lournal of
athematical
nequalities
Volume 17, Number 4 (2023), 1387-1410 doi:10.7153/jmi-2023-17-91

A CLASS OF HALF-DISCRETE HILBERT-TYPE INEQUALITIES IN
THE WHOLE PLANE INVOLVING SOME CLASSICAL KERNELS

MINGHUI YOU

(Communicated by M. Krni¢)

Abstract. In this work, we first construct a half-discrete kernel function, which is defined in the
whole plane and involves both the homogeneous and the non-homogeneous cases. By employing
the method of weight coefficient and some classical techniques of real analysis, a class of half-
discrete Hilbert-type inequalities with the newly constructed kernel as well as the equivalent
inequalities of Hardy’s type are established. In addition, we prove that all the constant factors
in the newly established inequalities are the best possible. Lastly, assigning special values to
the parameters, and using the partial fraction expansions of cotangent function and cosecant
function, some new half-discrete Hilbert-type inequalities with special kernels defined in the
whole plane are presented at the end of the paper.

1. Introduction

In this paper, it is assumed that p > 1, % + Ll] =1, 72°:=7\{0},

21+ 1
Q:= x:x:L,l,mEZ ,
2m+1

21
0:= x=—")1 Y/
{xx 2m+1,,m€ }

Let a={an};,_, €L, b={b,};;_, € b be two real number sequences, then

oo oo

amb

Y Y —— < rlalal|b|2, (1.1)

n=1m=1 m+n

where the constant factor 7 is the best possible.
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Inequality (1.1) is normally named as Hilbert double series inequality [3], which
was first put forward by the famous mathematician D. Hilbert in 1908. Schur estab-
lished an integral analogy of (1.1) in 1911, that is,

= = fx)gy)
/o /0 ﬁdXdy<”||fH2H8H27 (1.2)

where f,g € L,(R"), and the constant factor 7 in (1.2) is also the best possible.

For more than one hundred years, especially since the 1990s, the study of Hilbert
inequality has been a hot topic for researchers of analysis, and a variety of extended
forms of (1.1) and (1.2) were established, such as the following one provided by M.
Krni¢ and J. Pecari¢ [4]:

B B
S 3 o <5 (5.5 lal,ulb

n=1lm

.V (1.3)

where 0 < B <4, W, =mP1-B/2)=1 vy —pal=B/2)=1 ‘and B(x,y) is the beta function
[11]. Additionally, an extension of (1.2) was established by Yang [16], that is,

// x/3+yﬁdxy Bsin ﬁn”prqu

where B.B1. B2 > 0, By +Po = 1., u(x) = x?(1-ABI1 and v(y) = ya(1-FB)-1

Such inequalities as (1.3) and (1.4) are commonly named as Hilbert-type inequali-
ties. With regard to other extended forms of (1.1) and (1.2), we refer to [5, 15,19,24,25,
6, 17]. Furthermore, by introducing new kernel functions, and considering the homoge-
neous and the non-homogeneous cases, high-dimensional extension, reverse inequality
as well as the more accurate form, a variety of new Hilbert-type inequalities were es-
tablished in the past 20 years (see [13, 14, 8,9,27,26,23,21,2]). It should be pointed
out that such type of inequalities have already grown into a vast theoretical system and
are crucial to the research of analysis.

Generally, if a integral Hilbert-type inequality involving a homogeneous kernel
holds, then it can be obtained that a Hilbert-type inequality involving a corresponding
non-homogeneous kernel holds, such as the following one which is the non-homoge-
neous form of inequality (1.2) [17]:

.V (1.4)

= = fx)gly)
/0 /0 Txydmy <[l fll2llgll2, (1.5)

where the constant factor 7 is the best possible. The non-homogeneous form of (1.1)
can also be proved, but the constant factor is not yet to be proved to be the best possible
(see [17], p. 315). In 2005, Yang [12] established the half-discrete form of (1.5) and
the constant factor is proved to be the best possible, that is,

| s >

(1.6)
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For some other half-discrete Hilbert-type inequalities with new kernels and best possi-
ble constant factors, we refer to [1,7,20, 18, 10,22].

In this work, the main objective is to establish a class of half-discrete Hilbert-type
inequalities with the kernel functions defined in the whole plane and involving both the
homogeneous and the non-homogeneous cases, such as

dn

[0 S g < ol lalalay. (17
e nez0

[wf(x) HEEZ,O 14+ (wn)o+ (xn)z:] max{l,()ﬂl)ﬁa}

8
< (1055 ) Wlpula

where p(x) = [x[P=97 vy, = )79 0 < o < Iow= 2\3/3” for oo € Q, and
Y = % for oo € O.

In what follows, we will construct a more general kernel function with several
parameters, which includes the kernels in (1.7) and (1.8). And then, a half-discrete
Hilbert-type inequality and its equivalent forms are established. The paper is organized
as follows: detailed lemmas are presented in Section 2, and main theorems and some
corollaries are presented in Section 3 and Section 4, respectively.

gv (€ €Q), (1.8)

2. Definitions and lemmas

LEMMA 2.1. Assume that T € {1,—1}, x € (0,1), ye RTU{0}, and o, € Q.
Let 0 < oo < B and oo+ K < 1. Define

1+17%
K(z) = , 2.1
&)= By max {117 @D
wherezER\{l}forT:—l,andze]R\{—l}forT:l.LetK(l)::%forT:—l,

and K(—1) ::%for T=1. Then

H(z) :=K(2)|z|<!

decreases monotonically with z for z € RY, and increases monotonically with z for
zeR™.

