}\left(\left\|\mathfrak{R}_{v}(A)+\mathfrak{I}_{v}(A)\right\|^{2}+\left\|\mathfrak{R}_{v}(A)-\mathfrak{I}_{v}(A)\right\|^{2}\right) \leqslant w_{v}^{2}(A)
$$

Proof. We have the following chain of inequalities

$$
\begin{aligned}
& v(1-v)\left\|A^{*} A+A A^{*}\right\| \\
& =\frac{1}{4}\left\|4 v(1-v)\left(A^{*} A+A A^{*}\right)\right\| \\
& =\frac{1}{4}\left\|\left(\Re_{v}(A)+\mathfrak{I}_{v}(A)\right)^{2}+\left(\Re_{v}(A)-\mathfrak{I}_{v}(A)\right)^{2}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \frac{1}{4}\left(\left\|\left(\mathfrak{R}_{v}(A)+\mathfrak{I}_{v}(A)\right)^{2}\right\|+\left\|\left(\mathfrak{R}_{v}(A)-\mathfrak{I}_{v}(A)\right)^{2}\right\|\right) \\
& \leqslant \frac{1}{4}\left(\left\|\mathfrak{\Re}_{v}(A)+\mathfrak{I}_{v}(A)\right\|^{2}+\left\|\mathfrak{\Re}_{v}(A)-\mathfrak{I}_{v}(A)\right\|^{2}\right) \\
& =\frac{1}{4}\left(2\left(\left\|\Re_{v}(A)\right\|^{2}+\left\|\mathfrak{I}_{v}(A)\right\|^{2}\right)\right) \\
& \leqslant \frac{1}{4}\left(2\left(w_{v}^{2}(A)+w_{v}^{2}(A)\right)\right) \quad(\text { by }(1.9)) \\
& =w_{v}^{2}(A) . \quad \square
\end{aligned}
$$

Next, we give a generalization of the inequality (1.6). Before that, we need a lemma which is known as the generalized mixed Schwarz inequality.

Lemma 1. ([15]) Let $A \in B(\mathbb{H})$ and $0 \leqslant v \leqslant 1$. Then for all $x, y \in \mathbb{H}$, we have

$$
\left.\left.|\langle A x, y\rangle|^{2} \leqslant\left.\langle | A\right|^{2 v} x, x\right\rangle\left.\langle | A^{*}\right|^{2(1-v)} y, y\right\rangle .
$$

LEMMA 2. ([7] p. 118) (Operator Jensen inequality for convex function [17]). Let $A \in B(\mathbb{H})$ be a self-adjoint operator with $S p(A) \subseteq[m, M]$ for some scalars $m<M$. If $f(t)$ is a convex function on $[m, M]$, then

$$
f(\langle A x, x\rangle) \leqslant\langle f(A) x, x\rangle
$$

for every unit vector $x \in \mathbb{H}$.

THEOREM 2. Let $A \in B(\mathbb{H})$ and f be an increasing convex function. If $0 \leqslant v \leqslant 1$, then

$$
f(w(A)) \leqslant \frac{1}{2}\left\|f\left(|A|^{2 v}\right)+f\left(\left|A^{*}\right|^{2(1-v)}\right)\right\| .
$$

Proof. For every unit vector $x \in \mathbb{H}$, we have

$$
\begin{aligned}
f(|\langle A x, x\rangle|) & \left.\left.\leqslant\left. f\left(\left.\langle | A\right|^{2 v} x, x\right\rangle^{\frac{1}{2}}\langle | A^{*}\right|^{2(1-v)} x, x\right\rangle^{\frac{1}{2}}\right) \quad(\text { by Lemma 1) } \\
& \leqslant f\left(\frac{\left.\left.\left.\langle | A\right|^{2 v} x, x\right\rangle+\left.\langle | A^{*}\right|^{2(1-v)} x, x\right\rangle}{2}\right) \quad(\text { by AM }- \text { GM inequality }) \\
& \left.\left.\leqslant \frac{1}{2}\left(f\left(\left.\langle | A\right|^{2 v} x, x\right\rangle\right)+f\left(\left.\langle | A^{*}\right|^{2(1-v)} x, x\right\rangle\right)\right) \\
& \leqslant \frac{1}{2}\left(\left\langle f\left(|A|^{2 v}\right) x, x\right\rangle+\left\langle f\left(\left|A^{*}\right|^{2(1-v)}\right) x, x\right\rangle\right) \quad(\text { by Lemma } 2) \\
& =\frac{1}{2}\left\langle\left(f\left(|A|^{2 v}\right)+f\left(\left|A^{*}\right|^{2(1-v)}\right)\right) x, x\right\rangle .
\end{aligned}
$$

Hence

$$
\begin{aligned}
f(w(A)) & =f\left(\sup _{\|x\|=1}|\langle A x, x\rangle|\right) \\
& =\sup _{\|x\|=1} f(|\langle A x, x\rangle|) \\
& \leqslant \sup _{\|x\|=1} \frac{1}{2}\left\langle\left(f\left(|A|^{2 v}\right)+f\left(\left|A^{*}\right|^{2(1-v)}\right)\right) x, x\right\rangle \\
& =\frac{1}{2}\left\|f\left(|A|^{2 v}\right)+f\left(\left|A^{*}\right|^{2(1-v)}\right)\right\| \cdot \square
\end{aligned}
$$

REMARK 1. It is clear that the inequality (1.6) is a special case of Theorem 2 for $f(t)=t^{r}$ when $r \geqslant 1$.

