SHARP INEQUALITIES FOR THE ATOM-BOND (SUM) CONNECTIVITY INDEX

Akbar Ali*, Igor Milovanović, Emina Milovanović and Marjan Matejić

(Communicated by N. Elezović)

Abstract

For a graph G, its atom-bond connectivity (ABC) index (respectively, atom-bond sum connectivity (ABS) index) is defined as the addition of the numbers $\sqrt{d_{i}+d_{j}-2}\left(d_{i} d_{j}\right)^{-1 / 2}$ (respectively, $\sqrt{d_{i}+d_{j}-2}\left(d_{i}+d_{j}\right)^{-1 / 2}$) over all unordered pairs of adjacent vertices $\left\{v_{i}, v_{j}\right\}$ of G, where d_{i} and d_{j} denote the degrees of v_{i} and v_{j}, respectively. In this paper, sharp upper bounds on the ABC and ABS indices are derived. All the graphs that attain the obtained bounds are also completely characterized.

1. Introduction

Let $G=(V, E), V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, be a simple graph of order $n \geqslant 2$ and size m without isolated vertices. Denote by $\Delta=d_{1} \geqslant d_{2} \geqslant \cdots \geqslant$ $d_{n}=\delta>0, d_{i}=d\left(v_{i}\right)$, a sequence of vertex degrees given in a non-increasing order. Let $e=\left\{v_{i}, v_{j}\right\}$ denote an edge incident to vertices v_{i} and v_{j}. Degree of an edge e is defined to be $d(e)=d_{i}+d_{j}-2$. Let $\Delta_{e}=d\left(e_{1}\right)+2 \geqslant d\left(e_{2}\right)+2 \geqslant \cdots \geqslant d\left(e_{n}\right)+2=\delta_{e}$. Denote by $i \sim j$ the edge connecting the vertices $v_{i}, v_{j} \in V(G)$.

A topological index for a graph is a numerical quantity which is invariant under isomorphism of the graph. The study of the mathematical aspects of the degree-based topological indices is considered to be one of the very active research areas within the field of chemical graph theory.

The general sum connectivity index, $H_{\alpha}(G)$, is defined as [50]

$$
H_{\alpha}(G)=\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{\alpha}=\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha}, \quad H_{0}(G)=m
$$

where α is an arbitrary real number. Some special cases include:
— the first Zagreb index, $M_{1}(G)=H_{1}(G)$ [19],

- the sum connectivity index $S C(G)=H_{-1 / 2}(G)$ [51],
- the harmonic index $H(G)=2 H_{-1}(G)$ [17].

Mathematics subject classification (2020): 05C07, 05C09, 05C92.
Keywords and phrases: Topological index, atom-bond connectivity index, atom-bond sum connectivity index, bound.

* Corresponding author.

The general Randić index R_{α} of a graph G is a graph invariant defined as [7]

$$
R_{\alpha}(G)=\sum_{i \sim j}\left(d_{i} d_{j}\right)^{\alpha}, \quad R_{0}(G)=m
$$

where α is an arbitrary real number. When $\alpha=1$, then the second Zagreb index $M_{2}(G)=R_{1}(G)$ is obtained [20]; for $\alpha=-1 / 2$ the Randić index $R(G)=R_{-1 / 2}(G)$ is obtained [42]. For $\alpha=-1$ the modified second Zagreb index, $M_{2}^{*}(G)$, defined in [38] is obtained (see also [8]).

The arithmetic-geometric index was introduced in [45]. It is a modification of the well-known geometric-arithmetic index. It is defined as

$$
A G(G)=\sum_{i \sim j} \frac{d_{i}+d_{j}}{2 \sqrt{d_{i} d_{j}}}
$$

The atom-bond connectivity index, ABC index for short, is defined $[3,16]$ (see for example also [25]) as

$$
A B C(G)=\sum_{i \sim j} \sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}
$$

It was shown that ABC index can be used for modeling thermodynamic properties of organic chemical compounds. Various papers on the mathematical properties of the $A B C$ index have been published as well (see the recent review [3]).

For a graph G, its atom-bond sum-connectivity (ABS) index (see [5,4]) is defined as

$$
A B S(G)=\sum_{i \sim j} \sqrt{1-\frac{2}{d_{i}+d_{j}}}
$$

Some chemical applications of the ABS index can be found in [5,37]; these two papers together with [39] also provide some mathematical aspects of the ABS index. In the present paper, we investigate the relationship between $A B C$ and $A B S$ indices and some other degree-based invariants. More precisely, we derive sharp upper bounds on the ABC and ABS indices by using an inequality of real numbers.

2. Preliminaries

In order to obtain the main results, we need to establish some preliminary results. To that end, in this section we recall some results for the atom-bond connectivity index published in the literature that are of interest for this paper.

Lemma 2.1. [23] Let G be a graph with n vertices and m edges. Then

$$
\begin{equation*}
A B C(G) \leqslant \sqrt{m\left(n-\frac{2 m^{2}}{M_{2}(G)}\right)} \tag{2.1}
\end{equation*}
$$

with equality if and only if G is a regular or semiregular bipartite graph.

Let us note that in the proof of Lemma 2.1 the inequality

$$
\begin{equation*}
A B C(G) \leqslant \sqrt{m\left(n-2 R_{-1}(G)\right)} \tag{2.2}
\end{equation*}
$$

with equality if and only if G is a regular or semiregular bipartite graph, was proven. Interestingly, the inequality (2.2) is stronger than (2.1).

The inequality (2.2) was also proved in [49]. It was proved that equality is attained if and only if G is a regular or semiregular bipartite graph, or every edge is incident with a vertex of degree two.

