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A CLASS OF HALF–DISCRETE HILBERT–TYPE INEQUALITIES IN

THE WHOLE PLANE INVOLVING SOME CLASSICAL KERNELS

MINGHUI YOU

(Communicated by M. Krnić)

Abstract. In this work, we first construct a half-discrete kernel function, which is defined in the
whole plane and involves both the homogeneous and the non-homogeneous cases. By employing
the method of weight coefficient and some classical techniques of real analysis, a class of half-
discrete Hilbert-type inequalities with the newly constructed kernel as well as the equivalent
inequalities of Hardy’s type are established. In addition, we prove that all the constant factors
in the newly established inequalities are the best possible. Lastly, assigning special values to
the parameters, and using the partial fraction expansions of cotangent function and cosecant
function, some new half-discrete Hilbert-type inequalities with special kernels defined in the
whole plane are presented at the end of the paper.

1. Introduction

In this paper, it is assumed that p > 1, 1
p + 1

q = 1, Z
0 := Z\ {0} ,

Ω :=
{

x : x =
2l +1
2m+1

, l,m ∈ Z

}
,

Θ :=
{

x : x =
2l

2m+1
, l,m ∈ Z

}
.

Let aaa = {am}∞
m=1 ∈ l2 , bbb = {bn}∞

n=1 ∈ l2 be two real number sequences, then

∞

∑
n=1

∞

∑
m=1

ambn

m+n
< π‖aaa‖2‖bbb‖2, (1.1)

where the constant factor π is the best possible.
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Inequality (1.1) is normally named as Hilbert double series inequality [3], which
was first put forward by the famous mathematician D. Hilbert in 1908. Schur estab-
lished an integral analogy of (1.1) in 1911, that is,

∫ ∞

0

∫ ∞

0

f (x)g(y)
x+ y

dxdy < π‖ f‖2‖g‖2, (1.2)

where f ,g ∈ L2(R+) , and the constant factor π in (1.2) is also the best possible.
For more than one hundred years, especially since the 1990s, the study of Hilbert

inequality has been a hot topic for researchers of analysis, and a variety of extended
forms of (1.1) and (1.2) were established, such as the following one provided by M.
Krnić and J. Pečarić [4]:

∞

∑
n=1

∞

∑
m=1

ambn

(m+n)β < B

(
β
2

,
β
2

)
‖aaa‖p,μ‖bbb‖q,ν , (1.3)

where 0 < β � 4, μm = mp(1−β/2)−1 , νn = nq(1−β/2)−1 , and B(x,y) is the beta function
[11]. Additionally, an extension of (1.2) was established by Yang [16], that is,

∫ ∞

0

∫ ∞

0

f (x)g(y)
xβ + yβ dxdy <

π
β sinβ1π

‖ f‖p,μ‖g‖q,ν , (1.4)

where β ,β1,β2 > 0, β1 + β2 = 1, μ(x) = xp(1−β1β )−1, and ν(y) = yq(1−β2β )−1 .
Such inequalities as (1.3) and (1.4) are commonly named as Hilbert-type inequali-

ties. With regard to other extended forms of (1.1) and (1.2), we refer to [5,15,19,24,25,
6,17]. Furthermore, by introducing new kernel functions, and considering the homoge-
neous and the non-homogeneous cases, high-dimensional extension, reverse inequality
as well as the more accurate form, a variety of new Hilbert-type inequalities were es-
tablished in the past 20 years (see [13, 14, 8, 9, 27, 26, 23, 21, 2]). It should be pointed
out that such type of inequalities have already grown into a vast theoretical system and
are crucial to the research of analysis.

Generally, if a integral Hilbert-type inequality involving a homogeneous kernel
holds, then it can be obtained that a Hilbert-type inequality involving a corresponding
non-homogeneous kernel holds, such as the following one which is the non-homoge-
neous form of inequality (1.2) [17]:

∫ ∞

0

∫ ∞

0

f (x)g(y)
1+ xy

dxdy < π‖ f‖2‖g‖2, (1.5)

where the constant factor π is the best possible. The non-homogeneous form of (1.1)
can also be proved, but the constant factor is not yet to be proved to be the best possible
(see [17], p. 315). In 2005, Yang [12] established the half-discrete form of (1.5) and
the constant factor is proved to be the best possible, that is,

∫ ∞

0
f (x)

∞

∑
n=1

an

1+nx
dx < π‖ f‖2‖aaa‖2. (1.6)
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For some other half-discrete Hilbert-type inequalities with new kernels and best possi-
ble constant factors, we refer to [1, 7, 20, 18, 10, 22].

In this work, the main objective is to establish a class of half-discrete Hilbert-type
inequalities with the kernel functions defined in the whole plane and involving both the
homogeneous and the non-homogeneous cases, such as

∫ ∞

−∞
f (x) ∑

n∈Z0

an

x2α +(xn)α +n2α dx < γ0‖ f‖p,μ‖aaa‖q,ν , (1.7)

∫ ∞

−∞
f (x) ∑

n∈Z0

an

[1± (xn)α +(xn)2α ]max
{

1,(xn)6α
}dx

<

(
γ0 − 8

5α

)
‖ f‖p,μ‖aaa‖q,ν (α ∈ Ω), (1.8)

where μ(x) = |x|p(1−α)−1 , νn = |n|q(1−α)−1 , 0 < α < 1
2 , γ0 = 2

√
3π

3α for α ∈ Ω , and

γ0 = 4
√

3π
9α for α ∈ Θ .

In what follows, we will construct a more general kernel function with several
parameters, which includes the kernels in (1.7) and (1.8). And then, a half-discrete
Hilbert-type inequality and its equivalent forms are established. The paper is organized
as follows: detailed lemmas are presented in Section 2, and main theorems and some
corollaries are presented in Section 3 and Section 4, respectively.

2. Definitions and lemmas

LEMMA 2.1. Assume that τ ∈ {1,−1} , κ ∈ (0,1) , γ ∈ R
+∪{0} , and α,β ∈ Ω .

Let 0 < α < β and α + κ < 1 . Define

K(z) :=
1+ τzα(

1+ τzβ
)
max{1, |z|γ} , (2.1)

where z∈R\{1} for τ =−1, and z∈R\{−1} for τ = 1. Let K(1) := α
β for τ =−1 ,

and K(−1) := α
β for τ = 1 . Then

H(z) := K(z) |z|κ−1

decreases monotonically with z for z ∈ R
+ , and increases monotonically with z for

z ∈ R
− .

Proof. To begin with, we consider the case where τ = 1 and z ∈ (0,1) . Then

H(z) =
zκ−1 + zα+κ−1

1+ zβ . (2.2)
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Taking the derivative of (2.2), and observing that κ ∈ (0,1) and α + κ < 1, we have

dH
dz

=
zκ−2(

1+ zβ
)2 [(κ −1)+ (κ−1+ α)zα

+(κ −1−β )zβ +(κ −1+ α −β )zα+β ]< 0. (2.3)

In addition, if τ = 1 and z ∈ (1,∞) , in view of γ ∈ R
+∪{0} , then it can also be proved

that dH
dz < 0. Therefore, the continuous function H(z)(z ∈ R

+) decreases monotoni-
cally with z (z ∈ R

+) for τ = 1.
Furthermore, we will prove that H(z) increases monotonically with z (z ∈ R

−)
for τ = 1. In fact, setting u = −z , and observing that α,β ∈ Ω , we have

1+ zα

1+ zβ =
1−uα

1−uβ := L(u) (u ∈ R
+ \ {1}). (2.4)

Taking the derivative of L(u) , we have

dL
du

=
−uα−1(
1−uβ

)2
[
α +(β −α)uβ −βuβ−α

]
:=

−uα−1(
1−uβ

)2 g(u).

It is obvious that

dg
du

= (β 2−αβ )uβ−α−1(uα −1). (2.5)

Since 0 < α < β , it follows that dg
du < 0 when u ∈ (0,1) , and dg

du > 0 when u ∈ (1,∞) .
Hence, g(u) � g(1) = 0, and it implies that dL

du < 0 (u �= 1) . Let L(1) := α
β , then L(u)

is continuous on R
+ , and decreases monotonically with u (u ∈ R

+) . Therefore, by
(2.4), it is obvious that 1+zα

1+zβ increases monotonically with z (z ∈ R
−) . Additionally,

since κ ∈ (0,1] and γ ∈ R
+ ∪{0} , it can be shown that |z|κ−1 and |z|κ−γ−1 increases

monotonically with z (z ∈ R
−) , and it follows therefore that H(z) increases monoton-

ically with z (z ∈ R
−) .