Proof. To begin with, we consider the case where 7 =1 and z € (0,1). Then

ZKfl 4 ZochKfl

H =
@) 1+7P

(2.2)
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Taking the derivative of (2.2), and observing that k¥ € (0,1) and o+ x < 1, we have

dH <2
- (k=D (k—1+a)z*
o DAY )

F(k—1-B)P+ (k- 1+a-B):*F] <o. (2.3)

In addition, if T=1 and z € (1,), in view of y€ R™U{0}, then it can also be proved
that %—IZ < 0. Therefore, the continuous function H(z)(z € R™) decreases monotoni-
cally with z (ze R") for t=1.

Furthermore, we will prove that H(z) increases monotonically with z (z € R™)
for T=1. In fact, setting u = —z, and observing that ¢, 8 € Q, we have

1+z% 1—u*®

PR R L(u) (ueRT\{1}). (2.4)

Taking the derivative of L(«), we have

dL —yo! o1
% _ B_pgB-oal . %
i (1 —uﬁ)2 [a—i—(ﬂ o)uP — Bu ] = (1 _uﬁ)2g(u).
It is obvious that
% _ (82— PP we 1), 2.5)

du

Since 0 < o < B3, it follows that g—i <0 when u € (0,1), and g—i >0 when u € (1,00).
Hence, g(u) > g(1) =0, and it implies that 3= < 0 (u# 1). Let L(1) := %,then L(u)
is continuous on R™, and decreases monotonically with u (u € R"). Therefore, by

(2.4), it is obvious that iizg increases monotonically with z (z € R™). Additionally,

since k € (0,1] and y € RT U{0}, it can be shown that |2/~ " and || increases
monotonically with z (z € R™), and it follows therefore that H(z) increases monoton-
ically with z (z€ R™).

Lemma 2.1 is proved for T = 1. Furthermore, based on the above discussions, it
can also be proved that Lemma 2.1 holds true for t=—1. O

K—y—1

LEMMA 2.2. Assume that T € {1,—1}, k € (0,1), ye RTU{0} and o, € O.
Let O<o <P fort=—1.Let 0< o < P and oo+ Kk < | for T = 1. Define

1+ 1z*
K(z):= , 2.6
&)= Ay max {17 (20
where zER for t=1, ze R\ {l,—1} for t=—1, and K(1) =K(—1) ::% when

T=—1. Then
H(z) := K(2)|z|<!

decreases monotonically with z for z € RT, and increases monotonically with z for
zeR™.
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Proof. Since a3 € ©, itis easy to show that K(z) is an even function. If 7= —1,
and z € R, then

1 _Za ZK—l

H@) = 1 —zP max{1,z7}’

From the discussions in Lemma 2.1, it can be proved that H(z) decreases with z (z €
R™). And itis obvious that H(z) increases with z (z € R™) according to the symmetry
of even function. Lemma 2.2 is proved for 7 = —1. Similarly, Lemma 2.2 can easily
be proved for t=1. [

LEMMA 2.3. Assume that T € {1,—1}, k € (0,1), ye RTU{0} and a,f € Q.
Suppose that 0 < o0 < B, a+ kK < B+, and K(z) is defined by (2.1). Define

1
Cla.B,7,x) 2<Zzﬂ+1< 2ip+2B+y- '<>

1 1
+2 - — = . 2.7
%(21[34—[3—1—9/—06—1( 2zﬁ+a+[5+1<> @7
Then
| K@ e =c(ep.y.x) 2.8)
Proof. we first consider the case where 7 = —1. Observing that o, 3 € Q, we
have

/°° K(z)|z|'<*1dz—/ L= e L L= ey
e =TT e 128

1-¢ 1+2z% K—1
_/ (1—zl3 1+zli‘)Z &

1— l o
+ ( @ e )z""’_ldz
1

l—zﬁ 1+7P
5 1 K- 1_ a+ﬁ+K ld o K== 1_ a+ﬁ+Kfyfld
/0 -2 / 1= ‘
1 k=1 _ 2B+y—Kk—1 B+y—a—k—1_ a+B+k—1
—2 / SO te ‘ dz. (2.9
1—z2B

Expanding ﬁ (z€ (0,1)) into a power series at point z = 0, employing Lebesgue
term-by-term integration theorem, and observing that o + K < f3 + ¥, it follows that

e S 'S (2iB+r—1  2ip+2B+
> =  dr= -1 _ y—x-1
/0 T dz /0 %(z Z )dz

> 1 1
:lz(')<2i[3+1<_2i[3+2[3+y— K)' (2.10)
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Similarly, it can also be obtained that

dz

/1 Zﬁ+y—a—1<—1 _Za+l3+1<—1
0 1228

& 1 1
= — . 2.11
;&(%B—Fﬁ—i—y—a—x 2iﬁ+a+ﬁ+x) @10
Applying (2.10) and (2.11) to (2.9), we arrive at (2.8). Lemma 2.3 is proved. [

LEMMA 2.4. Assume that T € {1,—1}, Kk € (0,1),y € R"U{0} and o, € ©.
Let 0< o< B, o+x<B+7v, and oo #0 for 1 = —1. Suppose that K(z) is defined
by (2.6), and

c(o, B,y,x 2(,3+K zB+Té_+T§:— K)