We now give a generalization of the inequality (1.7).
Lemma 3. ([15]) Let $A \in B(\mathbb{H})$ be positive, and let $x \in \mathbb{H}$ be any unit vector. Then

$$
\begin{aligned}
& \left\langle A^{v} x, x\right\rangle \leqslant\langle A x, x\rangle^{v} \text { for } 0<v \leqslant 1 \\
& \langle A x, x\rangle^{v} \leqslant\left\langle A^{v} x, x\right\rangle \text { for } v \geqslant 1
\end{aligned}
$$

THEOREM 3. Let $A \in B(\mathbb{H})$ and f be an increasing convex function. If $0 \leqslant v \leqslant 1$, then

$$
f\left(w^{2}(A)\right) \leqslant\left\|v f\left(|A|^{2}\right)+(1-v) f\left(\left|A^{*}\right|^{2}\right)\right\|
$$

Proof. For every unit vector $x \in \mathbb{H}$, we have

$$
\begin{aligned}
f\left(|\langle A x, x\rangle|^{2}\right) & \left.\left.\leqslant\left. f\left(\left.\langle | A\right|^{2 v} x, x\right\rangle\langle | A^{*}\right|^{2(1-v)} x, x\right\rangle\right) \quad \text { by Lemma 1) } \\
& \left.\left.\leqslant\left. f\left(\left.\langle | A\right|^{2} x, x\right\rangle^{v}\langle | A^{*}\right|^{2} x, x\right\rangle^{1-v}\right) \quad \text { by Lemma 3) } \\
& \left.\left.\leqslant f\left(\left.v\langle | A\right|^{2} x, x\right\rangle+\left.(1-v)\langle | A^{*}\right|^{2} x, x\right\rangle\right) \\
& \left.\left.\leqslant v f\left(\left.\langle | A\right|^{2} x, x\right\rangle\right)+(1-v) f\left(\left.\langle | A^{*}\right|^{2} x, x\right\rangle\right) \\
& \leqslant v\left\langle f\left(|A|^{2}\right) x, x\right\rangle+(1-v)\left\langle f\left(\left|A^{*}\right|^{2}\right) x, x\right\rangle \\
& =\left\langle\left(v f\left(|A|^{2}\right)+(1-v) f\left(\left|A^{*}\right|^{2}\right)\right) x, x\right\rangle .
\end{aligned}
$$

Taking supremum over $x \in \mathbb{H}$ with $\|x\|=1$, we can get Theorem 3 .
REMARK 2. In a recent paper, the authors [9] presented the following numerical radius inequalities

$$
\begin{equation*}
f\left(w^{2}(A)\right) \leqslant \frac{1}{2} f\left(w\left(|A|\left|A^{*}\right|\right)\right)+\frac{1}{4}\left\|f\left(|A|^{2}\right)+f\left(\left|A^{*}\right|^{2}\right)\right\| \tag{2.1}
\end{equation*}
$$

under the same conditions as in Theorem 3. We now prove (2.1) improves Theorem 3 when $v=\frac{1}{2}$. In fact, we only need to prove

$$
\begin{equation*}
f\left(w\left(|A|\left|A^{*}\right|\right)\right) \leqslant \frac{1}{2}\left\|f\left(|A|^{2}\right)+f\left(\left|A^{*}\right|^{2}\right)\right\| . \tag{2.2}
\end{equation*}
$$

Estimate

$$
\begin{aligned}
\left.f\left(|\langle | A|\left|A^{*}\right| x, x\right\rangle \mid\right) & \left.=f\left(\left|\langle | A^{*}\right| x,|A| x\right\rangle \mid\right) \\
& \leqslant f\left(| |\left|A^{*}\right| x| | \cdot| | A|x| \mid\right) \\
& \left.\left.=\left.f\left(\left.\langle | A^{*}\right|^{2} x, x\right\rangle^{\frac{1}{2}}\langle | A\right|^{2} x, x\right\rangle^{\frac{1}{2}}\right) \\
& \leqslant f\left(\frac{\left.\left.\left.\langle | A^{*}\right|^{2} x, x\right\rangle+\left.\langle | A\right|^{2} x, x\right\rangle}{2}\right) \\
& \left.\left.\leqslant \frac{1}{2}\left(f\left(\left.\langle | A^{*}\right|^{2} x, x\right\rangle\right)+f\left(\left.\langle | A\right|^{2} x, x\right\rangle\right)\right) \\
& \leqslant \frac{1}{2}\left(\left\langle f\left(\left|A^{*}\right|^{2}\right) x, x\right\rangle+\left\langle f\left(|A|^{2}\right) x, x\right\rangle\right) \\
& =\frac{1}{2}\left\langle\left(f\left(|A|^{2}\right)+f\left(\left|A^{*}\right|^{2}\right)\right) x, x\right\rangle .
\end{aligned}
$$

Taking the supremum over unit vectors $x \in \mathbb{H}$ with $\|x\|=1$ implies the desired inequality (2.2).

Before give the generalization of the inequality (1.8), we show the definition of geometrical convexity: a function f is said geometrically convex if $f\left(a^{v} b^{1-v}\right) \leqslant$ $(f(a))^{v}(f(b))^{1-v}$ for $0 \leqslant v \leqslant 1$.