Lemma 2.1 is proved for τ = 1. Furthermore, based on the above discussions, it
can also be proved that Lemma 2.1 holds true for τ = −1. �

LEMMA 2.2. Assume that τ ∈ {1,−1} , κ ∈ (0,1) , γ ∈ R
+∪{0} and α,β ∈ Θ .

Let 0 < α < β for τ = −1 . Let 0 � α < β and α + κ < 1 for τ = 1 . Define

K(z) :=
1+ τzα(

1+ τzβ
)
max{1, |z|γ} , (2.6)

where z ∈ R for τ = 1 , z ∈ R \ {1,−1} for τ = −1 , and K(1) = K(−1) := α
β when

τ = −1 . Then

H(z) := K(z) |z|κ−1

decreases monotonically with z for z ∈ R
+ , and increases monotonically with z for

z ∈ R
− .
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Proof. Since α,β ∈Θ , it is easy to show that K(z) is an even function. If τ =−1,
and z ∈ R

+ , then

H(z) =
1− zα

1− zβ
zκ−1

max{1,zγ} .

From the discussions in Lemma 2.1, it can be proved that H(z) decreases with z (z ∈
R

+) . And it is obvious that H(z) increases with z (z ∈R
−) according to the symmetry

of even function. Lemma 2.2 is proved for τ = −1. Similarly, Lemma 2.2 can easily
be proved for τ = 1. �

LEMMA 2.3. Assume that τ ∈ {1,−1} , κ ∈ (0,1) , γ ∈ R
+∪{0} and α,β ∈ Ω .

Suppose that 0 < α < β , α + κ < β + γ , and K(z) is defined by (2.1). Define

C(α,β ,γ,κ) = 2
∞

∑
i=0

(
1

2iβ + κ
− 1

2iβ +2β + γ −κ

)

+2
∞

∑
i=0

(
1

2iβ + β + γ −α −κ
− 1

2iβ + α + β + κ

)
. (2.7)

Then ∫ ∞

−∞
K(z) |z|κ−1 dz = C(α,β ,γ,κ). (2.8)

Proof. we first consider the case where τ = −1. Observing that α,β ∈ Ω , we
have∫ ∞

−∞
K(z) |z|κ−1 dz =

∫
[−1,1]

1− zα

1− zβ |z|κ−1 dz+
∫

R\[−,1]

1− zα

1− zβ |z|κ−γ−1 dz

=
∫ 1

0

(
1− zα

1− zβ +
1+ zα

1+ zβ

)
zκ−1dz

+
∫ ∞

1

(
1− zα

1− zβ +
1+ zα

1+ zβ

)
zκ−γ−1dz

= 2

[∫ 1

0

zκ−1− zα+β+κ−1

1− z2β dz+
∫ ∞

1

zκ−γ−1 − zα+β+κ−γ−1

1− z2β dz

]

= 2
∫ 1

0

zκ−1− z2β+γ−κ−1 + zβ+γ−α−κ−1− zα+β+κ−1

1− z2β dz. (2.9)

Expanding 1
1−z2β (z ∈ (0,1)) into a power series at point z = 0, employing Lebesgue

term-by-term integration theorem, and observing that α + κ < β + γ , it follows that

∫ 1

0

zκ−1 − z2β+γ−κ−1

1− z2β dz =
∫ 1

0

∞

∑
i=0

(
z2iβ+κ−1− z2iβ+2β+γ−κ−1

)
dz

=
∞

∑
i=0

(
1

2iβ + κ
− 1

2iβ +2β + γ −κ

)
. (2.10)
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Similarly, it can also be obtained that

∫ 1

0

zβ+γ−α−κ−1− zα+β+κ−1

1− z2β dz

=
∞

∑
i=0

(
1

2iβ + β + γ −α −κ
− 1

2iβ + α + β + κ

)
. (2.11)

Applying (2.10) and (2.11) to (2.9), we arrive at (2.8). Lemma 2.3 is proved. �

LEMMA 2.4. Assume that τ ∈ {1,−1} , κ ∈ (0,1) ,γ ∈ R
+ ∪{0} and α,β ∈ Θ .

Let 0 � α < β , α + κ < β + γ , and α �= 0 for τ = −1 . Suppose that K(z) is defined
by (2.6), and

c(α,β ,γ,κ) = 2
∞

∑
i=0

(
(−τ)i

iβ + κ
+

τ(−τ)i

iβ + β + γ −κ

)

+2
∞

∑
i=0

(
(−τ)i

iβ + β + γ −α −κ
+

τ(−τ)i

iβ + α + κ

)
. (2.12)

Then ∫ ∞

−∞
K(z) |z|κ−1 dz = c(α,β ,γ,κ). (2.13)

Proof. Firstly, consider the case where τ = −1. It is obvious that K(z) is an even
function owing to α,β ∈ Θ , and therefore we have∫ ∞

−∞
K(z) |z|κ−1 dz = 2

∫ 1

0

1− zα

1− zβ zκ−1dz+2
∫ ∞

1

1− zα

1− zβ zκ−γ−1dz

= 2
∫ 1

0

zκ−1− zα+κ−1

1− zβ dz+2
∫ 1

0

zβ+γ−α−κ−1− zβ+γ−κ−1

1− zβ dz

= 2
∫ 1

0

zκ−1− zβ+γ−κ−1 + zβ+γ−α−κ−1− zα+κ−1

1− zβ dz. (2.14)

Expand 1
1−zβ (z ∈ (0,1)) into a power series at point z = 0, and employ Lebesgue

term-by-term integration theorem, then it can be proved that

∫ 1

0

zκ−1 − zβ+γ−κ−1

1− zβ dz =
∞

∑
i=0

(
1

iβ + κ
− 1

iβ + β + γ −κ

)
, (2.15)

∫ 1

0

zβ+γ−α−κ−1− zα+κ−1

1− zβ dz =
∞

∑
i=0

(
1

iβ + β + γ −α −κ
− 1

iβ + α + κ

)
. (2.16)

Plugging (2.15) and (2.16) back into (2.14), we get (2.13) for τ = −1.
If τ = 1, then we have
∫ ∞

−∞
K(z) |z|κ−1 dz = 2

∫ 1

0

zκ−1 + zβ+γ−κ−1 + zβ+γ−α−κ−1 + zα+κ−1

1+ zβ dz. (2.17)
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Expanding 1
1+zβ (z ∈ (0,1)) into a power series at point z = 0, and using Lebesgue

term-by-term integration theorem, then we obtain

∫ 1

0

zκ−1 + zβ+γ−κ−1

1+ zβ dz =
∞

∑
i=0

(
(−1)i

iβ + κ
+

(−1)i

iβ + β + γ −κ

)
, (2.18)

∫ 1

0

zβ+γ+α−κ−1 + zα+κ−1

1+ zβ dz =
∞

∑
i=0

(
(−1)i

iβ + β + γ −α −κ
+

(−1)i

iβ + α + κ

)
. (2.19)

Applying (2.18) and (2.19) to (2.17), we arrive at (2.13) for τ = 1. Lemma 2.4 is
proved. �

LEMMA 2.5. Assume that τ ∈ {1,−1} , α,β ∈ Ω , γ ∈ R
+ ∪ {0} , κ ∈ (0,1) ,

δ ∈ Ω , and θ ∈ (0,1]∩Ω . Let α,β ,κ be such that 0 < α < β , α + κ < 1 , and K(z)
is defined by (2.1). Set

âaa := {ân}n∈Z0 :=
{
|n|κθ−1− 2θ

ql

}
n∈Z0

,

f̂ (x) :=

{
|x|κδ−1+ 2δ

pl x ∈ F

0 x ∈ R\F
,

where l is a sufficiently large natural number, and F :=
{

x : |x| δ
|δ | < 1

}
. Then

Î : = ∑
n∈Z0

ân

∫ ∞

−∞
K
(
xδ nθ

)
f̂ (x)dx =

∫ ∞

−∞
f̂ (x) ∑

n∈Z0

K
(
xδ nθ

)
ândx

>
l

|δθ |
(∫

[−1,1]
K(z) |z|κ−1+ 2

pl dz+
∫

R\[−1,1]
K(z) |z|κ−1− 2

ql dz

)
. (2.20)

Proof. Let F+ := {x : x ∈ F ∩R
+},F− := {x : x ∈ F ∩R

−}. Then

Î =
∫

x∈F−
f̂ (x) ∑

n∈Z+
ânK

(
xδ nθ

)
dx+

∫
x∈F−

f̂ (x) ∑
n∈Z−

ânK
(
xδ nθ

)
dx

+
∫

x∈F+
f̂ (x) ∑

n∈Z+
ânK

(
xδ nθ

)
dx+

∫
x∈F+

f̂ (x) ∑
n∈Z−

ânK
(
xδ nθ

)
dx

:= I1 + I2 + I3 + I4.