(=7 (=7 )
+2 + - . 2.12
2<1B+B+y o—x if+a+x 2.12)
Then
| K@ de=c(aB.y.x) @.13)
Proof. Firstly, consider the case where T = —1. It is obvious that K(z) is an even

function owing to o, 8 € ©, and therefore we have

had 1 1— 'O( o
[ K@Ut ae=2 [ 1S a2 [ e,
. —

1 k= 1 ZOHK— 1 Z[3+y—oc—;<—l _Zﬁ+y—1<—1
=2 ———dz 2/ d
/ 1 —Zﬁ + 1 —Zﬁ <

_2/1 75 I_Zﬁ+y K— 1_|_Zﬁ+y o—k—1_ jot+Kk—1
1—2P

dz. (2.14)

Expand ﬁ (z € (0,1)) into a power series at point z = 0, and employ Lebesgue
term-by-term integration theorem, then it can be proved that

=3

1 ZK—I _Zﬁ+’)/—l<—l 1 1
R . , 2.15
/0 & Zé(iﬁ—i—lc iB+B+y—K> @.15)

1 Zl3+y—oc—;<—1 — potr—l oo 1 1
dz = — . (2.16
/0 1-2B ¢ Zé(iﬁJrB—Fy—a—K iﬁ+a+1<> (2.16)

Plugging (2.15) and (2.16) back into (2.14), we get (2.13) for 7 = —1.
If T =1, then we have

1 k= 1 B+y—x—1 B+y—a—Kk—1 o+Kx—1
/ K(z)|z|* 'dz = 2/ T te T & @17

1428



HALF-DISCRETE HILBERT-TYPE INEQUALITIES 1393

Expanding ﬁ (z€ (0,1)) into a power series at point z = 0, and using Lebesgue
term-by-term integration theorem, then we obtain

IZK—1+Z/3+y—K—1 oo (—l)i (—l)i
—— dz= , 2.18
/0 1+2P ¢ %(iﬂ+r<+i[3+ﬁ+y—rc> (2.18)
IZI3+y+a—K—1+Za+K—1 oo (—l)i (—l)i
dz = . 2.19
/0 1428 ¢ Zé(iﬂ—l—ﬁ+y—a—r< iﬁ+(x+1<> (2.19)

Applying (2.18) and (2.19) to (2.17), we arrive at (2.13) for T = 1. Lemma 2.4 is
proved. [

LEMMA 2.5. Assume that T € {1,—1}, a,f € Q, ye Rt U{0}, k € (0,1),
60€Q,and 6 € (0,1]NQ. Let a, B,k be suchthat 0 < oo < 8, oo+ k < 1, and K(z)
is defined by (2.1). Set

~ A Kk6—1—2¢
ai= b= {7 H)

25
f-‘(x) _ |x|K5—l+ﬁ x € F
"~ o xER\F’

5
where [ is a sufficiently large natural number, and F = {x: x| 18T < l}. Then

=% d,,/_iK<x5n9> f(x)dx:/_:f(x) D K(x5n9> a,dx

nezb nez0
l K—1+2 Kk—1-2 )

> K Td K Tdz | . 2.20

66| (f[u] @™ r et R\[-1,1] (@)fel ™ de (220

Proof. Let FT:={x:xe FNR"},F~ :={x:x€ FNR™}. Then

I= f(x) Y ank <x5n0> dx+ fx) Y ank <x5n0> dx

YEFT nez+ YEFT nez-

+ f(x) Z aK <)c5n@>dx—|—/XEF+ f(x) Z a,K <x5n9>dx

xeF " neZ+ nezZ-
=hL+L+5L+14.

If xe F~ and n € Z*, then x%n% < 0 owing to 8,0 € Q. By Lemma 2.1, it can be
proved that H (xéne) decreases with n (n € Z"). Furthermore, since 6 € (0,1], it can

_1-20 . . .
also be proved that |n\e "9 decreases with n (n € ZT). It implies that

20
dnK <x5n9> = |X|S(I_K)H (x5n9> |n|9—1—W
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decreases with n (n € Z™) fora fixed x (x € F~). it follows therefore that

_1428 [
B> [ TR R () T dvari- 01,
xeF~ 1

Similar discussion yields

12>/ ‘x‘K671+§Jl <x6y9> K'e 1— ql dydx QZ,
xeF—
> [ / x0y0) [y dyde = 05,
> [ e[ ( )\y\"e i v 0y,
xeFt
Consider the case where 8 < 0, that is, 0 € then F-=F QR* =

5
(—o0,—1). Letting x®y? = z, and observing that x~ &

1
2/~ (z<0), we have

~1 o
0= [ T [R (0) 1 ayas
—oo 1
1 ! a0 -2
:5/ |x\71+275/ K(2) |z "4 dzdx
1 ! -1 -2
= 5/ |x\_1+21_5/ K(z)|z|* -7 dzdx
1 -1 _1428 x® Kk—1—2
- / PR / K@) dzdy
[ -1 -2
= W/ K(Z) |Z|K ! a dz

1! 3 iz
+5/ \x\‘”?/l K(2) o]~ dadx. 2.21)

Applying Fubini’s theorem to (2.21), we have

= |x| § (x<0) and 78~

1/6

[ -1 2 1 /0 2 [z .26
lem/ K(2) |2~ q’dz—l——/ K@) |~ qt/ ]~ dd

K(z K—1— ld /K K1+,,d
2\60| (/ )|z] @ dz+ )|z M dz

Similarly, it can be obtained that Q4 =0, and

It follows therefore that
[>01+0,+03+ 04

l K—1+2 / K—1— )
= K 7 d K ad
50| (/[171] (2) |z " dz+ A (@)]z]" " @ dz
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Thus, (2.20) is proved for & < 0. Similarly, it can also be proved that (2.20) holds true
for6 >0. O

REMARK 2.6. Assume that 7 € {1,—1}, a,f € ©, ye RTU{0}, x € (0,1),
6€Q,and 6€(0,1]NQ. Let0<a<ffort=—1.Let0<a<f and a+K<1
for 7= 1. Let K(z) be defined by (2.6), and &, f(x) be defined by Lemma 2.5. Then
it can also be proved (2.20) holds true from the proof of Lemma 2.5.