Lemma 2.2. [6] If G is a connected graph of order $n \geqslant 2$ and size m, then

$$
\begin{equation*}
A B C(G) \leqslant \sqrt{(n-1)\left(m-R_{-1}(G)\right)} \tag{2.3}
\end{equation*}
$$

with equality if and only if G is either a complete graph or a star graph.
Note that the bounds on the $A B C(G)$ given in (2.2) and (2.3), involve the same parameters. However, these bounds are not comparable in general.

Lemma 2.3. [49] Let G be a graph of size m. Then

$$
\begin{equation*}
A B C(G) \leqslant \sqrt{\left(M_{1}(G)-2 m\right) R_{-1}(G)} \tag{2.4}
\end{equation*}
$$

with equality if and only if either $m=0$, or every component of G is either a regular graph of degree r for all such components (if exist), or semiregular bipartite graph with the degree set $\{s, t\}$ provided that $\frac{s t}{s+t-2}$ is constant in all such components (if exist), and $\frac{s t}{s+t-2}=r^{2}(2 r-2)$ if there exist both types of the components.

Let us note that (2.4) was obtained as a corollary of more general results proved in [11, 13]. In [12] the inequality (2.4) was proven for the graphs with tree structure.

3. Main results

Our starting point is the inequality reported in [41] for the real number sequences.
LEMMA 3.1. [41] Let $x=\left(x_{i}\right), i=1,2, \ldots, n$, be a sequence of non-negative real numbers, and $a=\left(a_{i}\right), i=1,2, \ldots, n$, a sequence of positive real numbers. Then, for any $r \geqslant 0$, holds

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{x_{i}^{r+1}}{a_{i}^{r}} \geqslant \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{r+1}}{\left(\sum_{i=1}^{n} a_{i}\right)^{r}} \tag{3.1}
\end{equation*}
$$

Equality holds if and only if $r=0$, or $\frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\cdots=\frac{x_{n}}{a_{n}}$.
REMARK 3.1. The result in Lemma 3.1 is given in its original form. However, let us note that the inequality (3.1) is valid both if $r \leqslant-1$ or $r \geqslant 0$. When $-1 \leqslant r \leqslant 0$, the opposite inequality is valid. Equality in (3.1) is also valid when $r=-1$.

In the next theorem we establish a relationship $A B C(G)$ and harmonic index, $H(G)$.

THEOREM 3.1. Let G be a graph of order n and size m without isolated vertices. Then

$$
\begin{equation*}
A B C(G) \leqslant \sqrt{n(m-H(G))} \tag{3.2}
\end{equation*}
$$

Equality holds if and only if G is a regular or semiregular bipartite graph.

Proof. The following identities are valid

$$
\begin{align*}
m & =\sum_{i \sim j} 1=\sum_{i \sim j} \frac{d_{i}+d_{j}}{d_{i}+d_{j}}=\sum_{i \sim j} \frac{2}{d_{i}+d_{j}}+\sum_{i \sim j} \frac{d_{i}+d_{j}-2}{d_{i}+d_{j}} \tag{3.3}\\
& =H(G)+\sum_{i \sim j} \frac{d_{i}+d_{j}-2}{d_{i}+d_{j}}
\end{align*}
$$

On the other hand, after replacing $r:=1, x_{i}:=\sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}, a_{i}:=\frac{d_{i}+d_{j}}{d_{i} d_{j}}$ and summation over all pairs of adjacent vertices v_{i}, v_{j} in G, the inequality (3.1) transforms into

$$
\sum_{i \sim j} \frac{\left(\sqrt{\frac{d_{i}+d_{j}-2}{d_{j} d_{j}}}\right)^{2}}{\frac{d_{i}+d_{j}}{d_{i} d_{j}}} \geqslant \frac{\left(\sum_{i \sim j} \sqrt{\frac{d_{i}+d_{j}-2}{d_{j} d_{j}}}\right)^{2}}{\sum_{i \sim j} \frac{d_{i}+d_{j}}{d_{i} d_{j}}}
$$

that is

$$
\begin{equation*}
\sum_{i \sim j} \frac{d_{i}+d_{j}-2}{d_{i}+d_{j}} \geqslant \frac{A B C(G)^{2}}{n} \tag{3.4}
\end{equation*}
$$

because $\sum_{i \sim j} \frac{d_{i}+d_{j}}{d_{i} d_{j}}=n$ (see Lemma 1 in [15]). The inequality (3.2) is obtained from (3.3) and (3.4).

By Lemma 3.1, the equality in (3.4) holds if and only if $\frac{\sqrt{\left(d_{i}+d_{j}-2\right) d_{i} d_{j}}}{d_{i}+d_{j}}$ is constant for every pair of adjacent vertices in G. Suppose that vertices v_{j} and v_{k} are both adjacent to v_{i}. Then, the equation

$$
\frac{\sqrt{\left(d_{i}+d_{j}-2\right) d_{i} d_{j}}}{d_{i}+d_{j}}=\frac{\sqrt{\left(d_{i}+d_{k}-2\right) d_{i} d_{k}}}{d_{i}+d_{k}}
$$

holds if and only if $d_{j}=d_{k}$, which implies that the equality in (3.4) holds if and only if G is either regular or semiregular bipartite graph.

REMARK 3.2. The harmonic index, $H(G)$, is well elaborated in the literature (see for example [1,9,33,43]). From the known lower bounds on $H(G)$ and inequality (3.2) it is possible to derive a number of upper bounds for the $A B C$ index. In the following corollaries of Theorem 3.1 we illustrate this fact.