If x ∈ F− and n ∈ Z
+ , then xδ nθ < 0 owing to δ ,θ ∈ Ω . By Lemma 2.1, it can be

proved that H
(
xδ nθ) decreases with n (n∈ Z

+) . Furthermore, since θ ∈ (0,1] , it can

also be proved that |n|θ−1− 2θ
ql decreases with n (n ∈ Z

+) . It implies that

ânK
(
xδ nθ

)
= |x|δ (1−κ) H

(
xδ nθ

)
|n|θ−1− 2θ

ql
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decreases with n (n ∈ Z
+) for a fixed x (x ∈ F−) . it follows therefore that

I1 >

∫
x∈F−

|x|κδ−1+ 2δ
pl

∫ ∞

1
K
(
xδ yθ

)
|y|κθ−1− 2θ

ql dydx := Q1.

Similar discussion yields

I2 >

∫
x∈F−

|x|κδ−1+ 2δ
pl

∫ −1

−∞
K
(
xδ yθ

)
|y|κθ−1− 2θ

ql dydx := Q2,

I3 >
∫

x∈F+
|x|κδ−1+ 2δ

pl

∫ ∞

1
K
(
xδ yθ

)
|y|κθ−1− 2θ

ql dydx := Q3,

I4 >
∫

x∈F+
|x|κδ−1+ 2δ

pl

∫ −1

−∞
K
(
xδ yθ

)
|y|κθ−1− 2θ

ql dydx := Q4.

Consider the case where δ < 0, that is, δ ∈ Ω ∩ R
− , then F− = F ∩ R

− =
(−∞,−1) . Letting xδ yθ = z , and observing that x−

δ
θ = −|x|− δ

θ (x < 0) and z
1
θ −1 =

|z| 1
θ −1 (z < 0) , we have

Q1 =
∫ −1

−∞
|x|κδ−1+ 2δ

pl

∫ ∞

1
K
(
xδ yθ

)
|y|κθ−1− 2θ

ql dydx

=
1
θ

∫ −1

−∞
|x|−1+ 2δ

l

∫ xδ

−∞
K(z) |z|κ−1− 2

ql dzdx

=
1
θ

∫ −1

−∞
|x|−1+ 2δ

l

∫ −1

−∞
K(z) |z|κ−1− 2

ql dzdx

+
1
θ

∫ −1

−∞
|x|−1+ 2δ

l

∫ xδ

−1
K(z) |z|κ−1− 2

ql dzdx

=
l

2 |δθ |
∫ −1

−∞
K(z) |z|κ−1− 2

ql dz

+
1
θ

∫ −1

−∞
|x|−1+ 2δ

l

∫ xδ

−1
K(z) |z|κ−1− 2

ql dzdx. (2.21)

Applying Fubini’s theorem to (2.21), we have

Q1 =
l

2 |δθ |
∫ −1

−∞
K(z) |z|κ−1− 2

ql dz+
1
θ

∫ 0

−1
K(z) |z|κ−1− 2

ql

∫ z1/δ

−∞
|x|−1+ 2δ

l dxdz

=
l

2 |δθ |
(∫ −1

−∞
K(z) |z|κ−1− 2

ql dz+
∫ 0

−1
K(z) |z|κ−1+ 2

pl dz

)
.

Similarly, it can be obtained that Q4 = Q1 , and

Q2 = Q3 =
l

2 |δθ |
(∫ ∞

1
K(z) |z|κ−1− 2

ql dz+
∫ 1

0
K(z) |z|κ−1+ 2

pl dz

)
.

It follows therefore that

Î > Q1 +Q2 +Q3 +Q4

=
l

|δθ |
(∫

[−1,1]
K(z) |z|κ−1+ 2

pl dz+
∫

R\[−1,1]
K(z) |z|κ−1− 2

ql dz

)
.
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Thus, (2.20) is proved for δ < 0. Similarly, it can also be proved that (2.20) holds true
for δ > 0. �

REMARK 2.6. Assume that τ ∈ {1,−1} , α,β ∈ Θ , γ ∈ R
+ ∪{0} , κ ∈ (0,1) ,

δ ∈ Ω , and θ ∈ (0,1]∩Ω . Let 0 < α < β for τ = −1. Let 0 � α < β and α +κ < 1
for τ = 1. Let K(z) be defined by (2.6), and âaa , f̂ (x) be defined by Lemma 2.5. Then
it can also be proved (2.20) holds true from the proof of Lemma 2.5.

LEMMA 2.7. Let z1,z2 > 0 , z1 + z2 = z, and ψ(x) = cotx . Then

ψ
(

z1π
z

)
=

z
π

∞

∑
i=0

(
1

zi+ z1
− 1

zi+ z2

)
. (2.22)

Proof. Observing that ψ(x) = cotx (0 < x < π) can be written as a partial fraction
expansion [11] as follows:

ψ(x) =
1
x

+
∞

∑
i=1

(
1

x+ iπ
+

1
x− iπ

)
,

and setting x = z1π
z , we have

ψ
(

z1π
z

)
=

z
π

[
1
z1

+
∞

∑
i=1

(
1

zi+ z1
+

1
z1 − zi

)]

=
z
π

lim
n→∞

(
n

∑
i=0

1
zi+ z1

+
n

∑
i=1

1
z1 − zi

)

=
z
π

lim
n→∞

(
n

∑
i=0

1
zi+ z1

−
n−1

∑
i=0

1
zi+ z2

)

=
z
π

lim
n→∞

[
n

∑
i=0

(
1

zi+ z1
− 1

zi+ z2

)
+

1
zn+ z2

]

=
z
π

∞

∑
i=0

(
1

zi+ z1
− 1

zi+ z2

)
.

We arrive at (2.22), and Lemma 2.7 is proved. �

LEMMA 2.8. Let z1,z2 > 0 , z1 + z2 = z, and φ(x) = cscx . Then

φ
(

z1π
z

)
=

z
π

∞

∑
i=0

(−1)i
(

1
zi+ z1

+
1

zi+ z2

)
. (2.23)

Proof. Write φ(x) = cscx (0 < x < π) in the form of partial fraction expansion
[11] as follows:

φ(x) =
1
x

+
∞

∑
i=1

(−1)i
(

1
x+ iπ

+
1

x− iπ

)
.
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Setting x = z1π
z , we have

φ
(

z1π
z

)
=

z
π

[
1
z1

+
∞

∑
i=1

(−1)i
(

1
zi+ z1

+
1

z1 − zi

)]

=
z
π

lim
n→∞

(
n

∑
i=0

(−1)i

zi+ z1
+

n

∑
i=1

(−1)i

z1− zi

)

=
z
π

lim
n→∞

(
n

∑
i=0

(−1)i

zi+ z1
+

n−1

∑
i=0

(−1)i

zi+ z2

)

=
z
π

lim
n→∞

[
n

∑
i=0

(−1)i
(

1
zi+ z1

+
1

zi+ z2

)
− (−1)n

zn+ z2

]

=
z
π

∞

∑
i=0

(−1)i
(

1
zi+ z1

+
1

zi+ z2

)
. (2.24)

Relation (2.23) follows by (2.24) obviously, and Lemma 2.8 is proved. �

3. Main results

THEOREM 3.1. Assume that τ ∈ {1,−1} , α,β ∈ Ω , γ ∈ R
+ ∪{0} , κ ∈ (0,1) ,

δ ∈Ω , and θ ∈ (0,1]∩Ω . Let α,β ,κ be such that 0< α < β , and α +κ <min{1,β +
γ} . Suppose that μ(x) = |x|p(1−κδ )−1 , νn = |n|q(1−κθ)−1 . Let f (x),an > 0 with f (x) ∈
Lp,μ(R) , and aaa = {an}n∈Z0 ∈ lq,ν . Let K(z) and C(α,β ,γ,κ) be defined by (2.1) and
(2.7), respectively. Then

∑
n∈Z0

an

∫ ∞

−∞
K
(
xδ nθ

)
f (x)dx =

∫ ∞

−∞
f (x) ∑

n∈Z0

K
(
xδ nθ

)
andx

< |δ |− 1
q θ− 1

pC(α,β ,γ,κ)‖ f‖p,μ‖aaa‖q,ν , (3.1)

where the constant factor |δ |− 1
q θ− 1

pC(α,β ,γ,κ) in (3.1) is the best possible.