LEMMA 2.7. Let 71,20 >0, 71 + 220 = z, and y(x) = cotx. Then

un 7 — 1 1
— ) == — . 2.22
W( z ) ﬂg‘)(Zi‘FZl Zi+22> (222

Proof. Observing that y(x) = cotx (0 <x < 7) can be written as a partial fraction
expansion [11] as follows:
i 1
T x S \x+im x —in)’
and setting x = % , we have
Qn z |1 - 1 1
= )==|= +—
W( 4 ) T2l lzj<zz+zl zl—zzﬂ

+
—im (YL ¥
Tn—e \Szitn Sa-—d

n 1 n—1 1

P )

—atu Sjata

< 1 1 1
=5mlz<. —— >+
Tn—ee | J\zZi+21 +22 wn+z2

_z°° 1 1 )
Cn & \zit A

We arrive at (2.22), and Lemma 2.7 is proved. [J

LEMMA 2.8. Let 71,20 >0, 71+ 20 = z, and ¢(x) = cscx. Then

i _£°° i 1 1
NEE I R R

Proof. Write ¢(x) =cscx (0 < x < 1) in the form of partial fraction expansion

[11] as follows:
| R — ; 1 1
=— -1) .
%) x+i:zi( )<x+in+x—in)
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Setting x = % , we have

()3 1+ 5 (atata)]
_zp (i (.—1)" +i (—1)i>

Tn—e\Szitzy Sa—dud

no(_ 1 i n—1 -1 i

— % lim 2 ( ) 4 u
Tnoe \pua+z SHadt

i . 1 1 —1)"
— < lim 2(—1)l<, 4 )_( )
=20 a+z a+2 m+2

i(—l)’( ! + ! ) (2.24)

Zi+z1 i+

Relation (2.23) follows by (2.24) obviously, and Lemma 2.8 is proved. [

3. Main results

THEOREM 3.1. Assume that T € {1,—1}, a,f € Q, ye RTU{0}, k € (0,1),
6€Q,and 6 €(0,1]NQ. Let o, 3,k be suchthat 0 < o« < 8, and a2+ k < min{1,5+
v}. Suppose that [L(x) = x|PUKO=L = (2% Lot £(x),a, > 0 with f(x) €
Lyu(R), and a={an},cq0 € lyv. Let K(z) and C(o,B,7,K) be defined by (2.1) and
(2.7), respectively. Then

Y, an /:CK (x5n9> f(x)dx = /:Of(x) Y K <x5n9> andx

nezb nez0

_1 1
<[8]726"7C(et, B, 7, )| fll s

|allg.v, (3.1)
1
where the constant factor || 4 97%C(a,ﬁ .Y, K) in (3.1) is the best possible.

Proof. Let K (x%y%) := K (x°n%), g(v) := @y, and h(y) :=|n| when y € [n,n+1)
(neZ7). Let K (x°y%) := K (x%n?), g(y) := an, and h(y) :=n when y € [n— 1,n)
(n € Z*). By Holder’s inequality, we have

Y, an /:CK (x5n9> fx)dx = /:Of(x) Y K <x5n9> aydx

nez0 nez0

-
|

(359) £ ()5 (v)dxay
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< {/Z /:013 <xaye> [h(y)]<0~! xp(l—)cé)/qu(x)dydx}l/l’

1/q
R (3552 WS s )y |
o 1/p Va
:[/ w1<x>|x"<”5>/‘ffﬂ<x>dx] [2 a»(n)nrf“'“’)/f’az] S
- nezl

where

_ 2 K(x >|n\K6 1

neZzd

w(n) = /:)K <x5n6> x| 9~ d.

Observing that 6 € (0,1], it is easy to show that |n|°~! decreases monotonically with
n (n € Z") and increases monotonically with n (n € Z~). Furthermore, in view of
0,0 € Q, it follows from Lemma 2.1 that H (x‘sne) decreases monotonically with
n(n € Z*) and increases monotonically with n(n € Z~), whether x > 0 or x < 0.

Hence,
K<x5n6> ‘n|K671 _ ‘x‘ﬁfKaH <x5n9> ‘n|671

decreases monotonically with n(n € Z™) and increases monotonically with n (n € Z™)
for a fixed x. It follows therefore that

o (x)= Y K<x3n6> n|¥07! < /jo K(xay(’) ly[<0~ 1 dy.

neZz0

=

Setting x®y? =z, and supposing that x < 0, we have x~ 8 = — |x|~ ¢ and zo! =z o
owing to 8,60 € Q. It follows that

o _ x| 7RO e _
o (x) </_ K<x5y9> ly| <0 dy = %/_ K(2)|z]* " dz. (3.3)

If x > 0, then (3.3) can also be proved. Furthermore, setting x0nb = z, it follows that

a)z(n):/_il((x‘sne> |x|’<5—1dx_|”‘ / K(2)|2/* " dz. (3.4)

Apply (3.3) and (3.4) to (3.2), and use (2.8), then we arrive at (3.1).