In [26] it was proven that

$$
\begin{equation*}
H(G) \geqslant \frac{2 m^{2}}{M_{1}(G)} \tag{3.5}
\end{equation*}
$$

where the equality holds if and only if G is either regular or semiregular bipartite graph. From (3.2) and (3.5) we obtain the following result.

Corollary 3.1. Let G be a graph of order n and size m without isolated vertices. Then

$$
\begin{equation*}
A B C(G) \leqslant \sqrt{n m\left(1-\frac{2 m}{M_{1}(G)}\right)} \tag{3.6}
\end{equation*}
$$

with equality if and only if G is regular or semiregular bipartite graph.
In [33] it was proven that

$$
H(G) \geqslant \frac{2 m^{2}}{M_{1}(G)}+\frac{\left(\sqrt{\Delta_{e}}-\sqrt{\delta_{e}}\right)^{2}}{\Delta_{e} \delta_{e}}
$$

where the equality holds if and only if G is either regular or semiregular bipartite graph. The above inequality is stronger than (3.5). Now we have the following corollary of Theorem 3.1.

COROLLARY 3.2. Let G be a graph of order $n \geqslant 3$ and size m without isolated vertices. Then

$$
A B C(G) \leqslant \sqrt{n\left(m-\frac{2 m^{2}}{M_{1}(G)}-\frac{\left(\sqrt{\Delta_{e}}-\sqrt{\delta_{e}}\right)^{2}}{\Delta_{e} \delta_{e}}\right)}
$$

Equality holds if and only if G is regular or semiregular bipartite graph.
In [47] the following lower bound for the harmonic index was obtained

$$
H(G) \geqslant \frac{2 m^{2}}{2 m(\Delta+\delta)-n \delta \Delta}
$$

where the equality holds if and only if one end-vertex is of degree Δ and the other one is of degree δ for every edge of G. From the above inequality and (3.2) we obtain the next result.

Corollary 3.3. Let G be a graph of order $n \geqslant 2$ and size m without isolated vertices. Then

$$
\begin{equation*}
A B C(G) \leqslant \sqrt{n m\left(1-\frac{2 m}{2 m(\Delta+\delta)-n \delta \Delta}\right)} \tag{3.7}
\end{equation*}
$$

Equality holds if and only if G is regular or semiregular bipartite graph.

REMARK 3.3. In [10] (see also [24,30,31]) the following inequality was proven

$$
\begin{equation*}
M_{1}(G) \leqslant 2 m(\Delta+\delta)-n \delta \Delta . \tag{3.8}
\end{equation*}
$$

The inequality (3.7) can be also obtained from (3.6) and (3.8).
Based on the arithmetic-geometric mean inequality (see for example [36]) we have that

$$
2 \sqrt{n \delta \Delta M_{1}(G)} \leqslant M_{1}(G)+n \delta \Delta \leqslant 2 m(\Delta+\delta),
$$

that is

$$
M_{1}(G) \leqslant \frac{m^{2}(\Delta+\delta)^{2}}{n \delta \Delta}
$$

which was proven in [27]. Now we obtain the following result:
COROLLARY 3.4. Let G be a graph of order $n \geqslant 2$ and size m without isolated vertices. Then

$$
A B C(G) \leqslant \sqrt{n\left(m-\frac{2 n \delta \Delta}{(\Delta+\delta)^{2}}\right)} .
$$

Equality holds if and only if G is regular or semiregular bipartite graph.
In [44] it was proven that

$$
H(G) \geqslant \frac{2 n \Delta}{(\Delta+1)^{2}}
$$

So we have the following result:
COROLLARY 3.5. Let G be a graph of order $n \geqslant 2$ and size m without isolated vertices. Then

$$
A B C(G) \leqslant \sqrt{n\left(m-\frac{2 n \Delta}{(\Delta+1)^{2}}\right)}
$$

Equality holds if and only if $G \cong K_{1, n-1}$.
In [48] it was proven that

$$
H(G) \geqslant \frac{2(n-1)}{n}
$$

From the above and inequality (3.2) we obtain the next two results.
Corollary 3.6. Let G be a graph of order $n \geqslant 2$ and size m without isolated vertices. Then

$$
A B C(G) \leqslant \sqrt{n m-2(n-1)}
$$

Equality holds if and only if $G \cong K_{1, n-1}$.

Corollary 3.7. Let T be a tree with $n \geqslant 2$ vertices. Then

$$
\begin{equation*}
A B C(T) \leqslant \sqrt{n(n-1-H(T))} \leqslant \sqrt{(n-2)(n-1)} \tag{3.9}
\end{equation*}
$$

Equality holds if and only if $T \cong K_{1, n-1}$.
REMARK 3.4. The second inequality in (3.9) was proven in [18].
In [33] it was proven that

$$
H(G) \geqslant \frac{2 S C(G)^{2}}{m}
$$

From the above and (3.2) we obtain the following result.
COROLLARY 3.8. Let G be a graph of order $n \geqslant 2$ and size m without isolated vertices. Then

$$
A B C(G) \leqslant \sqrt{n\left(m-\frac{2 S C(G)^{2}}{m}\right)}
$$

Equality holds if and only if G is regular or semiregular bipartite graph.
In [46] it was proven that

$$
H(G) \geqslant \frac{m}{n-r(G)}
$$

where $r(G)$ is rank of G. Now we have the following corollary of Theorem 3.1.
COROLLARY 3.9. Let G be a graph of order $n \geqslant 2$ and size m without isolated vertices. Then

$$
A B C(G) \leqslant \sqrt{m n\left(1-\frac{1}{n-r(G)}\right)}
$$

Equality holds if and only if $G \cong K_{n}$.
In [14] it was proven that

$$
H(G) \geqslant \chi(G)-\frac{n}{2}
$$

where $\chi(G)$ is the chromatic number of G. Now we have that the following result is valid.