Proof. Let K̂
(
xδ yθ) := K

(
xδ nθ) , g(y) := an , and h(y) := |n| when y∈ [n,n+1)

(n ∈ Z
−) . Let K̂

(
xδ yθ) := K

(
xδ nθ) , g(y) := an , and h(y) := n when y ∈ [n− 1,n)

(n ∈ Z
+) . By Hölder’s inequality, we have

∑
n∈Z0

an

∫ ∞

−∞
K
(
xδ nθ

)
f (x)dx =

∫ ∞

−∞
f (x) ∑

n∈Z0

K
(
xδ nθ

)
andx

=
∫ ∞

−∞

∫ ∞

−∞
K̂
(
xδ yθ

)
f (x)g(y)dxdy

=
∫ ∞

−∞

∫ ∞

−∞

[
K̂
(
xδ yθ

)]1/p
[h(y)](κθ−1)/p |x|(1−κδ )/q f (x)

×
[
K̂
(
xδ yθ

)]1/q |x|(κδ−1)/q [h(y)](1−κθ)/pg(y)dxdy
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�
{∫ ∞

−∞

∫ ∞

−∞
K̂
(
xδ yθ

)
[h(y)]κθ−1 |x|p(1−κδ )/q f p(x)dydx

}1/p

×
{∫ ∞

−∞

∫ ∞

−∞
K̂
(
xδ yθ

)
|x|κδ−1 [h(y)]q(1−κθ)/pgq(y)dxdy

}1/q

=
[∫ ∞

−∞
ω1(x) |x|p(1−κδ )/q f p(x)dx

]1/p
[

∑
n∈Z0

ω2(n) |n|q(1−κθ)/p aq
n

]1/q

, (3.2)

where

ω1(x) = ∑
n∈Z0

K
(
xδ nθ

)
|n|κθ−1 ,

ω2(n) =
∫ ∞

−∞
K
(
xδ nθ

)
|x|κδ−1 dx.

Observing that θ ∈ (0,1] , it is easy to show that |n|θ−1 decreases monotonically with
n (n ∈ Z

+) and increases monotonically with n (n ∈ Z
−) . Furthermore, in view of

δ ,θ ∈ Ω , it follows from Lemma 2.1 that H
(
xδ nθ) decreases monotonically with

n(n ∈ Z
+) and increases monotonically with n(n ∈ Z

−) , whether x > 0 or x < 0.
Hence,

K
(
xδ nθ

)
|n|κθ−1 = |x|δ−κδ H

(
xδ nθ

)
|n|θ−1

decreases monotonically with n(n∈ Z
+) and increases monotonically with n (n ∈ Z

−)
for a fixed x . It follows therefore that

ω1(x) = ∑
n∈Z0

K
(
xδ nθ

)
|n|κθ−1 <

∫ ∞

−∞
K
(
xδ yθ

)
|y|κθ−1 dy.

Setting xδ yθ = z , and supposing that x < 0, we have x−
δ
θ =−|x|− δ

θ and z
1
θ −1 = |z| 1

θ −1

owing to δ ,θ ∈ Ω . It follows that

ω1(x) <
∫ ∞

−∞
K
(
xδ yθ

)
|y|κθ−1 dy =

|x|−κδ

θ

∫ ∞

−∞
K(z) |z|κ−1 dz. (3.3)

If x > 0, then (3.3) can also be proved. Furthermore, setting xδ nθ = z , it follows that

ω2(n) =
∫ ∞

−∞
K
(
xδ nθ

)
|x|κδ−1 dx =

|n|−κθ

|δ |
∫ ∞

−∞
K(z) |z|κ−1 dz. (3.4)

Apply (3.3) and (3.4) to (3.2), and use (2.8), then we arrive at (3.1).

In what follows, we will prove that the constant factor |δ |− 1
q θ− 1

pC(α,β ,γ,κ) in
(3.1) is the best possible. In fact, if there exists a constant T which satisfies

0 < T � |δ |− 1
q θ− 1

pC(α,β ,γ,κ), (3.5)
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and

∑
n∈Z0

an

∫ ∞

−∞
K
(
xδ nθ

)
f (x)dx =

∫ ∞

−∞
f (x) ∑

n∈Z0

K
(
xδ nθ

)
andx

< T‖ f‖p,μ‖aaa‖q,ν . (3.6)

Let an and f (x) in (3.6) be replaced by ân and f̂ (x) defined in Lemma 2.5, respec-
tively, then we have

∑
n∈Z0

ân

∫ ∞

−∞
K
(
xδ nθ

)
f̂ (x)dx =

∫ ∞

−∞
f̂ (x) ∑

n∈Z0

K
(
xδ nθ

)
ândx

< T‖ f̂‖p,μ‖âaa‖q,ν

= T

(
2
∫

F+
x

2δ
l −1dx

) 1
p
(

2+2
∞

∑
n=2

n
−2θ

l −1

) 1
q

< T

(
2
∫

F+
x

2δ
l −1dx

) 1
p
(

2+2
∫ ∞

1
x−

2θ
l −1dx

) 1
q

= T

(
l
|δ |
) 1

p
(

2+
l
θ

) 1
q

. (3.7)

Combining (2.20) and (3.7), we have∫
[−1,1]

K(z) |z|κ−1+ 2
pl dz+

∫
R\[−1,1]

K(z) |z|κ−1− 2
ql dz

< T |δθ |
(

1
|δ |
) 1

p
(

2
l

+
1
θ

) 1
q

. (3.8)

Applying Fatou’s lemma to (3.8), and using (2.8), it follows that

C(α,β ,γ,κ) =
∫ ∞

−∞
K(z) |z|κ−1 dz

=
∫

[−1,1]
lim
l→∞

K(z) |z|κ−1+ 2
pl dz+

∫
R\[−1,1]

lim
l→∞

K (z) |z|κ−1− 2
ql dz

� lim
l→∞

(∫
[−1,1]

K (z) |z|κ−1+ 2
pl dz+

∫
R\[−1,1]

K (z) |z|κ−1− 2
ql dz

)

� lim
l→∞

T |δθ |
(

1
|δ |
) 1

p
(

2
l

+
1
θ

) 1
q

= T |δ | 1
q θ

1
p .

It implies

T � |δ |− 1
q θ− 1

pC(α,β ,γ,κ). (3.9)

combine (3.5) and (3.9), then we obtain T = |δ |− 1
q θ− 1

pC(α,β ,γ,κ), and therefore the

constant factor |δ |− 1
q θ− 1

pC(α,β ,γ,κ) in (3.1) is the best possible. �
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THEOREM 3.2. Assume that τ ∈ {1,−1} , α,β ∈ Ω , γ ∈ R
+ ∪{0} , κ ∈ (0,1) ,

δ ∈ Ω , and θ ∈ (0,1]∩Ω . Let α,β ,κ be such that α + κ < min{1,β + γ} . Suppose
that μ(x) = |x|p(1−κδ )−1 , νn = |n|q(1−κθ)−1 . Let f (x),an > 0 with f (x) ∈ Lp,μ(R) ,
and aaa = {an}n∈Z0 ∈ lq,ν . Let K(z) and C(α,β ,γ,κ) be defined by (2.1) and (2.7),
respectively. Then

∑
n∈Z0

|n|pκθ−1
(∫ ∞

−∞
K
(
xδ nθ

)
f (x)dx

)p

<
[
|δ |− 1

q θ− 1
pC(α,β ,γ,κ)

]p
‖ f‖p

p,μ , (3.10)

∫ ∞

−∞
|x|qκδ−1

(
∑

n∈Z0

K
(
xδ nθ

)
an

)q

dx <
[
|δ |− 1

q θ− 1
pC(α,β ,γ,κ)

]q
‖aaa‖q

q,ν , (3.11)

where the constant factors
[
|δ |− 1

q θ− 1
pC(α,β ,γ,κ)

]p
and

[
|δ |− 1

q θ− 1
pC(α,β ,γ,κ)

]q
are the best possible, and (3.1), (3.10) and (3.11) are equivalent.