1 1
In what follows, we will prove that the constant factor || 70~ 7C(a,3,7,K) in
(3.1) is the best possible. In fact, if there exists a constant 7" which satisfies

0<T <[5 160 7C(ar,7,%), (3.5)
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and

2 an/jcl(<x x)dx = / f(x) 5n0> a,dx

nezd nEZO
<Tfllpulla

Let a, and f(x) in (3.6) be replaced by @, and f(x) defined in Lemma 2.5, respec-
tively, then we have

Ean/ dx/f Y K (320 ddx

nezd nez0
<T/llpulla

(3.6)

q,V-

q,v

Combining (2.20) and (3.7), we have

2
/[ Rl I+ dz+/ K

1
L\7 /2 1
T|66 -+ . 3.8
<rio0l(5:)" (7+3) o9
Applying Fatou’s lemma to (3.8), and using (2.8), it follows that
C(a,B,7,x) /K )|zl dz

2 2
= mK (z) |zt dz + / limK (z) |2/ dz
[1,1] 15w R\[~1,1] [ oo

< lim (/ K ()| dz+ K (2) |z|’<—1—5zdz>
I—eo \/[=1,1] R\[-1,1]

1 1
11mT60|< )' <%+é>q — 715707

|—oo

It implies
T>|5]7%677C(a, B, 7, %)- (3.9)

1 1
combine (3.5) and (3.9), then we obtain 7 =|6|" 70~ »C(e, 8,7, k), and therefore the
1 1
constant factor |6]”4 6~ ?C(ct, 3,7, k) in (3.1) is the best possible. [
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THEOREM 3.2. Assume that T € {1,—1}, a,f € Q, ye RTU{0}, k € (0,1),
0€Q,and 0 € (0,11NQ. Let a, B,k be such that oe + k < min{1, + y}. Suppose
that p(x) = [x[P07%071 v, = [p90=%O=1  Ler £(x),a, > 0 with f(x) € Ly u(R),
and a = {ay},cz0 € lgv. Let K(z) and C(o,B,7,x) be defined by (2.1) and (2.7),
respectively. Then

S a0 ([T (500 sa) < [lo17+ 07 b et 1l 610

neZ0

[ 1<2K( )an>qu<[6éeic<a,ﬂ,y,r<>} lallg

neZz0

(3.11)

q,V»

P q
where the constant factors [|5|7$ GféC(Oc,ﬂ, Y, K)} and [\5\75 GféC(Oc,ﬂ, Y, K)}
are the best possible, and (3.1), (3.10) and (3.11) are equivalent.

Proof. Letting x = {x, }cz,

X 1= |n|P<O7] (/ZK <x5n9> f(x)dx)pl,

and using (3.1), we have

Jiy = 2 |n|PXO—1 (/ZK(xén(’) f(x)dx)p

neZzd

an/ f(x)dx

nezf
11
<1817 677 C(et. B 1, )l pllellgy
_1 1
=18177 0" 7C(0 B,y 0| flpuaty " (3.12)
Inequaltiy (3.12) implies (3.10) obviously. Additionally, setting
qg—1
F(x) =[x ( )Y K(xane)an) ,
nezd

and using (3.1), we have

Jyi= /:, ] %01 (nEZOK<x5n9) )
_/ F() Y, K (x0n%) apdx

nez0
1 1
<1870 67 5C(0t, B3, K)||F | pullallv
L 1
— 18776 7C(t, B, 7, )|l gy " (3.13)
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It follows from (3.13) that (3.11) holds true. Conversely, we can get (3.1) if inequality
(3.10) or (3.11) is valid. In fact, assume that (3.10) holds, then it follows from Ho61der’s
inequality that

D an/:oK<x5ne> f(x)dx

nezd

=3 <|n|K51/p/iK<x5n9> f(x)dx) (an |n|7K'6+l/p>

neZz0

1/q
<111/P ( Z az|n|q(1—1<5)—1>

nezo

=717 |allg.. (3.14)

Apply inequality (3.10) to (3.14), then we obtain (3.1). In addition, suppose that (3.11)
is valid, then it can also be proved that (3.1) holds true. Therefore, inequalities (3.1),
(3.10) and (3.11) are equivalent, and from the equivalence of the three inequalities, it
is obvious that the constant factors in (3.10) and (3.11) are the best possible. Theorem
3.2is proved. [J

Lastly, we will present the following theorem without giving detailed proof. In
fact, by using Lemma 2.2, Lemma 2.4 and Remark 2.6, and referring to the proof of
Theorem 3.1 and Theorem 3.2, we can easily establish the following theorem.

THEOREM 3.3. Assume that 7 € {1,—1}, a,f € ©, ye R U{0}, x € (0,1),
0€Q, and 0 € (0,1]NQ. Let 0<a <P and a+x < B+7y for t=—1. Let
0<a<f and oo+ x <min{l,B + vy} for T = 1. Suppose that |1(x) = \x\p(lﬂcé)fl,
and vy, = [n|" %O Lot £(x),a, > 0 with f(x) € Lpu(R), and a={ay},cqz0 € lgv.
Let K(z) and c(a,B,v,K) be defined by (2.6) and (2.12), respectively. Then

[ 1) 3 K () ande < 877 0P el By )l (3.15)

neZzd

> (/ZK(x‘Sne)f(x)dx)p < [1877 077 (0. B.7.)] 1l Gu16)

neZz0

- q
. ( ) K(xﬁne)an) de< [|8] 10 (a7, )] 1@

nezd

a (3.17)

q,V»

where the constant |5|7$ Oféc(a,ﬁ,y, K) in (3.15), (3.16) and (3.17) is the best pos-
sible.
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4. Some corollaries

Suppose that y =0, 6 = 0 = 1 in Theorem 3.1, and use Lemma 2.7, then we
obtain the following Hilbert-type inequality involving a non-homogeneous kernel.