LEMMA 4. ([8] p. 26) For $a, b \geqslant 0,0<v<1$, and $r \neq 0$, let $M_{r}(a, b, v)=\left(v a^{r}+\right.$ $\left.(1-v) b^{r}\right)^{\frac{1}{r}}$ and let $M_{0}(a, b, v)=a^{v} b^{1-v}$. Then

$$
M_{r}(a, b, v) \leqslant M_{s}(a, b, v) \text { for } r \leqslant s
$$

THEOREM 4. Let $A \in B(\mathbb{H})$ with the cartesian decomposition $A=B+i C$ and f be an increasing geometrically convex function. If f is convex and $f(1)=1$, then

$$
f^{r}\left(\frac{w(A)}{\sqrt{2}}\right) \leqslant\left\|\frac{f\left(|B|^{r}\right)+f\left(|C|^{r}\right)}{2}\right\|
$$

where $r \geqslant 2$.
Proof. For every unit vector $x \in \mathbb{H}$, we have

$$
\begin{aligned}
f\left(\frac{|\langle A x, x\rangle|}{\sqrt{2}}\right) & =f\left(\left(\frac{\langle B x, x\rangle^{2}+\langle C x, x\rangle^{2}}{2}\right)^{\frac{1}{2}}\right) \\
& \leqslant f\left(\left(\frac{\langle | B|x, x\rangle^{2}+\langle | C|x, x\rangle^{2}}{2}\right)^{\frac{1}{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant f\left(\left(\frac{\langle | B|x, x\rangle^{r}+\langle | C|x, x\rangle^{r}}{2}\right)^{\frac{1}{r}}\right)(\text { by Lemma 4) } \\
& \leqslant\left(f\left(\frac{\langle | B|x, x\rangle^{r}+\langle | C|x, x\rangle^{r}}{2}\right)\right)^{\frac{1}{r}}(f(1))^{1-\frac{1}{r}} \\
& \leqslant\left(f\left(\frac{\left.\left.\left.\langle | B\right|^{r} x, x\right\rangle+\left.\langle | C\right|^{r} x, x\right\rangle}{2}\right)\right)^{\frac{1}{r}}(\text { by Lemma 3) } \\
& \leqslant\left(\frac{\left.\left.f\left(\left.\langle | B\right|^{r} x, x\right\rangle\right)+f\left(\left.\langle | C\right|^{r} x, x\right\rangle\right)}{2}\right)^{\frac{1}{r}} \\
& \leqslant\left(\frac{\left\langle f\left(|B|^{r}\right) x, x\right\rangle+\left\langle f\left(|C|^{r}\right) x, x\right\rangle}{2}\right)^{\frac{1}{r}} \\
& =\left(\frac{\left\langle\left(f\left(|B|^{r}\right)+f\left(|C|^{r}\right)\right) x, x\right\rangle}{2}\right)^{\frac{1}{r}}
\end{aligned}
$$

Since f is continuous and increasing, we have

$$
\begin{aligned}
f^{r}\left(\frac{w(A)}{\sqrt{2}}\right) & =f^{r}\left(\sup _{\|x\|=1} \frac{|\langle A x, x\rangle|}{\sqrt{2}}\right) \\
& =\sup _{\|x\|=1} f^{r}\left(\frac{|\langle A x, x\rangle|}{\sqrt{2}}\right) \\
& \leqslant \sup _{\|x\|=1} \frac{\left\langle\left(f\left(|B|^{r}\right)+f\left(|C|^{r}\right)\right) x, x\right\rangle}{2} \\
& =\left\|\frac{f\left(|B|^{r}\right)+f\left(|C|^{r}\right)}{2}\right\|
\end{aligned}
$$

as desired.
REMARK 3. The inequality (1.8) comes from Theorem 4 when $f(t)=t$.
Next, we give a generalization of the inequality (1.9) as promised.
THEOREM 5. Let $T=\left(\begin{array}{cc}0 & A \\ B & 0\end{array}\right)$. Then

$$
\max \left\{\frac{1}{2}\left\|\mathfrak{R}_{v}\left(e^{i \theta} A\right)+\mathfrak{\Re}_{v}\left(e^{i \theta} B\right)\right\|, \frac{1}{2}\left\|\mathfrak{I}_{v}\left(e^{i \theta} A\right)-\mathfrak{I}_{v}\left(e^{i \theta} B\right)\right\|\right\} \leqslant w_{v}(T)
$$

where $A, B \in B(\mathbb{H}), \theta \in \mathbb{R}$ and $0 \leqslant v \leqslant 1$.
Proof. Let $M_{\theta}=\mathfrak{R}_{v}\left(e^{i \theta} T\right)$ and $U=\left(\begin{array}{cc}0 & I \\ I & 0\end{array}\right)$. Then we have

$$
M_{\theta}+U^{*} M_{\theta} U=\left(\begin{array}{cc}
0 & \Re_{v}\left(e^{i \theta} A\right)+\Re_{v}\left(e^{i \theta} B\right) \\
\mathfrak{R}_{v}\left(e^{i \theta} A\right)+\Re_{v}\left(e^{i \theta} B\right) & 0
\end{array}\right)
$$