Proof. Letting xxx = {xn}n∈Z ,

xn := |n|pκθ−1
(∫ ∞

−∞
K
(
xδ nθ

)
f (x)dx

)p−1

,

and using (3.1), we have

J1 := ∑
n∈Z0

|n|pκθ−1
(∫ ∞

−∞
K
(
xδ nθ

)
f (x)dx

)p

= ∑
n∈Z0

xn

∫ ∞

−∞
K
(
xδ nθ

)
f (x)dx

< |δ |− 1
q θ− 1

pC(α,β ,γ,κ)‖ f‖p,μ‖xxx‖q,ν

= |δ |− 1
q θ− 1

pC(α,β ,γ,κ)‖ f‖p,μJ1/q
1 . (3.12)

Inequaltiy (3.12) implies (3.10) obviously. Additionally, setting

F(x) := |x|qκδ−1

(
∑

n∈Z0

K
(
xδ nθ

)
an

)q−1

,

and using (3.1), we have

J2 :=
∫ ∞

−∞
|x|qκδ−1

(
∑

n∈Z0

K
(
xδ nθ

)
an

)q

dx

=
∫ ∞

−∞
F(x) ∑

n∈Z0

K
(
xδ nθ

)
andx

< |δ |− 1
q θ− 1

pC(α,β ,γ,κ)‖F‖p,μ‖aaa‖q,ν

= |δ |− 1
q θ− 1

pC(α,β ,γ,κ)‖aaa‖q,νJ1/p
2 . (3.13)
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It follows from (3.13) that (3.11) holds true. Conversely, we can get (3.1) if inequality
(3.10) or (3.11) is valid. In fact, assume that (3.10) holds, then it follows from Hö lder’s
inequality that

∑
n∈Z0

an

∫ ∞

−∞
K
(
xδ nθ

)
f (x)dx

= ∑
n∈Z0

(
|n|κδ−1/p

∫ ∞

−∞
K
(
xδ nθ

)
f (x)dx

)(
an |n|−κδ+1/p

)

� J1/p
1

(
∑

n∈Z0

aq
n |n|q(1−κδ )−1

)1/q

= J1/p
1 ‖aaa‖q,ν . (3.14)

Apply inequality (3.10) to (3.14), then we obtain (3.1). In addition, suppose that (3.11)
is valid, then it can also be proved that (3.1) holds true. Therefore, inequalities (3.1),
(3.10) and (3.11) are equivalent, and from the equivalence of the three inequalities, it
is obvious that the constant factors in (3.10) and (3.11) are the best possible. Theorem
3.2 is proved. �

Lastly, we will present the following theorem without giving detailed proof. In
fact, by using Lemma 2.2, Lemma 2.4 and Remark 2.6, and referring to the proof of
Theorem 3.1 and Theorem 3.2, we can easily establish the following theorem.

THEOREM 3.3. Assume that τ ∈ {1,−1} , α,β ∈ Θ , γ ∈ R
+ ∪{0} , κ ∈ (0,1) ,

δ ∈ Ω , and θ ∈ (0,1]∩Ω . Let 0 < α < β and α + κ < β + γ for τ = −1 . Let
0 � α < β and α + κ < min{1,β + γ} for τ = 1 . Suppose that μ(x) = |x|p(1−κδ )−1 ,
and νn = |n|q(1−κθ)−1 . Let f (x),an > 0 with f (x) ∈ Lp,μ(R) , and aaa = {an}n∈Z0 ∈ lq,ν .
Let K(z) and c(α,β ,γ,κ) be defined by (2.6) and (2.12), respectively. Then

∫ ∞

−∞
f (x) ∑

n∈Z0

K
(
xδ nθ

)
andx < |δ |− 1

q θ− 1
p c(α,β ,γ,κ)‖ f‖p,μ‖aaa‖q,ν , (3.15)

∑
n∈Z0

|n|pκθ−1
(∫ ∞

−∞
K
(
xδ nθ

)
f (x)dx

)p

<
[
|δ |− 1

q θ− 1
p c(α,β ,γ,κ)

]p
‖ f‖p

p,μ , (3.16)

∫ ∞

−∞
|x|qκδ−1

(
∑

n∈Z0

K
(
xδ nθ

)
an

)q

dx <
[
|δ |− 1

q θ− 1
p c(α,β ,γ,κ)

]q
‖aaa‖q

q,ν , (3.17)

where the constant |δ |− 1
q θ− 1

p c(α,β ,γ,κ) in (3.15), (3.16) and (3.17) is the best pos-
sible.
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4. Some corollaries

Suppose that γ = 0, δ = θ = 1 in Theorem 3.1, and use Lemma 2.7, then we
obtain the following Hilbert-type inequality involving a non-homogeneous kernel.

COROLLARY 4.1. Suppose that τ ∈ {1,−1} , α,β ∈ Ω , and κ ∈ (0,1) . Let
α,β ,κ be such that 0 < α < β and α + κ < min{1,β} . Suppose that ψ(x) = cotx ,
and f (x),an > 0 with f (x) ∈ Lp,μ(R) and aaa = {an}n∈Z0 ∈ lq,ν . Then∫ ∞

−∞
f (x) ∑

n∈Z0

1+ τ (xn)α

1+ τ (xn)β andx <
π
β

[
ψ
(

κπ
2β

)
−ψ

(
(α + β + κ)π

2β

)]

×‖ f‖p,μ‖aaa‖q,ν , (4.1)

where μ(x) = |x|p(1−κ)−1 , νn = |n|q(1−κ)−1 .

Setting β = (2 j + 1)α , κ = jα ( j ∈ N
+) , we have 0 < α < 1

j+1 (α ∈ Ω) , and
(4.1) is transformed into the following inequality:∫ ∞

−∞
f (x) ∑

n∈Z0

an

∑2 j
i=0(−τ)i(xn)iα

dx <
2π

(2 j +1)α
ψ
(

jπ
4 j +2

)
‖ f‖p,μ‖aaa‖q,ν , (4.2)

where μ(x) = |x|p(1− jα)−1 , νn = |n|q(1− jα)−1 .
Let j = 1 in (4.2), then 0 < α < 1

2 (α ∈ Ω) , and we have

∫ ∞

−∞
f (x) ∑

n∈Z0

an

1− τ(xn)α +(xn)2α dx <
2
√

3π
3α

‖ f‖p,μ‖aaa‖q,ν , (4.3)

where μ(x) = |x|p(1−α)−1 , νn = |n|q(1−α)−1 .
Suppose that γ = 0, δ = −1, θ = 1 in Theorem 3.1, and replace f (x)xβ−α by

f (x) , then we have the following Hilbert-type inequality involving a homogeneous
kernel.

COROLLARY 4.2. Suppose that τ ∈ {1,−1} , α,β ∈ Ω , and κ ∈ (0,1) . Let
α,β ,κ be such that 0 < α < β and α + κ < min{1,β} . Suppose that ψ(x) = cotx ,
and f (x),an > 0 with f (x) ∈ Lp,μ(R) and aaa = {an}n∈Z0 ∈ lq,ν . Then∫ ∞

−∞
f (x) ∑

n∈Z0

xα + τnα

xβ + τnβ andx <
π
β

[
ψ
(

κπ
2β

)
−ψ

(
(α + β + κ)π

2β

)]

×‖ f‖p,μ‖aaa‖q,ν , (4.4)

where μ(x) = |x|p(1+α−β+κ)−1 , νn = |n|q(1−κ)−1 .