COROLLARY 4.1. Suppose that T € {1,—1}, o, € Q, and x € (0,1). Let
o,B,x be such that 0 < o0 < B and oo+ k < min{1,B}. Suppose that y(x) = cotx,
and f(x),a, >0 with f(x) € L, y(R) and a ={an},cz0 €lgv. Then

[t e [y (5) o)

|allq.v, (4.1

|p(1—l<)—1 ‘q(l—K)—l.

where 1(x) = |x , Va=|n

Setting B = (2j+ 1), k = jo (j € NT), we have 0 < o <
(4.1) is transformed into the following inequality:

* an 2r Jjm
[0 3 et ey () Wil 02

where p(x) = [x[P1 771y, = |n‘ql jo)-1
Let j =1 in (4.2), then 0<oa<s (a € Q) and we have

j+1 (o€ Q), and

an 2\/_
dr< allgv, 43
/ e ezol_f(xn)o‘-k(xn)m 3a 1£1lp,ull@llg,v (4.3)
where 11(x) =[x/ v, = 10707

Suppose that y =0, 5 = —1, 6 =1 in Theorem 3.1, and replace f(x)xf~% by
f(x), then we have the following Hilbert-type inequality involving a homogeneous
kernel.

COROLLARY 4.2. Suppose that T € {1,—1}, o, € Q, and x € (0,1). Let
o,B,x be such that 0 < o0 < B and oo+ k < min{1,B}. Suppose that y(x) = cotx,
and f(x),a, >0 with f(x) € L, 4(R) and a ={an},cz0 €lgv. Then

/f ezofcﬁ:nﬁ dx<%{w(§—g>—w<w>}

<A llpullallgy, (4.4)

|x|p(l+a7ﬁ+1c)71 71'

where |L(x) = s V= |07

Setting B = (2j+ 1), k = jo (j € NT), we have 0 < o0 < m (o € Q), and
(4.4) reduces to

. a, 2r jn
/—wf(X)nezzto z?ioxia(—fn“)zf—idx< (2j+ I)O‘w<4 )

q,V» (4 5)
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where p1(x) = |[x|[PU=®71 y, = et
Let j=1 and T——l in (4.5), Weget(l 7) with ox € Q. Let j =2 in (4.5), then

anf(x) 21
L 2)640‘ x3“n“+(xn)2“—x0‘n3o‘+n4“dx 50 ‘I’( )”pr“”a”qv’

nezd

‘p(l—Za)—l |q(1—2a)—1.

where 1 (x) = |x , Vp=n
Suppose that y=2f, § = 6 = 1 in Theorem 3.1, then we have o+ x < 3f3.
If we suppose that K + o < 8, then k¥ < 3 <2f3, and

C(a,B,7,x) i<2,g+,< 2i[3+11[3—’<>

1 1
+2z<2iB+3B—a—K_2iﬁ+a+ﬁ+K>

- 1 2 2
2(21B+K 2iB+2B—K>+2B—K_B—a—K

+2i§‘ <2i[3+[31—a—1<_2i[3+a1+[5+,<>
5 {"’Gg) ‘”(W) —CO] ’ (4.6)

2B(B+ o)
2B-x)(p-a—K)n

Therefore, we can establish the following corollary.

where

co =

COROLLARY 4.3. Suppose that t € {1,—1}, a,p € Q, and x € (0,1). Let
o,B,x be such that 0 < o0 < B and oo+ k < min{1,B}. Suppose that y(x) = cotx,
and f(x),a, >0 with f(x) € Ly u(R) and a = {an},cp0 € lyv. Then

= 1+7(xn)”
/’“’ 70 néo (1 + ‘L’(xn)ﬁ> max {1, (xn)zﬁ } e

<5 v(5) v (L) | Uttty @)

‘q(l—K)—l.

|P(1—K)—1

where 1(x) = |x , Va=|n

Setting B = (2j+1)e, k= jor (j€NT) in (4.7), we have 0 < & < w7 (€ € Q),
and (4.7) is transformed into the following inequality:
o a,
oD . :
/—w S0 max { 1, (xn)<4f+2>“} ¥ (= 1)i(xm)i

- [(2J‘|‘ l)OCW<4j—|—2> - (3j+2)j(x] 1f1p.ull@llg.v (4.8)

dx
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where i (x) = \x\”(17~fa)71, Vp = |n\q<1i"a)*l,

Let j =1 in (4.8), then we get (1.8).

Furthermore, suppose that y =28, 6 = —1, 6 = 1 in Theorem 3.1, and replace
F(x)x*B=% by f(x), then we have the following corollary.

COROLLARY 4.4. Suppose that T € {1,—1}, o, € Q, and x € (0,1). Let
o, B, K be such that 0 < o0 < B, and o+ x < min{1,B}. Suppose that y(x) = cotx,
and f(x),a, >0 with f(x) € L, y(R) and a ={an},cz0 €lgv. Then

x% 4+ n®
ndx
IRE 2 o) max (B

<5 v (5) v () | Uatale @)

p(I+a—3B+x)—1

gq(l1—x)—1

where 1L(x) = |x| , V= |n

Setting B = (2j+1)a, k= jo (j € NT) in (4.9), we can obtain the homogeneous
form of (4.8).

Suppose that T=1, y=0, § = 8 = 1 in Theorem 3.3, and use Lemma 2.8, then
we obtain the following Hilbert-type inequality involving a non-homogeneous kernel.