Corollary 3.10. Let G be a connected graph with $n \geqslant 2$ vertices and m edges with chromatic number $\chi(G)$. Then

$$
A B C(G) \leqslant \sqrt{n\left(m-\chi(G)+\frac{n}{2}\right)} .
$$

Equality holds if and only if $G \cong K_{n}$.

In the next theorem we determine a relationship between $A B C(G), A G(G)$ and $R(G)$.

TheOrem 3.2. Let G be a graph without isolated vertices. Then

$$
\begin{equation*}
A B C(G) \leqslant \sqrt{2 R(G)(A G(G)-R(G))} \tag{3.10}
\end{equation*}
$$

Equality holds if and only if G is regular or semiregular bipartite graph.
Proof. The following identities are valid

$$
\begin{align*}
A G(G) & =\sum_{i \sim j} \frac{d_{i}+d_{j}}{2 \sqrt{d_{i} d_{j}}}=\frac{1}{2} \sum_{i \sim j} \frac{d_{i}+d_{j}-2}{\sqrt{d_{i} d_{j}}}+\sum_{i \sim j} \frac{1}{\sqrt{d_{i} d_{j}}} \\
& =R(G)+\frac{1}{2} \sum_{i \sim j} \frac{d_{i}+d_{j}-2}{\sqrt{d_{i} d_{j}}} \tag{3.11}
\end{align*}
$$

On the other hand, for $r:=1, x_{i}:=\sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}, a_{i}:=\frac{1}{\sqrt{d_{i} d_{j}}}$ and summation performed over all pairs of adjacent vertices v_{i} and v_{j} in G, the inequality (3.1) transforms into

$$
\sum_{i \sim j} \frac{d_{i}+d_{j}-2}{\sqrt{d_{i} d_{j}}}=\sum_{i \sim j} \frac{\left(\sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}\right)^{2}}{\frac{1}{\sqrt{d_{i} d_{j}}}} \geqslant \frac{\left(\sum_{i \sim j} \sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}}\right)^{2}}{\sum_{i \sim j} \frac{1}{\sqrt{d_{i} d_{j}}}},
$$

that is

$$
\begin{equation*}
\sum_{i \sim j} \frac{d_{i}+d_{j}-2}{\sqrt{d_{i} d_{j}}} \geqslant \frac{A B C(G)^{2}}{R(G)} \tag{3.12}
\end{equation*}
$$

The inequality (3.10) immediately follows from (3.11) and (3.12).
By Lemma 3.1, the equality in (3.12) holds if and only if $d_{i}+d_{j}$ is constant for every pair of adjacent vertices v_{i} and v_{j} in G, which implies that equality in (3.10) holds if and only if G is a regular or semiregular bipartite graph.

The following upper bound for the arithmetic-geometric index was proven in [34]

$$
A G(G) \leqslant \frac{n m}{2 R(G)}+\frac{1}{8}\left(\sqrt{\Delta_{e}}-\sqrt{\delta_{e}}\right)^{2}
$$

with equality if and only if G is regular or semiregular bipartite graph. From the above and inequality (3.10) we have the following corollary of Theorem 3.2.

COROLLARY 3.11. Let G be a connected graph of order $n \geqslant 2$ and size m. Then we have

$$
A B C(G) \leqslant \sqrt{m n+\left(\frac{1}{4}\left(\sqrt{\Delta_{e}}-\sqrt{\delta_{e}}\right)^{2}-2 R(G)\right) R(G)}
$$

Equality holds if and only if G is a regular or a semiregular bipartite graph.

Since

$$
A G(G)=\sum_{i \sim j} \frac{d_{i}+d_{j}}{2 \sqrt{d_{i} d_{j}}} \leqslant \frac{\Delta_{e} R(G)}{2}
$$

with equality if and only if G is a regular or a semiregular bipartite graph, we have another corollary of Theorem 3.2.

Corollary 3.12. Let G be a connected graph. Then

$$
A B C(G) \leqslant R(G) \sqrt{\Delta_{e}-2}
$$

Equality holds if and only if G is a regular or a semiregular bipartite graph.
Since $\Delta_{e} \leqslant 2 \Delta$ and $R(G) \leqslant \frac{m}{\delta}$, the following results are valid.
Corollary 3.13. Let G be a connected graph. Then

$$
\begin{equation*}
A B C(G) \leqslant \sqrt{2(\Delta-1)} R(G) \tag{3.13}
\end{equation*}
$$

Equality holds if and only if G is a regular graph.
Corollary 3.14. Let G be a connected graph of order m. Then

$$
\begin{equation*}
A B C(G) \leqslant \frac{m \sqrt{2(\Delta-1)}}{\delta} \tag{3.14}
\end{equation*}
$$

Equality holds if and only if G is a regular graph.
Let us note that inequalities (3.13) and (3.14) were proven in [12,22].
The reciprocal sum-connectivity index, denoted by $\operatorname{RSC}(G)$, is defined as [2]

$$
R S C(G)=\sum_{i \sim j} \sqrt{d_{i}+d_{j}}
$$

Later, in [28], this index is defined under the name Nirmala index (see also [21, 29]).
The proof of the next result is fully analogous to that of Theorem 3.2 and thence it is omitted.