Setting β = (2 j + 1)α , κ = jα ( j ∈ N
+) , we have 0 < α < 1

j+1 (α ∈ Ω) , and
(4.4) reduces to∫ ∞

−∞
f (x) ∑

n∈Z0

an

∑2 j
i=0 xiα (−τnα)2 j−i

dx <
2π

(2 j +1)α
ψ
(

jπ
4 j +2

)
‖ f‖p,μ‖aaa‖q,ν , (4.5)
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where μ(x) = |x|p(1− jα)−1 , νn = |n|q(1− jα)−1 .
Let j = 1 and τ = −1 in (4.5), we get (1.7) with α ∈ Ω . Let j = 2 in (4.5), then∫ ∞

−∞
∑

n∈Z0

an f (x)
x4α − x3αnα +(xn)2α − xαn3α +n4α dx <

2π
5α

ψ
(π

5

)
‖ f‖p,μ‖aaa‖q,ν ,

where μ(x) = |x|p(1−2α)−1 , νn = |n|q(1−2α)−1 .
Suppose that γ = 2β , δ = θ = 1 in Theorem 3.1, then we have α + κ < 3β .
If we suppose that κ + α < β , then κ < β < 2β , and

C(α,β ,γ,κ) = 2
∞

∑
i=0

(
1

2iβ + κ
− 1

2iβ +4β −κ

)

+2
∞

∑
i=0

(
1

2iβ +3β −α −κ
− 1

2iβ + α + β + κ

)

= 2
∞

∑
i=0

(
1

2iβ + κ
− 1

2iβ +2β −κ

)
+

2
2β −κ

− 2
β −α −κ

+2
∞

∑
i=0

(
1

2iβ + β −α −κ
− 1

2iβ + α + β + κ

)

=
π
β

[
ψ
(

κπ
2β

)
−ψ

(
(α + β + κ)π

2β

)
− c0

]
, (4.6)

where

c0 =
2β (β + α)

(2β −κ)(β −α −κ)π
.

Therefore, we can establish the following corollary.

COROLLARY 4.3. Suppose that τ ∈ {1,−1} , α,β ∈ Ω , and κ ∈ (0,1) . Let
α,β ,κ be such that 0 < α < β and α + κ < min{1,β} . Suppose that ψ(x) = cotx ,
and f (x),an > 0 with f (x) ∈ Lp,μ(R) and aaa = {an}n∈Z0 ∈ lq,ν . Then∫ ∞

−∞
f (x) ∑

n∈Z0

1+ τ (xn)α(
1+ τ (xn)β

)
max

{
1,(xn)2β

}andx

<
π
β

[
ψ
(

κπ
2β

)
−ψ

(
(α + β + κ)π

2β

)
− c0

]
‖ f‖p,μ‖aaa‖q,ν . (4.7)

where μ(x) = |x|p(1−κ)−1 , νn = |n|q(1−κ)−1 .

Setting β = (2 j+1)α , κ = jα ( j ∈N
+) in (4.7), we have 0 < α < 1

j+1 (α ∈ Ω) ,
and (4.7) is transformed into the following inequality:∫ ∞

−∞
f (x) ∑

n∈Z0

an

max
{

1,(xn)(4 j+2)α
}

∑2 j
i=0(−τ)i(xn)iα

dx

<

[
2π

(2 j +1)α
ψ
(

jπ
4 j +2

)
− 4( j +1)

(3 j +2) jα

]
‖ f‖p,μ‖aaa‖q,ν , (4.8)
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where μ(x) = |x|p(1− jα)−1 , νn = |n|q(1− jα)−1 .
Let j = 1 in (4.8), then we get (1.8).
Furthermore, suppose that γ = 2β , δ = −1, θ = 1 in Theorem 3.1, and replace

f (x)x3β−α by f (x) , then we have the following corollary.

COROLLARY 4.4. Suppose that τ ∈ {1,−1} , α,β ∈ Ω , and κ ∈ (0,1) . Let
α,β ,κ be such that 0 < α < β , and α + κ < min{1,β} . Suppose that ψ(x) = cotx ,
and f (x),an > 0 with f (x) ∈ Lp,μ(R) and aaa = {an}n∈Z0 ∈ lq,ν . Then

∫ ∞

−∞
f (x) ∑

n∈Z0

xα + τnα(
xβ + τnβ

)
max

{
x2β ,n2β

}andx

<
π
β

[
ψ
(

κπ
2β

)
−ψ

(
(α + β + κ)π

2β

)
− c0

]
‖ f‖p,μ‖aaa‖q,ν , (4.9)

where μ(x) = |x|p(1+α−3β+κ)−1 , νn = |n|q(1−κ)−1 .

Setting β = (2 j+1)α , κ = jα ( j ∈N
+) in (4.9), we can obtain the homogeneous

form of (4.8).
Suppose that τ = 1, γ = 0, δ = θ = 1 in Theorem 3.3, and use Lemma 2.8, then

we obtain the following Hilbert-type inequality involving a non-homogeneous kernel.

COROLLARY 4.5. Suppose that α,β ∈ Θ , κ ∈ (0,1) . Let 0 � α < β and α +
κ < min{1,β} . Suppose that φ(x) = cscx , and f (x),an > 0 with f (x) ∈ Lp,μ(R) and
aaa = {an}n∈Z0 ∈ lq,ν . Then

∫ ∞

−∞
f (x) ∑

n∈Z0

1+(xn)α

1+(xn)β andx <
2π
β

[
φ
(

κπ
β

)
+ φ

(
(α + κ)π

β

)]

×‖ f‖p,μ‖aaa‖q,ν . (4.10)

where μ(x) = |x|p(1−κ)−1 , νn = |n|q(1−κ)−1 .

Setting α = 0 in (4.10) we have 0 < κ < min{1,β} (β ∈ Θ) , and (4.10) is trans-
formed into the following inequality:

∫ ∞

−∞
f (x) ∑

n∈Z0

an

1+(xn)β dx <
2π
β

φ
(

κπ
β

)
‖ f‖p,μ‖aaa‖q,ν , (4.11)

where μ(x) = |x|p(1−κ)−1 , νn = |n|q(1−κ)−1 .
Setting β = (2 j+1)α , κ = jα ( j ∈N

+) in (4.10), we have 0 < α < 1
j+1 (α ∈Θ) ,

and (4.10) reduces to the following inequality.

∫ ∞

−∞
f (x) ∑

n∈Z0

an

∑2 j
i=0(−τ)i(xn)iα

dx <
4π

(2 j +1)α
φ
(

jπ
2 j +1

)
‖ f‖p,μ‖aaa‖q,ν , (4.12)

where μ(x) = |x|p(1− jα)−1 , νn = |n|q(1− jα)−1 .
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Let j = 1 in (4.12), then 0 < α < 1
2 (α ∈ Θ) , and we have

∫ ∞

−∞
f (x) ∑

n∈Z0

an

1− (xn)α +(xn)2α dx <
8
√

3π
9α

‖ f‖p,μ‖aaa‖q,ν , (4.13)

where μ(x) = |x|p(1−α)−1 , νn = |n|q(1−α)−1 .
It is of interest that although the form of the kernel function in inequality (4.13) is

the same as that in (4.3) (τ = 1), the constant factors in (4.3) and (4.13) are completely
different since α belongs to different sets.

Suppose that τ = 1, γ = 0, δ =−1, θ = 1 in Theorem 3.3. Replace f (x)xβ−α by
f (x) , and use Lemma 2.8, then we have the following Hilbert-type inequality involving
a homogeneous kernel.

COROLLARY 4.6. Suppose that α,β ∈ Θ , κ ∈ (0,1) . Let 0 � α < β and α +
κ < min{1,β} . Suppose that φ(x) = cscx , and f (x),an > 0 with f (x) ∈ Lp,μ(R) and
aaa = {an}n∈Z0 ∈ lq,ν . Then

∫ ∞

−∞
f (x) ∑

n∈Z0

xα +nα

xβ +nβ andx <
2π
β

[
φ
(

κπ
β

)
+ φ

(
(α + κ)π

β

)]

×‖ f‖p,μ‖aaa‖q,ν , (4.14)

where μ(x) = |x|p(1+α−β+κ)−1 , νn = |n|q(1−κ)−1 .