COROLLARY 4.5. Suppose that o, € ©, Kk € (0,1). Let 0 < o« < B and o+
k <min{1,B}. Suppose that ¢(x) = cscx, and f(x),a, >0 with f(x) € L, 4(R) and
a={an},cz0 €lyv. Then

[ 35 o () (57

(4.10)

where p1(x) = [x[PU7971 y, = 20071

Setting oc = 0 in (4.10) we have 0 < kK <min{1,B} (B € ©), and (4.10) is trans-
formed into the following inequality:

*° a, 2r KT
[0 5, <o (5 ) Il

where p(x) = [x|PU7971 y, = |pat=0)-!
Setting § = (2]+1)a K=jo (]EN+)1n(4 10), wehave 0 < ot < 737 (ae@)
and (4.10) reduces to the following inequality.

an d 4n ( jm )
/f w0 S o (—)i(am)ie <(2J'+1)O‘¢ 2j+1

where p1(x) = |x|PU71 y, = a1

av (4.11)

qv, (4.12)
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Let j=1in(4.12),then 0 < ax < % (o € ©), and we have

0 8
/ f) Z dx < vin £ llp.ullallgy, (4.13)

neZO 1 — (xn)®* + (xn)2e 9a

‘P(l—a)—17 ‘q(l—a)—l_

where p(x) = |x v, = |n
It is of interest that although the form of the kernel function in inequality (4.13) is
the same as that in (4.3) (7 = 1), the constant factors in (4.3) and (4.13) are completely
different since o belongs to different sets.
Suppose that T=1, y=0, § = —1, 6 = 1 in Theorem 3.3. Replace f(x)x®~% by
f(x), and use Lemma 2.8, then we have the following Hilbert-type inequality involving
a homogeneous kernel.

COROLLARY 4.6. Suppose that o, € ©, xk € (0,1). Let 0< o0 < B and o0 +
x <min{1,B}. Suppose that ¢(x) = cscx, and f(x),a, >0 with f(x) € L, ,(R) and
a={an},cp0 €lgv. Then

o x*+n” 2n K7 (a+K)m
/oof(x)ng‘zoxﬁ—knﬁa"dx< B [(P(ﬂ )+¢< B )]
x| fllp.ullallg,v, (4.14)

|q(1—K‘)—1 )

where 1(x) = |x[P(He-Prr-1

,v,,:\n

Setting oc =0 in (4.14), we have 0 < k < min{1, 3} (B € ©), and (4.14) reduces
to

. o,
[0 3, g o (5 ) Ifllalr. @19

neZz0

where .u(x) — ‘X‘P(l—ﬁ—K)—l’ Vy = |n‘q - )—1'

Setting B = (2j+1)a, k= jo (j € NT) in (4.14), we have 0 < o < j+1 (x€@),
and (4.14) reduces to
© a 4r jr
. dx < , (4.16
Lf ) EZ ST (g~ @i+ Da’ <2j+ 1) avr (16)

where p1(x) = [P 7Oy, = [t
Suppose that =1, 7/ 2[3 0 =60 =1 in Theorem 3.3, and use Lemma 2.8, then

c(a,B,v.x i(zﬁ—kl; lﬁ-(k_;?)i_ K‘)

i (lﬁ—i—SB )ia nal i E|—_olc)—ik K‘)
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& ([ (1) (—1)
=23 (-
Z (zﬂ +x iB+P—x

(=1 (=1
+2Z<1[3—|—[3 o— K+i[3+a+r<>
2 2

2
_[3—1(+2[3—1<_[3—a—1<
T o+ K

() e (5

B 1 1 1 1
Cl_E(ﬂ—K_Zﬁ—K+ﬂ—a—K_2ﬂ—a—K>'

Therefore, we get the following corollary.

2
2B—o—xK
—cl} , (4.17)

where

COROLLARY 4.7. Suppose that o, € ©, Kk € (0,1). Let 0 < o < B and o+
x <min{1,B}. Suppose that ¢(x) = cscx, and f(x),a, >0 with f(x) € L, ,(R) and
a={ay},cz0 €lyv. Then

- i 1+ (xn)®
/_Nf( >n§o <1 + (xn)ﬁ> 1, (m)*
)

-
<o (5) +e(“U52E) | irtpuda

where [1(x) = [x[PU7971 y, = 20071,

ndx
}a

- (4.18)

Setting o =0 in (4.18), we have 0 < k < min{1,} (B € ©), and (4.18) is trans-
formed into the following inequality:

/""’f(X) né() <l + (xn)ﬁ> mZx{ (xn)zﬁ } @

2 (K% 2B
- [f‘p (F) - m] I lpullallyy @419

where U (x) = ‘X‘P(l—K)—l’ Vv, = ‘n|q(l—1<)—1.
Additionally, we can establish the homogeneous form of (4.18).