TheOrem 3.3. Let G be a graph without isolated vertices. Then

$$
\begin{equation*}
A B S(G) \leqslant \sqrt{S C(G)(R S C(G)-2 \cdot S C(G))} \tag{3.15}
\end{equation*}
$$

Equality holds if and only if G is regular or semiregular bipartite graph.
THEOREM 3.4. Let G be a graph of size m without isolated vertices. Then

$$
\begin{equation*}
A B S(G) \leqslant \sqrt{\frac{\left(M_{1}(G)-2 m\right) H(G)}{2}} \tag{3.16}
\end{equation*}
$$

Equality holds if and only if G is a regular or semiregular bipartite graph.

Proof. The following identity is valid

$$
\begin{equation*}
M_{1}(G)-2 m=\sum_{i \sim j}\left(d_{i}+d_{j}-2\right)=\sum_{i \sim j} \frac{d_{i}+d_{j}-2}{d_{i}+d_{j}}\left(d_{i}+d_{j}\right)=\sum_{i \sim j} \frac{\frac{d_{i}+d_{j}-2}{d_{i}+d_{j}}}{\frac{1}{d_{i}+d_{j}}} . \tag{3.17}
\end{equation*}
$$

On the other hand, for $r=1, x_{i}:=\sqrt{\frac{d_{i}+d_{j}-2}{d_{i}+d_{j}}}, a_{i}:=\frac{1}{d_{i}+d_{j}}$, with summation performed over all adjacent vertices, the inequality (3.1) becomes

$$
\begin{equation*}
\sum_{i \sim j} \frac{\frac{d_{i}+d_{j}-2}{d_{i}+d_{j}}}{\frac{1}{d_{i}+d_{j}}} \geqslant \frac{\left(\sum_{i \sim j} \sqrt{\frac{d_{i}+d_{j}-2}{d_{i}+d_{j}}}\right)^{2}}{\sum_{i \sim j} \frac{1}{d_{i}+d_{j}}} \tag{3.18}
\end{equation*}
$$

that is

$$
\sum_{i \sim j} \frac{\frac{d_{i}+d_{j}-2}{d_{i}+d_{j}}}{\frac{1}{d_{i}+d_{j}}} \geqslant \frac{A B S(G)^{2}}{\frac{1}{2} H(G)}
$$

From the above and equality (3.17) we arrive at (3.16).
Equality in (3.18) holds if and only if $\sqrt{\left(d_{i}+d_{j}-2\right)\left(d_{i}+d_{j}\right)}$ is constant for every pair of adjacent vertices in G. Suppose that vertices v_{j} and v_{k} are both adjacent to v_{i}. Then the equation

$$
\sqrt{\left(d_{i}+d_{j}-2\right)\left(d_{i}+d_{j}\right)}=\sqrt{\left(d_{i}+d_{k}-2\right)\left(d_{i}+d_{k}\right)}
$$

that is

$$
\left(d_{j}-d_{k}\right)\left(2 d_{i}+d_{j}+d_{k}-2\right)=0
$$

holds if and only if $d_{j}=d_{k}$, which implies that equality in (3.16) holds if and only if G is either regular or semiregular bipartite graph.

REMARK 3.5. The Platt index, proposed in [40] for predicting paraffin properties, belongs to the oldest degree based topological indices. It is defined as

$$
P l(G)=\sum_{i \sim j}\left(d_{i}+d_{j}-2\right)
$$

Since

$$
P l(G)=M_{1}(G)-2 m,
$$

the inequality (3.16) can be written as

$$
A B S(G) \leqslant \sqrt{\frac{P l(G) H(G)}{2}}
$$

The inverse degree index, $I D(G)$, is a vertex-degree-based index defined in [17] as

$$
I D(G)=\sum_{i=1}^{n} \frac{1}{d_{i}}
$$

The following relation between the first Zagreb index and inverse degree index was established in [32]

$$
\begin{equation*}
M_{1}(G) \leqslant 2 m(\Delta+2 \delta)+\Delta \delta^{2} I D(G)-n \delta(2 \Delta+\delta) \tag{3.19}
\end{equation*}
$$

Based on (3.19) and (3.16), we get the following corollary of Theorem 3.4.

COROLLARY 3.15. Let G be a graph of order $n \geqslant 2$ and size m without isolated vertices. Then we have

$$
\begin{equation*}
A B S(G) \leqslant \sqrt{\frac{\left(2 m(\Delta+2 \delta-1)+\Delta \delta^{2} I D(G)-n \delta(2 \Delta+\delta)\right) H(G)}{2}} \tag{3.20}
\end{equation*}
$$

Equality holds if and only if $\Delta=d_{1}=\cdots=d_{t} \geqslant d_{t+1}=\cdots=d_{n}=\delta$, for some t, $1 \leqslant t \leqslant n-1$.

From (3.8) and (3.16) we get the following corollary of Theorem 3.4.
COROLLARY 3.16. Let G be a graph of order $n \geqslant 2$ and size m without isolated vertices. Then

$$
\begin{equation*}
A B S(G) \leqslant \sqrt{\frac{(2 m(\Delta+\delta-1)-n \Delta \delta) H(G)}{2}} \tag{3.21}
\end{equation*}
$$

Equality holds if and only if G is regular or semiregular bipartite graph.
REMARK 3.6. Since (see [32])

$$
2 m+\Delta \delta I D(G) \leqslant n(\Delta+\delta)
$$

the following inequality is valid

$$
M_{1}(G) \leqslant 2 m\left((\Delta+2 \delta)+\Delta \delta^{2} I D(G)-n \delta(2 \Delta+\delta) \leqslant 2 m(\Delta+\delta)-n \delta \Delta\right.
$$

which means that inequality (3.20) is stronger than (3.21).
When G has a tree structure, $G=T$, the following inequality is valid [32]

$$
M_{1}(T) \leqslant 2(n-1)+(n-2) \Delta .
$$

From the above and inequality (3.16), we get the following result.