Setting α = 0 in (4.14), we have 0 < κ < min{1,β} (β ∈ Θ) , and (4.14) reduces
to

∫ ∞

−∞
f (x) ∑

n∈Z0

an

xβ +nβ dx <
2π
β

φ
(

κπ
β

)
‖ f‖p,μ‖aaa‖q,ν , (4.15)

where μ(x) = |x|p(1−β−κ)−1 , νn = |n|q(1−κ)−1 .
Setting β = (2 j+1)α , κ = jα ( j ∈N

+) in (4.14), we have 0 < α < 1
j+1 (α ∈Θ) ,

and (4.14) reduces to

∫ ∞

−∞
f (x) ∑

n∈Z0

an

∑2 j
i=0 xiα(−nα)2 j−i

dx <
4π

(2 j +1)α
φ
(

jπ
2 j +1

)
‖ f‖p,μ‖aaa‖q,ν , (4.16)

where μ(x) = |x|p(1− jα)−1 , νn = |n|q(1− jα)−1 .
Suppose that τ = 1, γ = 2β , δ = θ = 1 in Theorem 3.3, and use Lemma 2.8, then

c(α,β ,γ,κ) = 2
∞

∑
i=0

(
(−1)i

iβ + κ
+

(−1)i

iβ +3β −κ

)

+2
∞

∑
i=0

(
(−1)i

iβ +3β −α −κ
+

(−1)i

iβ + α + κ

)
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= 2
∞

∑
i=0

(
(−1)i

iβ + κ
+

(−1)i

iβ + β −κ

)

+2
∞

∑
i=0

(
(−1)i

iβ + β −α −κ
+

(−1)i

iβ + α + κ

)

− 2
β −κ

+
2

2β −κ
− 2

β −α −κ
+

2
2β −α −κ

=
2π
β

[
φ
(

κπ
β

)
+ φ

(
(α + κ)π

β

)
− c1

]
, (4.17)

where

c1 =
β
π

(
1

β −κ
− 1

2β −κ
+

1
β −α −κ

− 1
2β −α −κ

)
.

Therefore, we get the following corollary.

COROLLARY 4.7. Suppose that α,β ∈ Θ , κ ∈ (0,1) . Let 0 � α < β and α +
κ < min{1,β} . Suppose that φ(x) = cscx , and f (x),an > 0 with f (x) ∈ Lp,μ(R) and
aaa = {an}n∈Z0 ∈ lq,ν . Then∫ ∞

−∞
f (x) ∑

n∈Z0

1+(xn)α(
1+(xn)β

)
max

{
1,(xn)2β

}andx

<
2π
β

[
φ
(

κπ
β

)
+ φ

(
(α + κ)π

β

)
− c1

]
‖ f‖p,μ‖aaa‖q,ν . (4.18)

where μ(x) = |x|p(1−κ)−1 , νn = |n|q(1−κ)−1 .

Setting α = 0 in (4.18), we have 0 < κ < min{1,β} (β ∈ Θ) , and (4.18) is trans-
formed into the following inequality:∫ ∞

−∞
f (x) ∑

n∈Z0

an(
1+(xn)β

)
max

{
1,(xn)2β

}dx

<

[
2π
β

φ
(

κπ
β

)
− 2β

(β −κ)(2β −κ)

]
‖ f‖p,μ‖aaa‖q,ν . (4.19)

where μ(x) = |x|p(1−κ)−1 , νn = |n|q(1−κ)−1 .
Additionally, we can establish the homogeneous form of (4.18).

COROLLARY 4.8. Suppose that α,β ∈ Θ , κ ∈ (0,1) . Let 0 � α < β and α +
κ < min{1,β} . Suppose that φ(x) = cscx , and f (x),an > 0 with f (x) ∈ Lp,μ(R) and
aaa = {an}n∈Z0 ∈ lq,ν . Then∫ ∞

−∞
f (x) ∑

n∈Z0

xα +nα(
xβ +nβ

)
max

{
x2β ,n2β

}andx

<
2π
β

[
φ
(

κπ
β

)
+ φ

(
(α + κ)π

β

)
− c1

]
‖ f‖p,μ‖aaa‖q,ν . (4.20)
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where μ(x) = |x|p(1+α−3β+κ)−1 , νn = |n|q(1−κ)−1 .

Setting β = (2 j+1)α , κ = jα ( j ∈N
+) in (4.20), we have 0 < α < 1

j+1 (α ∈Θ) ,
and (4.20) reduces to∫ ∞

−∞
f (x) ∑

n∈Z0

an

max
{
x(4 j+2)α ,n(4 j+2)α

}
∑2 j

i=0 xiα(−nα)2 j−i
dx

<

[
4π

(2 j +1)α
φ
(

jπ
2 j +1

)
− 4(2 j +1)(3 j2 +3 j +1)

j( j +1)(3 j +1)(3 j +2)α

]
‖ f‖p,μ‖aaa‖q,ν , (4.21)

where μ(x) = |x|p(1−(5 j+2)α)−1 , νn = |n|q(1− jα)−1 .
Let j = 1 in (4.21), then (4.21) is transformed into the following inequality:∫ ∞

−∞
f (x) ∑

n∈Z0

an

[x2α − (xn)α +n2α ]max{x6α ,n6α}dx

<

(
8
√

3π
9α

− 21
10α

)
‖ f‖p,μ‖aaa‖q,ν , (4.22)

where μ(x) = |x|p(1−7α)−1 , νn = |n|q(1−α)−1 .
Suppose that τ = −1, γ = 0, δ = θ = 1 in Theorem 3.3, and use Lemma 2.7,

then we obtain the following corollary.

COROLLARY 4.9. Suppose that α,β ∈ Θ , κ ∈ (0,1) . Let 0 < α < β and α +
κ < min{1,β} . Suppose that ψ(x) = cotx , and f (x),an > 0 with f (x) ∈ Lp,μ(R) and
aaa = {an}n∈Z0 ∈ lq,ν . Then

∫ ∞

−∞
f (x) ∑

n∈Z0

1− (xn)α

1− (xn)β andx <
2π
β

[
ψ
(

κπ
β

)
−ψ

(
(α + κ)π

β

)]

×‖ f‖p,μ‖aaa‖q,ν . (4.23)

where μ(x) = |x|p(1−κ)−1 , νn = |n|q(1−κ)−1 .

Replace α and β in (4.23) with β and 2β , respectively, then we have 0 < κ <
min{1−β ,β} (β ∈ Θ∩ (0,1)) , and

∫ ∞

−∞
f (x) ∑

n∈Z0

an

1+(xn)β dx <
π
β

[
ψ
(

κπ
2β

)
−ψ

(
(β + κ)π

2β

)]

×‖ f‖p,μ‖aaa‖q,ν . (4.24)

where μ(x) = |x|p(1−κ)−1 , νn = |n|q(1−κ)−1 . Observing that

ψ
(

κπ
2β

)
−ψ

(
(β + κ)π

2β

)
= 2φ

(
κπ
β

)
,

it follows that (4.11) and (4.24) are equivalent.
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Setting β = (2 j+1)α , κ = jα ( j ∈N
+) in (4.23), we have 0 < α < 1

j+1 (α ∈Θ) ,
and (4.23) reduces to

∫ ∞

−∞
f (x) ∑

n∈Z0

an

∑2 j
i=0(xn)iα

dx <
4π

(2 j +1)α
ψ
(

jπ
2 j +1

)
‖ f‖p,μ‖aaa‖q,ν , (4.25)

where μ(x) = |x|p(1− jα)−1 , νn = |n|q(1− jα)−1 .
Suppose that τ = −1, γ = 0, δ = −1, θ = 1 in Theorem 3.3. Replace f (x)xβ−α

by f (x) , and use Lemma 2.7, then Theorem 3.3 is transformed into the following corol-
lary.

COROLLARY 4.10. Suppose that α,β ∈ Θ , κ ∈ (0,1) . Let 0 < α < β and α +
κ < min{1,β} . Suppose that ψ(x) = cotx , and f (x),an > 0 with f (x) ∈ Lp,μ(R) and
aaa = {an}n∈Z0 ∈ lq,ν . Then

∫ ∞

−∞
f (x) ∑

n∈Z0

xα −nα

xβ −nβ andx <
2π
β

[
ψ
(

κπ
β

)
−ψ

(
(α + κ)π

β

)]

×‖ f‖p,μ‖aaa‖q,ν . (4.26)

where μ(x) = |x|p(1+α−β+κ)−1 , νn = |n|q(1−κ)−1 .