COROLLARY 4.8. Suppose that o, € ©, xk € (0,1). Let 0< o0 < B and o +
x <min{1,B}. Suppose that ¢(x) = cscx, and f(x),a, >0 with f(x) € L, ,(R) and
a={ay},cz0 €lyv. Then

x“+n
IRE (B 1 P max (228,28}

eZO

<o (5) +e(“U52E) | irtpuda

av- (4.20)
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|x|p(l+a73ﬁ+1€)fl

where [(x) = V= |27

Setting B = (2j+1)a, k= ja (j € NT) in (4.20), we have 0 < @ <77 (a €0),
and (4.20) reduces to

dn
/ f(x) @j+2)a ,4j+2)al v2/ ia a)2j—i
S nez0 max {x J n J }zizox (—n ) J

[ 4r ¢< in )_ 4(2j+1)(3/2+3j+1)
2j+1a" \2j+1 JUG+FDHE/+DBj+2)a

1 1lp.ullallgv, 421)

where ((x) = MF (5j+2)e)— LV, = ‘n|q(lfja)—1.
Let j =1 in (4.21), then (4.21) is transformed into the following inequality:

ay
dx
/ f neZO x2a (xn)a+n2a] max{x6a7n6a}
8v3r 21
< ( 90 W) 1£llpullallgy, (4.22)

where p1(x) = |x|PIT797L y, = |pat-®-L
Suppose that T= —1, y=0, § = 6 = 1 in Theorem 3.3, and use Lemma 2.7,
then we obtain the following corollary.

COROLLARY 4.9. Suppose that o, € ©, k € (0,1). Let 0 < o0 < B and oo+
k <min{l,B}. Suppose that y(x) = cotx, and f(x),a, >0 with f(x) € L, ,(R) and
a={an},cp0 €lgv. Then

[z =< o (5) -+ (45%))
<A llp.ullallq.y- (4.23)

|p(1—l<)—1 ‘q(l—K)—l.

where 1(x) = |x , Va=|n

Replace o and B in (4.23) with 8 and 23, respectively, then we have 0 < Kk <
min{1—-f,8} (B €06N(0,1)), and

[ 3 e 5) (45

|alqv- (4.24)

where p1(x) = |x[P17971 v, = n]?'97 Observing that

v(55) v (55) - (5)

it follows that (4.11) and (4.24) are equivalent.
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Setting B = (2j+1)o, k= jo (j € NT) in (4.23), we have 0 < & <77 (a €0),
and (4.23) reduces to

° a 4r jr
/—wf(x)nezzo STy @D’ <2j+ 1) M@l 629

‘ql Jje)—1

where u(x) = [x|PU797 v, = |n

Suppose that T=—1, y=0, § = —1, 9 =1 in Theorem 3.3. Replace f(x)xB—
by f(x), and use Lemma 2.7, then Theorem 3.3 is transformed into the following corol-
lary.

COROLLARY 4.10. Suppose that o, € 0, k€ (0,1). Let 0 < o« < B and o+
k <min{l,B}. Suppose that y(x) = cotx, and f(x),a, >0 with f(x) € L, ,(R) and
a={an},cz0 €lgv. Then

[ 2 g <5 v () v (%57

neZ.
av- (4.26)

|x|p(1+067ﬁ+1()71 71(')71.

where [(x) = sV = |n?0

Let B =30, k= o, we get (1.7) with o € ©.
Suppose that 7= —1, y=f3, 6 = 6 = 1 in Theorem 3.3, then we have ot + K <
2. If we suppose that K+ o < 3, then

c(a,B,v,x) Z(lg_;_x zﬂ+21ﬂ—'<>

2 Z<1ﬁ+2[31 o—K zﬁ+:x+1<)

2(43% zﬂ+13—v<>+ﬂ3'<_ﬁ—i—'<

22(,[34_[3 o—K lﬁ-i—iX—FK)
A

op
(B-r)(B-o—K)m

Therefore, we can establish the following corollary.

where

Cy) =
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COROLLARY 4.11. Suppose that o, € O, k€ (0,1). Let 0 < o« < B and o+
k <min{1,B}. Suppose that ¢(x) = cscx, and f(x),a, >0 with f(x) € L, 4(R) and
a={an},cz0 €lgv. Then

° 1— (xn)*
/’“’ 70 néo (1 - (xn)ﬁ> max { 1, (xn)ﬁ } s

< ZB—” [w (%) —y (“”,%)”) —02] 1flpallalay, — @28)

where 1(x) = |x|P(1—’<)—1’ vy = |n‘q(1—1<)—1.

Replace o and B in (4.28) with B and 2f3, respectively, then we have then we
have 0 < Kk <min{1— 3,8} (B € ®N(0,1)), and

/""’f(X) né() <l + (xn)ﬁ> m:lx {1, (xn)zﬁ } @

2r KT 2B
- [f‘b (F) - W] Ifllpullallgy, — 4.29)

where p(x) = [x[PU17971 v, = |n2070)T
Suppose that T = —1 y=pB,0= —1 6 = 1 in Theorem 3.3, then we obtain a
Hilbert-type inequality w1th a homogeneous kernel

COROLLARY 4.12. Suppose that o, € ©, k € (0,1). Let 0 < ot < f and o+
k <min{1,B}. Suppose that ¢(x) = cscx, and f(x),a, >0 with f(x) € L, 4(R) and
a={an},cz0 €lgv. Then

/ f x%* —n¢
EZQ (xB —nP) max {xB, nﬁ}

< ZB—” [w (%) —y (%) —02] 1flpallalay, (430

where [(x) = |x|l’(1+0‘*2l3+'<)*1 v, = ‘n|q(1—;<)71.

bl

Setting B = (2j+1)o, k= jo (j € NT) in (4.30), we have 0 < & <77 (a €0),
and (4.30) is transformed into the following inequality:

an

| s e ——
neZO max {x(2itDe p@itDel 557 yiop(2j-ie

4w jm )
- {(2j+1)ocw<2j+1> _j(j+1)oc} £ llp.ulla

\x\p (Bj+Da)-1

avs (4.31)

Vv, = ‘n|q(1—ja)—1'

where p(x) =
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