Corollary 3.17. Let T be a tree with $n \geqslant 3$ vertices. Then

$$
A B S(T) \leqslant \sqrt{\frac{(n-2) \Delta H(T)}{2}}
$$

Equality holds if and only if $\Delta=d_{1}=\cdots=d_{t} \geqslant d_{t+1}=\cdots=d_{n}=\delta=1$, for some t, $1 \leqslant t \leqslant n-1$.

In [35] it was proven that

$$
M_{1}(G)+\frac{\Delta_{e} \delta_{e}}{2} H(G) \leqslant m\left(\Delta_{e}+\delta_{e}\right)
$$

From the above inequality and (3.16) we obtain the following result.
Corollary 3.18. Let G be a graph of size $m \geqslant 1$ without isolated vertices. Then

$$
A B S(G) \leqslant \sqrt{\frac{\left(2 m\left(\Delta_{e}+\delta_{e}-2\right)-\Delta_{e} \delta_{e} H(G)\right) H(G)}{4}}
$$

Equality holds if and only if $\Delta=d_{1}=\cdots=d_{t} \geqslant d_{t+1}=\cdots=d_{n}=\delta$, for some t, $1 \leqslant t \leqslant n-1$.

Denote with $\omega(G)+1$ the number of vertices of the complete graph which cannot be an induced subgraph of G. In [52] it was proven that

$$
M_{1}(G) \leqslant \frac{\omega(G)-1}{\omega(G)} 2 m n .
$$

From the above inequality and (3.16) we get the following result.
COROLLARY 3.19. Let G be a graph of order $n \geqslant 2$ and size m without isolated vertices. Then

$$
A B S(G) \leqslant \sqrt{\frac{m((n-1) \omega(G)-n) H(G)}{\omega(G)}}
$$

In the next theorem we establish an upper bound for $M_{1}(G)$ in terms of m, Δ, δ and the second Zagreb index, $M_{2}(G)$.

Lemma 3.2. Let G be a graph with $m \geqslant 1$ vertices. Then

$$
\begin{equation*}
M_{1}(G) \leqslant \min \left\{\frac{1}{\Delta}\left(M_{2}(G)+m \Delta^{2}\right), \frac{1}{\delta}\left(M_{2}(G)+m \delta^{2}\right)\right\} . \tag{3.22}
\end{equation*}
$$

Equality holds if and only if G is such a graph that either each vertex is adjacent to the vertex with degree Δ, or each vertex is adjacent to the vertex with degree δ.

Proof. For any pair of vertices v_{i} and v_{j} in G, holds that

$$
\left(\Delta-d_{i}\right)\left(\Delta-d_{j}\right) \geqslant 0 \quad \text { and } \quad\left(d_{i}-\delta\right)\left(d_{j}-\delta\right) \geqslant 0
$$

From the above we obtain that

$$
\Delta\left(d_{i}+d_{j}\right) \leqslant d_{i} d_{j}+\Delta^{2} \quad \text { and } \quad \delta\left(d_{i}+d_{j}\right) \leqslant d_{i} d_{j}+\delta^{2}
$$

After summation of the above inequalities over all adjacent vertices v_{i} and v_{j} in G, we obtain

$$
\begin{equation*}
\Delta \sum_{i \sim j}\left(d_{i}+d_{j}\right) \leqslant \sum_{i \sim j} d_{i} d_{j}+\sum_{i \sim j} \Delta^{2} \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \sum_{i \sim j}\left(d_{i}+d_{j}\right) \leqslant \sum_{i \sim j} d_{i} d_{j}+\sum_{i \sim j} \delta^{2} \tag{3.24}
\end{equation*}
$$

that is

$$
M_{1}(G) \leqslant \frac{1}{\Delta}\left(M_{2}(G)+m \Delta^{2}\right)
$$

and

$$
M_{1}(G) \leqslant \frac{1}{\delta}\left(M_{2}(G)+m \delta^{2}\right)
$$

The inequality (3.22) directly follows from the above inequalities.
Equality in (3.23) holds if and only if each vertex of G is adjacent to the vertex with degree Δ. Equality in (3.24) holds if and only if each vertex of G is adjacent to the vertex with degree δ. This implies that equality in (3.22) holds if and only if either each vertex of G is adjacent to the vertex with degree Δ, or each vertex of G is adjacent to the vertex with degree δ.

From the inequalities (3.16) and (3.22) we have the following result.

COROLLARY 3.20. Let G be a graph of order $n \geqslant 2$ and size m without isolated vertices. Then

$$
A B S(G) \leqslant \sqrt{\frac{\left(\min \left\{\frac{1}{\Delta}\left(M_{2}(G)+m \Delta^{2}\right), \frac{1}{\delta}\left(M_{2}(G)+m \delta^{2}\right)\right\}-2 m\right) H(G)}{2}}
$$

The modified Platt index, ${ }^{m} \operatorname{Pl}(G)$, is defined as

$$
{ }^{m} P l(G)=\sum_{i \sim j} \frac{1}{d_{i}+d_{j}-2} .
$$

Let $L(G)$ be a line graph of graph G. Since

$$
{ }^{m} P l(G)=\sum_{i \sim j} \frac{1}{d_{i}+d_{j}-2}=\sum_{i=1}^{m} \frac{1}{d\left(e_{i}\right)}=I D(L(G))
$$

in essence, ${ }^{m} \operatorname{Pl}(G)$ is not a new topological index.
In the next theorem we establish a relationship between $A B S(G)$ and ${ }^{m} P l(G)$.