With the fact $\left\|\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)\right\|=\left\|\left(\begin{array}{cc}0 & A \\ B & 0\end{array}\right)\right\|=\max \{\|A\|,\|B\|\}$, we get

$$
\begin{aligned}
\left\|\Re_{v}\left(e^{i \theta} A\right)+\mathfrak{R}_{v}\left(e^{i \theta} B\right)\right\| & =\left\|M_{\theta}+U^{*} M_{\theta} U\right\| \\
& \leqslant\left\|M_{\theta}\right\|+\left\|U^{*} M_{\theta} U\right\| \\
& \leqslant 2\left\|M_{\theta}\right\| \\
& \leqslant 2 w_{v}(T)
\end{aligned}
$$

that is

$$
\begin{equation*}
\frac{1}{2}\left\|\mathfrak{R}_{v}\left(e^{i \theta} A\right)+\mathfrak{R}_{v}\left(e^{i \theta} B\right)\right\| \leqslant w_{v}(T) \tag{2.3}
\end{equation*}
$$

Similarly,

$$
M_{\theta}-U^{*} M_{\theta} U=\left(\begin{array}{cc}
0 & i\left(\mathfrak{I}_{v}\left(e^{i \theta} A\right)-\mathfrak{I}_{v}\left(e^{i \theta} B\right)\right) \\
i\left(\mathfrak{I}_{v}\left(e^{i \theta} A\right)-\mathfrak{I}_{v}\left(e^{i \theta} B\right)\right)
\end{array}\right)
$$

We obtain

$$
\begin{aligned}
\left\|\mathfrak{I}_{v}\left(e^{i \theta} A\right)-\mathfrak{I}_{v}\left(e^{i \theta} B\right)\right\| & =\left\|i\left(\mathfrak{I}_{v}\left(e^{i \theta} A\right)-\mathfrak{I}_{v}\left(e^{i \theta} B\right)\right)\right\| \\
& =\left\|M_{\theta}-U^{*} M_{\theta} U\right\| \\
& \leqslant\left\|M_{\theta}\right\|+\left\|U^{*} M_{\theta} U\right\| \\
& \leqslant 2 w_{v}(T)
\end{aligned}
$$

that is

$$
\begin{equation*}
\frac{1}{2}\left\|\mathfrak{I}_{v}\left(e^{i \theta} A\right)-\mathfrak{I}_{v}\left(e^{i \theta} B\right)\right\| \leqslant w_{v}(T) \tag{2.4}
\end{equation*}
$$

REMARK 4. We can get the inequalities (1.9) by (2.3) and (2.4) when $A=B$ and $A=-B$, respectively.

Next, we give some n-tuple numerical radii inequalities for sectorial matrices which generalized (1.10).

Lemma 5. ([4]) Let $A \in \mathbb{M}_{n}(\mathbb{C})$ with $W(A) \subset S_{\alpha}$ and $t \in[0,1]$. Then

$$
\cos ^{2 t}(\alpha) \Re\left(A^{t}\right) \leqslant \mathfrak{R}^{t}(A) \leqslant \mathfrak{R}\left(A^{t}\right)
$$

Lemma 6. ([1]) Let $A \in \mathbb{M}_{n}(\mathbb{C})$ be such that $W(A) \subset S_{\alpha}$. Then

$$
\cos (\alpha) w(A) \leqslant w(\Re A) \leqslant w(A)
$$

LEMMA 7. ([3]) Let $A_{1}, A_{2}, \cdots A_{n} \geqslant 0$. Then for every non-negative concave function f on $[0, \infty)$ and for every unitarily invariant norm $\|\|\cdot\|\|$,

$$
\left\|\left\|f\left(\sum_{j=1}^{n} A_{j}\right)\right\|\right\| \leqslant\left\|\sum_{j=1}^{n} f\left(A_{j}\right)\right\| \|
$$

THEOREM 6. Let $A_{i} \in \mathbb{M}_{n}(\mathbb{C})$ with $W\left(A_{i}\right) \subset S_{\alpha}$ and $t \in[0,1]$. Then

$$
\cos ^{t}(\alpha) w^{t}\left(\sum_{i=1}^{k} A_{i}\right) \leqslant w\left(\sum_{i=1}^{k} A_{i}^{t}\right)
$$

Proof. Under the conditions, we have the following chain of inequalities

$$
\begin{aligned}
\cos ^{t}(\alpha) w^{t}\left(\sum_{i=1}^{k} A_{i}\right) & \leqslant w^{t}\left(\Re\left(\sum_{i=1}^{k} A_{i}\right)\right) \quad(\text { by Lemma 6) } \\
& =\left\|\Re\left(\sum_{i=1}^{k} A_{i}\right)\right\|^{t} \\
& =\left\|\left(\Re\left(\sum_{i=1}^{k} A_{i}\right)\right)^{t}\right\| \\
& \leqslant\left\|\sum_{i=1}^{k} \Re \Re^{t}\left(A_{i}\right)\right\| \quad(\text { by Lemma 7) } \\
& \leqslant\left\|\sum_{i=1}^{k} \Re\left(A_{i}^{t}\right)\right\| \quad(\text { by Lemma 5) } \\
& =\left\|\Re\left(\sum_{i=1}^{k} A_{i}^{t}\right)\right\| \\
& =w\left(\Re\left(\sum_{i=1}^{k} A_{i}^{t}\right)\right) \\
& \leqslant w\left(\sum_{i=1}^{k} A_{i}^{t}\right) \quad(\text { by Lemma 6). }
\end{aligned}
$$

Corollary 1. Let $A \in \mathbb{M}_{n}(\mathbb{C})$ with $W(A) \subset S_{\alpha}$ and $t \in[0,1]$. Then

$$
\cos ^{t}(\alpha) w^{t}(A) \leqslant w\left(A^{t}\right)
$$

Proof. Let $k=1$ in Theorem 6.