Let β = 3α , κ = α , we get (1.7) with α ∈ Θ .
Suppose that τ = −1, γ = β , δ = θ = 1 in Theorem 3.3, then we have α + κ <

2β . If we suppose that κ + α < β , then

c(α,β ,γ,κ) = 2
∞

∑
i=0

(
1

iβ + κ
− 1

iβ +2β −κ

)

+2
∞

∑
i=0

(
1

iβ +2β −α −κ
− 1

iβ + α + κ

)

= 2
∞

∑
i=0

(
1

iβ + κ
− 1

iβ + β −κ

)
+

2
β −κ

− 2
β −α −κ

+2
∞

∑
i=0

(
1

iβ + β −α −κ
− 1

iβ + α + κ

)

=
2π
β

[
ψ
(

κπ
β

)
−ψ

(
(α + κ)π

β

)
− c2

]
, (4.27)

where

c2 =
αβ

(β −κ)(β −α −κ)π
.

Therefore, we can establish the following corollary.
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COROLLARY 4.11. Suppose that α,β ∈ Θ , κ ∈ (0,1) . Let 0 < α < β and α +
κ < min{1,β} . Suppose that φ(x) = cscx , and f (x),an > 0 with f (x) ∈ Lp,μ(R) and
aaa = {an}n∈Z0 ∈ lq,ν . Then

∫ ∞

−∞
f (x) ∑

n∈Z0

1− (xn)α(
1− (xn)β

)
max

{
1,(xn)β

}andx

<
2π
β

[
ψ
(

κπ
β

)
−ψ

(
(α + κ)π

β

)
− c2

]
‖ f‖p,μ‖aaa‖q,ν , (4.28)

where μ(x) = |x|p(1−κ)−1 , νn = |n|q(1−κ)−1 .

Replace α and β in (4.28) with β and 2β , respectively, then we have then we
have 0 < κ < min{1−β ,β} (β ∈ Θ∩ (0,1)) , and

∫ ∞

−∞
f (x) ∑

n∈Z0

an(
1+(xn)β

)
max

{
1,(xn)2β

}dx

<

[
2π
β

φ
(

κπ
β

)
− 2β

(β −κ)(2β −κ)

]
‖ f‖p,μ‖aaa‖q,ν , (4.29)

where μ(x) = |x|p(1−κ)−1 , νn = |n|q(1−κ)−1 .
Suppose that τ = −1, γ = β , δ = −1,θ = 1 in Theorem 3.3, then we obtain a

Hilbert-type inequality with a homogeneous kernel.

COROLLARY 4.12. Suppose that α,β ∈ Θ , κ ∈ (0,1) . Let 0 < α < β and α +
κ < min{1,β} . Suppose that φ(x) = cscx , and f (x),an > 0 with f (x) ∈ Lp,μ(R) and
aaa = {an}n∈Z0 ∈ lq,ν . Then

∫ ∞

−∞
f (x) ∑

n∈Z0

xα −nα(
xβ −nβ

)
max

{
xβ ,nβ

}andx

<
2π
β

[
ψ
(

κπ
β

)
−ψ

(
(α + κ)π

β

)
− c2

]
‖ f‖p,μ‖aaa‖q,ν , (4.30)

where μ(x) = |x|p(1+α−2β+κ)−1 , νn = |n|q(1−κ)−1 .

Setting β = (2 j+1)α , κ = jα ( j ∈N
+) in (4.30), we have 0 < α < 1

j+1 (α ∈Θ) ,
and (4.30) is transformed into the following inequality:∫ ∞

−∞
f (x) ∑

n∈Z0

an

max
{
x(2 j+1)α ,n(2 j+1)α

}
∑2 j

i=0 xiαn(2 j−i)α
dx

<

[
4π

(2 j +1)α
ψ
(

jπ
2 j +1

)
− 2

j( j +1)α

]
‖ f‖p,μ‖aaa‖q,ν , (4.31)

where μ(x) = |x|p(1−(3 j+1)α)−1 , νn = |n|q(1− jα)−1 .
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[4] M. KRNIĆ AND J. PEČARIĆ, Extension of Hilbert’s inequality, J. Math. Anal. Appl., 324, (2006),
150–160.
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[7] M. KRNIĆ, J. PEČARIĆ AND P. VUKOVIĆ, A unified treatment of half-discrete Hilbert-type inequali-
ties with a homogeneous kernel, Mediterr. J. Math., 10, (2013), 1697–1716.

[8] M. T. RASSIAS AND B. C. YANG, A Hilbert-type integral inequality in the whole plane related to the
hypergeometric function and the beta function, J. Math. Anal. Appl., 428, 4 (2015), 1286–1308.

[9] M. T. RASSIAS AND B. C. YANG, On an equivalent property of a reverse Hilbert-type integral in-
equality related to the extended Hurwitz-Zeta function, J. Math. Inequal., 13, 2(2019), 315–334.

[10] M. TH. RASSIAS AND B. C. YANG, On half-discrete Hilbert’s inequality, Appl. Math. Comp., 220,
(2013), 75–93.

[11] Z. X. WANG AND D. R. GUO, Introduction to Special Functions, Higher Education Press, Beijing,
2012.

[12] B. C. YANG, A mixed Hilbert-type inequality with a best constant factor, International Journal of Pure
and Applied Mathematics, 20, 3(2005), 319–328.

[13] B. C. YANG, An extension of the Hilbert-type inequality and its reverse, J. Math. Inequal., 2, 1 (2008),
139–149.

[14] B. C. YANG, On a more accurate Hardy-Hilbert’s type inequality and its applications, Acta Math.,
49, 2 (2006), 363–368.

[15] B. C. YANG, On an extension of Hardy-Hilbert’s inequality, Chinese Ann. Math. Ser. A, 23, 2 (2002),
247–254.

[16] B. C. YANG, On an extension of Hilbert’s integral inequality with some parameters, Aust. J. Math.
Anal. Appl., 1, 1 (2004), 1–8.

[17] B. C. YANG, The norm of operator and Hilbert-type inequalities, Science Press, Beijing, 2009.

[18] B. C. YANG AND Q. CHEN, A half-discrete Hilbert-type inequality with a homogeneous kernel and
an extension, J. Inequal. Appl., 124, (2011), https://doi:10.1186/1029-242X-2011-124 .

[19] B. C. YANG AND L. DEBNATH, On a new generalization of Hardy-Hilbert’s inequality and its appli-
cation, J. Math. Anal. Appl., 23, 2 (1999), 484–497.

[20] B. C. YANG, S. H. WU AND A. Z. WANG, On a reverse half-discrete Hardy-Hilbert’s inequality with
parameters, Mathematics, 10, 2 (2019), https://doi:10.3390/math7111054 .

[21] M. H. YOU, A unified extension of some classical Hilbert-type inequalities and applications, Rocky
Mountain J. Math., 51, 5 (2021), 1865–1877.

[22] M. H. YOU, More accurate and strengthened forms of half-discrete Hilbert inequality, J. Math. Anal.
Appl., 512, 2 (2022), 10.1016/j.jmaa.2022.126141 .

[23] M. H. YOU, On a class of Hilbert-type inequalities in the whole plane involving some classical kernel
functions, Proc. Edinb. Math. Soc., 65, 3 (2022), 833–846.

[24] M. H. YOU, On a new discrete Hilbert-type inequality and application, Math. Inequal. Appl. 18, 4
(2015), 1575–1578.

[25] M. H. YOU, On an extension of the discrete Hilbert inequality and applications, J. Wuhan Univ. Natur.
Sci. Ed. 67, 2 (2021), 179–184.

https://doi:10.1186/1029-242X-2011-124
https://doi:10.3390/math7111054
10.1016/j.jmaa.2022.126141


1410 M. YOU

[26] M. H. YOU, F. DONG AND Z. H. HE , A Hilbert-type inequality in the whole plane with the constant
factor related to some special constants, J. Math. Inequal., 16, 1 (2022), 35–50.

[27] M. H. YOU AND X. SUN, On a Hilbert-type inequality with the kernel involving extended Hardy
operator, J. Math. Inequal., 15, 3 (2021), 1239–1253.

(Received May 19, 2023) Minghui You
Department of Mathematics

Zhejiang Institute of Mechanical and Electrical Engineering
Hangzhou 310053, P. R. China

e-mail: youminghui@hotmail.com

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