THEOREM 3.5. Let G be a connected graph of size m. Then we have

$$
\begin{equation*}
A B S(G) \geqslant \frac{m^{3 / 2}}{\sqrt{m+2^{m P l(G)}}} \tag{3.25}
\end{equation*}
$$

Equality holds if and only if G is regular or semiregular bipartite graph.

Proof. By the arithmetic-geometric mean (AM-HM) inequality (see e.g. [36]), we have that

$$
\sum_{i \sim j} \sqrt{\frac{d_{i}+d_{j}}{d_{i}+d_{j}-2}} \sum_{i \sim j} \sqrt{\frac{d_{i}+d_{j}-2}{d_{i}+d_{j}}} \geqslant m^{2}
$$

that is

$$
\begin{equation*}
A B S(G) \sum_{i \sim j} \sqrt{\frac{d_{i}+d_{j}}{d_{i}+d_{j}-2}} \geqslant m^{2} \tag{3.26}
\end{equation*}
$$

Also, the following identity is valid

$$
\begin{equation*}
\sum_{i \sim j} \frac{d_{i}+d_{j}}{d_{i}+d_{j}-2}=\sum_{i \sim j}\left(1+\frac{2}{d_{i}+d_{j}-2}\right)=m+2^{m} \operatorname{Pl}(G) \tag{3.27}
\end{equation*}
$$

On the other hand, for $r=1, x_{i}:=\frac{d_{i}+d_{j}}{d_{i}+d_{j}-2}, a_{i}:=1$, with summation performed over all adjacent vertices v_{i} and v_{j} in G, the inequality (3.1) becomes

$$
\begin{equation*}
\sum_{i \sim j} \frac{d_{i}+d_{j}}{d_{i}+d_{j}-2} \geqslant \frac{\left(\sum_{i \sim j} \sqrt{\frac{d_{i}+d_{j}}{d_{i}+d_{j}-2}}\right)^{2}}{\sum_{i \sim j} 1}=\frac{\left(\sum_{i \sim j} \sqrt{\frac{d_{i}+d_{j}}{d_{i}+d_{j}-2}}\right)^{2}}{m} . \tag{3.28}
\end{equation*}
$$

From the above inequality and identity (3.27) we obtain

$$
\sum_{i \sim j} \sqrt{\frac{d_{i}+d_{j}}{d_{i}+d_{j}-2}} \leqslant \sqrt{m\left(m+2^{m P l(G)}\right.}
$$

From the above and inequality (3.26) we arrive at (3.25).
Equalities in (3.26) and (3.28) hold if and only if $\frac{d_{i}+d_{j}}{d_{i}+d_{j}-2}$ is constant for every two adjacent vertices v_{i} and v_{j} in G; that is, if and only if $d_{i}+d_{j}$ is constant for every two adjacent vertices v_{i} and v_{j} in G. This implies that equality in (3.25) holds if and only if G is a regular or semiregular bipartite graph.

Funding Statement. No funding has been received for this work.
Data Availability Statement. No data was used for the research described in the article.