REMARK 5. Corollary 1 is a refinement of the left-hand side in (1.10).
Next, we present some relations between $w\left(\sum_{i=1}^{k} A_{i}^{t}\right)$ and $w\left(\left(\sum_{i=1}^{k} A_{i}\right)^{t}\right)$ when A_{i} are sectorial matrices, which can be regarded as a complement of Theorem 6.

Lemma 8. ([4]) Let $A \in \mathbb{M}_{n}(\mathbb{C})$ with $W(A) \subset S_{\alpha}$ and $t \in[-1,0]$. Then

$$
\mathfrak{R}\left(A^{t}\right) \leqslant \mathfrak{R}^{t}(A) \leqslant \cos ^{2 t}(\alpha) \Re\left(A^{t}\right)
$$

Lemma 9. ([16]) Let $A_{1}, A_{2}, \cdots A_{n} \geqslant 0$. Then for every non-negative convex function f on $[0, \infty)$ with $f(0)=0$ and for every unitarily invariant norm $\|\|\cdot\|\|$,

$$
\left\|\mid \sum_{j=1}^{n} f\left(A_{j}\right)\right\|\|\leqslant\|\left\|f\left(\sum_{j=1}^{n} A_{j}\right)\right\|
$$

THEOREM 7. Let $A_{i} \in \mathbb{M}_{n}(\mathbb{C})$ with $W\left(A_{i}\right) \subset S_{\alpha}$ and $t \in[-1,0]$. Then

$$
\sec ^{2 t}(\alpha) \cos (\alpha) w\left(\sum_{i=1}^{k} A_{i}^{t}\right) \leqslant w\left(\left(\sum_{i=1}^{k} A_{i}\right)^{t}\right)
$$

where $i=1,2, \cdots, k$.
Proof. Compute

$$
\begin{aligned}
w\left(\left(\sum_{i=1}^{k} A_{i}\right)^{t}\right) & \geqslant w\left(\Re\left(\left(\sum_{i=1}^{k} A_{i}\right)^{t}\right)\right) \quad(\text { by Lemma 6) } \\
& =\left\|\Re\left(\left(\sum_{i=1}^{k} A_{i}\right)^{t}\right)\right\| \\
& \geqslant \sec ^{2 t}(\alpha)\left\|\left(\Re\left(\sum_{i=1}^{k} A_{i}\right)\right)^{t}\right\| \quad(\text { by Lemma } 8) \\
& =\sec ^{2 t}(\alpha)\left\|\left(\sum_{i=1}^{k} \Re\left(A_{i}\right)\right)^{t}\right\| \\
& \geqslant \sec ^{2 t}(\alpha)\left\|\sum_{i=1}^{k} \Re^{t}\left(A_{i}\right)\right\| \quad(\text { by Lemma 9) } \\
& \geqslant \sec ^{2 t}(\alpha)\left\|\sum_{i=1}^{k} \Re\left(A_{i}^{t}\right)\right\| \quad(\text { by Lemma } 8) \\
& =\sec ^{2 t}(\alpha)\left\|\Re\left(\sum_{i=1}^{k} A_{i}^{t}\right)\right\| \\
& =\sec ^{2 t}(\alpha) w\left(\Re\left(\sum_{i=1}^{k} A_{i}^{t}\right)\right) \\
& \geqslant \sec ^{2 t}(\alpha) \cos (\alpha) w\left(\sum_{i=1}^{k} A_{i}^{t}\right) \quad \text { (by Lemma 6). }
\end{aligned}
$$

We now give a reverse of Theorem 7 .
Theorem 8. Let $A_{i} \in \mathbb{M}_{n}(\mathbb{C})$ with $W\left(A_{i}\right) \subset S_{\alpha}$ and $t \in[0,1]$. Then

$$
w\left(\left(\sum_{i=1}^{k} A_{i}\right)^{t}\right) \leqslant \sec ^{2 t}(\alpha) \sec (t \alpha) w\left(\sum_{i=1}^{k} A_{i}^{t}\right)
$$

where $i=1,2, \cdots, k$.

Proof. We have the following chain of inequalities

$$
\begin{aligned}
w\left(\left(\sum_{i=1}^{k} A_{i}\right)^{t}\right) & \leqslant \sec (t \alpha) w\left(\Re\left(\left(\sum_{i=1}^{k} A_{i}\right)^{t}\right)\right) \quad(\text { by }(1.3) \text { and Lemma 6) } \\
& =\sec (t \alpha)\left\|\Re\left(\left(\sum_{i=1}^{k} A_{i}\right)^{t}\right)\right\| \\
& \leqslant \sec ^{2 t}(\alpha) \sec (t \alpha)\left\|\left(\Re\left(\sum_{i=1}^{k} A_{i}\right)\right)^{t}\right\| \quad(\text { by Lemma 5) } \\
& =\sec ^{2 t}(\alpha) \sec (t \alpha)\left\|\left(\sum_{i=1}^{k} \Re\left(A_{i}\right)\right)^{t}\right\| \\
& \leqslant \sec ^{2 t}(\alpha) \sec (t \alpha)\left\|\sum_{i=1}^{k} \Re^{t}\left(A_{i}\right)\right\| \quad(\text { by Lemma 7) } \\
& \leqslant \sec ^{2 t}(\alpha) \sec (t \alpha)\left\|\sum_{i=1}^{k} \Re\left(A_{i}^{t}\right)\right\| \quad(\text { by Lemma 5) } \\
& =\sec ^{2 t}(\alpha) \sec (t \alpha)\left\|\Re\left(\sum_{i=1}^{k} A_{i}^{t}\right)\right\| \\
& =\sec ^{2 t}(\alpha) \sec (t \alpha) w\left(\Re\left(\sum_{i=1}^{k} A_{i}^{t}\right)\right) \\
& \leqslant \sec ^{2 t}(\alpha) \sec (t \alpha) w\left(\sum_{i=1}^{k} A_{i}^{t}\right) \quad(\text { by Lemma 6). } \square
\end{aligned}
$$

Next, we give some generalizations and further refinements of Schatten p-norms inequalities (1.11) for accretive-dissipative matrices.

Lemma 10. ([10]) Let A, B be positive and f be an increasing convex function on $[0, \infty)$. Then for every unitarily invariant norm $\|\|\cdot\|$,

$$
|||f(|A+i B|)|\|\leqslant\||| f(A+B)|\||\leqslant\||f(\sqrt{2}|A+i B|)|\| .
$$

Lemma 11. ([2]) Let $A_{1}, A_{2}, \cdots A_{n}$ be positive and $p \geqslant 1$. Then

$$
\sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{p} \leqslant\left\|\sum_{j=1}^{n} A_{j}\right\|_{p}^{p} \leqslant n^{p-1} \sum_{j=1}^{n}\left\|A_{j}\right\|_{p}^{p}
$$

THEOREM 9. Let $T_{1}, T_{2}, \cdots T_{n} \in \mathbb{M}_{n}(\mathbb{C})$ be accretive-dissipative. Then for every increasing convex function f on $[0, \infty)$ with $f(0)=0$ and $p \geqslant 1$, we have

$$
\left\|f\left(\sqrt{2}\left|\sum_{j=1}^{n} T_{j}\right|\right)\right\|_{p}^{p} \geqslant \sum_{j=1}^{n}\left\|f\left(\left|T_{j}\right|\right)\right\|_{p}^{p}
$$

Proof. Let $T_{j}=A_{j}+i B_{j}, j=1,2, \cdots, n$, be the Cartesian decompositions of T_{j}. Then we have

$$
\begin{aligned}
\left\|f\left(\sqrt{2}\left|\sum_{j=1}^{n} T_{j}\right|\right)\right\|_{p}^{p} & =\left\|f\left(\sqrt{2}\left|\sum_{j=1}^{n} A_{j}+i \sum_{j=1}^{n} B_{j}\right|\right)\right\|_{p}^{p} \\
& \geqslant\left\|f\left(\sum_{j=1}^{n} A_{j}+\sum_{j=1}^{n} B_{j}\right)\right\|_{p}^{p}(\text { by Lemma 10 }) \\
& =\left\|f\left(\sum_{j=1}^{n}\left(A_{j}+B_{j}\right)\right)\right\|_{p}^{p} \\
& \geqslant\left\|\sum_{j=1}^{n} f\left(A_{j}+B_{j}\right)\right\|_{p}^{p} \quad(\text { by Lemma 9) } \\
& \geqslant \sum_{j=1}^{n}\left\|f\left(A_{j}+B_{j}\right)\right\|_{p}^{p}(\text { by Lemma 11) } \\
& \geqslant \sum_{j=1}^{n}\left\|f\left(\left|A_{j}+i B_{j}\right|\right)\right\|_{p}^{p} \quad(\text { by Lemma 10) } \\
& =\sum_{j=1}^{n}\left\|f\left(\left|T_{j}\right|\right)\right\|_{p}^{p} . \square
\end{aligned}
$$

REMARK 6. The left-hand side in (1.11) follows as a special case of Theorem 9 with $f(t)=t$ and $n=2$.

Lemma 12. ([10]) Let A, B be positive and f be a non-negative increasing concave function on $[0, \infty)$. Then for every unitarily invariant norm $\|\|\cdot\|\|$,

$$
\frac{1}{2}|\|f(2|A+i B|)|\|\leqslant\|| f(A+B)|\||\leqslant\|\mid f(\sqrt{2}|A+i B|)\| \|
$$

THEOREM 10. Let $T_{1}, T_{2}, \cdots T_{n} \in \mathbb{M}_{n}(\mathbb{C})$ be accretive-dissipative. Then for every non-negative increasing concave function f on $[0, \infty)$ and $p \geqslant 1$, we have

$$
\left\|f\left(2\left|\sum_{j=1}^{n} T_{j}\right|\right)\right\|_{p}^{p} \leqslant 2 \cdot n^{p-1} \sum_{j=1}^{n}\left\|f\left(\sqrt{2}\left|T_{j}\right|\right)\right\|_{p}^{p}
$$