REFERENCES

[1] A. Ali, L. Zhong, I. Gutman, Harmonic index and its generalizations: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 81 (2019) 249-311.
[2] A. Ali, M. Javaid, M. Matejić, I. Milovanović, E. Milovanović, Some new bounds on the general sum-connectivity index, Commun. Comb. Opitim. 5 (2) (2020) 97-100.
[3] A. Ali, K. C. Das, D. Dimitrov, B. Furtula, Atom-bond connectivity index of graphs: a review over extremal results and bounds, Discrete Math. Lett. 5 (2021) 68-93.
[4] A. Ali, B. Furtula, I. Redžepović, I. Gutman, Atom-bond sum-connectivity index, J. Math. Chem. 60 (2022) 2081-2093.
[5] A. Ali, I. Gutman, I. Redžepović, Atom-bond sum-connectivity index of unicyclic graphs and some applications, Electron. J. Math. 5 (2023) 1-7.
[6] M. Bianchi, A. Cornaro, J. L. Palacios, A. Torriero, New upper bounds for the ABC index, MATCH Commun. Math. Comput. Chem. 76 (2016) 117-130.
[7] B. Bollobas, P. Erdős, Graphs of extremal weights, Ars Comb. 50 (1998) 225-233.
[8] M. Cavers, S. Fallat, S. Kirkland, On the normalized Laplacian energy and general Randić index R_{-1} of graphs, Linear Algebra Appl. 433 (2010) 172-190.
[9] K. C. Das, S. Balachandran, I. Gutman, Inverse degree Randić index and harmonic index of graphs, Appl. Anal. Discr. Math. 11 (2017) 304-313.
[10] K. C. DAS, Maximizing the sum of the squares of the degrees of a graph, Discrete Math. 285 (2004) 57-66.
[11] K. C. Das, I. Gutman, B. Furtula, On atom-bond connectivity index, Chem Phys. Lett. 551 (4-6) (2011) 452-454.
[12] K. C. Das, S. Elumalai, I. Gutman, On ABC index of graphs, MATCH Commun. Math. Comput. Chem. 78 (2017) 459-468.
[13] K. C. Das, I. Gutman, B. Furtula, On atom-bond connectivity index, Filomat 26 (4) (2012) 753-758.
[14] H. Deng, S. Balachandran, S. K. Ayyaswamy, Y. B. Venkatakrishnan, On the harmonic index and the chromatic number of a graph, Discrete Appl. Math. 161 (2013) 2740-2744.
[15] T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On vertex-degree-based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011) 613-626.
[16] E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An atom-bond connectivity index, Modelling the entalphy of formation of alkanes, Indian J. Chem. 37A (10) (1998) 849-855.
[17] S. Fajtlowicz, On conjectures on Graffiti-II, Congr. Numer. 60 (1987) 187-197.
[18] B. Furtula, A. Graovac, D. Vukičević, Atom-bond connectivity index of trees, Discr. Appl. Math. 157 (2009) 2828-2835.
[19] I. Gutman, N. Trinaistić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1977) 535-538.
[20] I. Gutman, B. Ruščić, N. Trinajstić, G. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
[21] I. Gutman, Comparing degree-based energies of trees, Contrib. Math. 4 (2021) 1-5.
[22] M. Hemmasi, A. Iranmanesh, Some inequalities for the atom-bond connectivity index of graphs, J. Comput. Theor. Nanosci. 12 (2015) 2172-2179.
[23] B. Horoldagva, I. Gutman, On some vertex-degree-based graph invariants, MATCH Commun. Math. Comput. Chem. 65 (3) (2011) 723-730.
[24] S. Hosamani, B. Basaranagoud, New upper bonds for the first Zagreb index, MATCH Commun. Math. Comput. Chem. 74 (2015) 97-101.
[25] H. Hua, K. Ch. Das, H. Wong, On atom-bond connectivity index of graphs, J. Math. Anal. Appl. 479 (2019) 1099-1114.
[26] A. ILIĆ, Note on the harmonic index of a graph, Ars Comb. 128 (2016) 295-299.
[27] A. Ilić, M. Ilić, B. Liu, On the upper bounds for the first Zagreb index, Kragujevac J. Math. 35 (1) (2011) 173-182.
[28] V. R. Kulli, Nirmala index, Int. J. Math. Trends Tech. 67 (3) (2021) 8-12.
[29] V. R. Kulli, I. Gutman, On some mathematical properties of Nirmala index, Annals Pure Appl. Math. 23 (2) (2021) 93-99.
[30] J. Li, W. C. Shiu, On the Laplacian Estrada index of a graph, Appl. Anal. Discr. Math. 3 (2009) 147-156.
[31] X. Li, H. Zhao, Trees with the fixed smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57-62.
[32] M. Matejić, E. Milovanović, I. Milovanović, R. Khoeilar, A note on the first Zagreb index and coindex of graphs, Commun. Combin. Optim. 6 (1) (2021) 41-51.
[33] M. Matejić, I. Ž. Milovanović, E. I. Milovanović, On bounds for harmonic topological index, Filomat 32 (2018) 311-317.
[34] I. Ž. Milovanović, M. M. Matejić, E. I. Milovanović, Upper bounds for arithmetic-geometric index of graphs, Sci. Publ. State Univ. Novi Pazar, ser A: Appl. Math. Inform Mech. 10 (1) (2018) 4954.
[35] E. I. Milovanović, M. M. Matejić, I.Ž. Milovanović, Some inequalities for the harmonic topological index, J. Appl. Math. Inform. 36 (3-4) (2018) 307-315.
[36] D. S. Mitrinović, P. M. Vasıć, Analytic inequalities, Springer Verlag, Berlin-Heidelberg-New York, 1970.
[37] P. Nithya, S. Elumalai, S. Balachandran, S. Mondal, Smallest abS index of unicyclic graphs with given girth, J. Appl. Math. Comput., available online at https://doi.org/10.1007/s12190-023-01898-0.
[38] S. Nikolić, G. Kovačević, A. Milićević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2) (2003) 113-124.
[39] S. Noureen, A. Ali, Maximum atom-bond sum-connectivity index of n-order trees with fixed number of leaves, Discrete Math. Lett. 12 (2023) 26-28.
[40] J. R. Platt, Influence of neighbors bonds on additive bond properties in paraffins, J. Chem. Phys. 15 (1947) 419-420.
[41] J. Radon, Über die absolut additiven Mengenfunktionen, Wiener Sitzungsber. 122 (1913), 12951438.
[42] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
[43] J. Rodriguez, J. M. Sigarreta, The harmonic index, in: I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.), Bounds in chemical graph theory - Basics, Univ. Kragujevac, Kragujevac, 2017, pp. 229-281.
[44] K. SAyehvand, M. Rostami, Further results on harmonic index and some new relations between harmonic index and other topological indices, J. Math. Comp. Sci. 11 (2014) 123-136.
[45] V. S. Shegehalli, R. Kanabur, Arithmetic-geometric indices of path graph, J. Comput. Math. Sci. 6 (1) (2015) 19-24.
[46] X. Xu, Relationship between harmonic index and other topological indices, Appl. Math. Sci. 6 (2012) 2013-2018.
[47] L. ZhOng, K. Xu, Inequalities between vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014) 627-642.
[48] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561-566.
[49] B. Zhou, R. Xing, On atom-bond connectivity index, Z. Naturforsch 66a (2011) 61-66.
[50] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210-218.
[51] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252-1270.
[52] B. Zhou, Remarks on Zagreb indices, MATCH Commun. Math. Comput. Chem. 57 (2007) 591-596.

[^0]
[^0]: Journal of Mathematical Inequalities
 www.ele-math.com
 jmi@ele-math.com