Proof. Let $T_{j}=A_{j}+i B_{j}, j=1,2, \cdots, n$, be the cartesian decompositions of T_{j}. Then we have

$$
\begin{aligned}
\frac{1}{2}\left\|f\left(2\left|\sum_{j=1}^{n} T_{j}\right|\right)\right\|_{p}^{p} & =\frac{1}{2}\left\|f\left(2\left|\sum_{j=1}^{n} A_{j}+i \sum_{j=1}^{n} B_{j}\right|\right)\right\|_{p}^{p} \\
& \leqslant\left\|f\left(\sum_{j=1}^{n} A_{j}+\sum_{j=1}^{n} B_{j}\right)\right\|_{p}^{p} \quad(\text { by Lemma 12 })
\end{aligned}
$$

$$
\begin{aligned}
& =\left\|f\left(\sum_{j=1}^{n}\left(A_{j}+B_{j}\right)\right)\right\|_{p}^{p} \\
& \leqslant\left\|\sum_{j=1}^{n} f\left(A_{j}+B_{j}\right)\right\|_{p}^{p} \quad(\text { by Lemma 7) } \\
& \leqslant n^{p-1} \sum_{j=1}^{n}\left\|f\left(A_{j}+B_{j}\right)\right\|_{p}^{p} \quad(\text { by Lemma 11) } \\
& \leqslant n^{p-1} \sum_{j=1}^{n}\left\|f\left(\sqrt{2}\left|A_{j}+i B_{j}\right|\right)\right\|_{p}^{p} \quad(\text { by Lemma 12) } \\
& =n^{p-1} \sum_{j=1}^{n}\left\|f\left(\sqrt{2}\left|T_{j}\right|\right)\right\|_{p}^{p} \quad \square
\end{aligned}
$$

Corollary 2. Let $T, S \in \mathbb{M}_{n}(\mathbb{C})$ be accretive-dissipative and $p \geqslant 1$. Then we have

$$
\|T+S\|_{p}^{p} \leqslant 2^{\frac{p}{2}}\left(\|T\|_{p}^{p}+\|S\|_{p}^{p}\right)
$$

Proof. Let $f(t)=t$ and $n=2$ in Theorem 10.
REMARK 7. Corollary 2 is a refinement of the right-hand side in (1.11).
Next, we give a reverse of (1.12).
Lemma 13. ([20]) Let $A_{1}, A_{2}, \cdots A_{k} \geqslant 0$ and $x_{1}, x_{2}, \cdots, x_{k}$ be positive real numbers with $\sum_{j=1}^{k} x_{j}=1$. Then for every unitarily invariant norm $\|\|\cdot\|\|$ on $M_{n}(\mathbb{C})$,

$$
\left\|\left|\sum_{j=1}^{n} x_{j} f\left(A_{j}\right)\| \| \leqslant\left\|\mid f\left(\sum_{j=1}^{n} x_{j} A_{j}\right)\right\| \|\right.\right.
$$

for every non-negative concave function f on $[0, \infty)$.
THEOREM 11. Let $A_{j} \in \mathbb{M}_{n}(\mathbb{C})$ be such that $W\left(A_{j}\right) \subset S_{\alpha}$ and x_{j} be positive real numbers with $\sum_{j=1}^{k} x_{j}=1$. Then

$$
w^{t}\left(\sum_{j=1}^{k} x_{j} A_{j}\right) \geqslant \cos ^{2 t}(\alpha) \cos (\alpha) w\left(\sum_{j=1}^{k} x_{j} A_{j}^{t}\right)
$$

where $j=1,2, \cdots, k$ and $t \in[0,1]$.
Proof. Compute

$$
\begin{aligned}
w^{t}\left(\sum_{j=1}^{k} x_{j} A_{j}\right) & \geqslant w^{t}\left(\Re\left(\sum_{j=1}^{k} x_{j} A_{j}\right)\right) \quad(\text { by Lemma } 6) \\
& =\left\|\Re\left(\sum_{j=1}^{k} x_{j} A_{j}\right)\right\|^{t}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\|\left(\sum_{j=1}^{k} x_{j} \Re\left(A_{j}\right)\right)^{t}\right\| \\
& \geqslant\left\|\sum_{j=1}^{k} x_{j} \Re^{t}\left(A_{j}\right)\right\|(\text { by Lemma 13) } \\
& \geqslant\left\|\sum_{j=1}^{k} x_{j} \cos ^{2 t}(\alpha) \Re\left(A_{j}^{t}\right)\right\| \quad(\text { by Lemma 5) } \\
& =\cos ^{2 t}(\alpha)\left\|\Re\left(\sum_{j=1}^{k} x_{j} A_{j}^{t}\right)\right\| \\
& =\cos ^{2 t}(\alpha) w\left(\Re\left(\sum_{j=1}^{k} x_{j} A_{j}^{t}\right)\right) \\
& \geqslant \cos ^{2 t}(\alpha) \cos (\alpha) w\left(\sum_{j=1}^{k} x_{j} A_{j}^{t}\right) \quad \text { (by Lemma 6). }
\end{aligned}
$$

Next, we give a reverse of (1.13).

THEOREM 12. Let $A_{j} \in \mathbb{M}_{n}(\mathbb{C})$ be such that $W\left(A_{j}\right) \subset S_{\alpha}$ and x_{j} be positive real numbers with $\sum_{j=1}^{k} x_{j}=1$. Then

$$
w\left(\left(\sum_{j=1}^{k} x_{j} A_{j}\right)^{t}\right) \geqslant \cos ^{2 t}(\alpha) \cos (\alpha) w\left(\sum_{j=1}^{k} x_{j} A_{j}^{t}\right)
$$

where $j=1,2, \cdots, k$ and $t \in[0,1]$.

Proof. We have

$$
\begin{aligned}
w\left(\left(\sum_{j=1}^{k} x_{j} A_{j}\right)^{t}\right) & \geqslant w\left(\Re\left(\sum_{j=1}^{k} x_{j} A_{j}\right)^{t}\right) \quad(\text { by Lemma 6) } \\
& =\left\|\Re\left(\sum_{j=1}^{k} x_{j} A_{j}\right)^{t}\right\| \\
& \geqslant\left\|\Re \Re^{t}\left(\sum_{j=1}^{k} x_{j} A_{j}\right)\right\| \quad(\text { by Lemma 5) } \\
& =\left\|\left(\sum_{j=1}^{k} x_{j} \Re\left(A_{j}\right)\right)^{t}\right\| \\
& \geqslant \cos ^{2 t}(\alpha) \cos (\alpha) w\left(\sum_{j=1}^{k} x_{j} A_{j}^{t}\right) \quad(\text { by Theorem 11). }
\end{aligned}
$$

REMARK 8. As we can see that inequalities (1.3) is stronger than (1.2). However, it should be noticed that when $t \in[-1,0]$, inequality (1.3) implies $\alpha=0$ instead of $\alpha \in\left[0, \frac{\pi}{2}\right)$ with the definition of S_{α}. Now, under the same conditions as in (1.13), we rewrite it as follows:

$$
\begin{equation*}
w\left(\left(\sum_{j=1}^{k} x_{j} A_{j}\right)^{t}\right) \leqslant \cos ^{2 t}(\alpha) \sec (\alpha) w\left(\sum_{j=1}^{k} x_{j} A_{j}^{t}\right) \tag{2.5}
\end{equation*}
$$

The proof of (2.5) is consistent with the rest of (1.13).

Acknowledgement. The authors wish to express their sincere thanks to the referee for his/her detailed and helpful suggestions which have improved the manuscript.

REFERENCES

[1] Y. Bedrani, F. Kittaneh, M. Sababheh, Numerical radii of accretive matrices, Linear Multilinear Algebra 69 (2021), 957-970.
[2] R. Bhatia, F. Kittaneh, Cartesian decompositions and Schatten norms, Linear Algebra Appl., 318 (2000), 109-116.
[3] J. C. Bourin, M. Uchiyama, A matrix subadditivity inequality for $f(A+B)$ and $f(A)+f(B)$, Linear Algebra Appl., 423 (2007), 512-518.
[4] D. Choi, T. Y. Tam, P. Zhang, Extensions of Fischer's inequality, Linear Algebra Appl., 569 (2019), 311-322.
[5] S. DRURY, Principal powers of matrices with positive definite real part, Linear Multilinear Algebra 63 (2015), 296-301.
[6] M. El-Haddad, F. Kittaneh, Numerical radius inequalities for Hilbert space operators II, Stud. Math., 182 (2007), 133-140.
[7] S. Furuichi, H. R. Moradi, Advances in mathematical inequality, De Gruyter, 2020.
[8] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, Cambridge, 1988.
[9] Z. Heydarbeygi, M. Sababheh, H. R. Moradi, A Convex treatment of numerical radius inequalities, Czechoslovak Math. J., 72 (2022), 601-614.
[10] M. R. JABBARZADEH, V. KALEIBARY, Inequalities for accretive-dissipative block matrices involving convex and concave functions, Linear Multilinear Algebra 70 (2022), 395-410.
[11] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Stud. Math., 168 (2005), 73-80.
[12] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Stud. Math., 158 (2003), 11-17.
[13] F. Kittaneh, M. S. Moslehian, T. Yamazaki, Cartesian decomposition and numerical radius inequalities, Linear Algebra Appl., 471 (2015), 46-53.
[14] F. Kittaneh, M. Sakkijha, Inequalities for accretive-dissipative matrices, Linear Multilinear Algebra 67 (2019), 1037-1042.
[15] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci., 24 (1988), 283-293.
[16] T. Kosem, Inequalities between $\|f(A+B)\|$ and $\|f(A)+f(B)\|$, Linear Algebra Appl., 418 (2006), 153-160.
[17] B. Mond and J. PečARIĆ, Remarks on Jensen's inequality for operator convex functions, Ann. Univ. Mariae Curie-Sklodowska Sec. A, 47 (1993), 96-103.
[18] L. Nasiri, S. Furuichi, On a reverse of the Tan-Xie inequality for sector matrices and its applications, J. Math. Inequal., 15 (2021), 1425-1434.
[19] A. Sheikhhosseini, M. Khosravi, M. Sababheh, The weighted numerical radius, Ann. Funct. Anal., 13 (2022), Paper No. 3, 15 pp.
[20] M. Uchiyama, Subadditivity of eigenvalue sums, Proc. Amer. Math. Soc., 134 (2006), 1405-1412.
[21] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, Stud. Math., 178 (2007), 83-89.
[22] C. YANG, More inequalities on numerical radii of sectorial matrices, AIMS Math., 6 (2021), 39273939.
(Received May 10, 2023)
Yonghui Ren
School of Mathematics and Statistics
Zhoukou Normal University
Zhoukou 466001, China
e-mail: yonghuiren1992@163.com
Changsen Yang
College of Mathematics and Information Science
Henan Normal University
Xinxiang 453007, China
e-mail: yangchangsen0991@sina.com

