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FIXED POINT THEOREMS FOR α −βM –GERAGHTY TYPE

CONTRACTIONS WITH APPLICATIONS IN MATRIX EQUATIONS

CHALERMPON BUNPOG, NARAWADEE PHUDOLSITTHIPHAT

AND ATIT WIRIYAPONGSANON ∗

(Communicated by T. Burić)

Abstract. In this manuscript, we present a novel notion of α −βM -Geraghty type contractions,
which are employed to establish the existence and uniqueness of a fixed point in complete b -
metric spaces. To emphasize the significance of our results, illustrative examples are provided.
Furthermore, we utilize the obtained results to demonstrate the existence of a solution for matrix
equations. Thus, our results provide a suitable extension in this respect.

1. Introduction

In complete metric spaces, Geraghty [10] established a generalization of the Ba-
nach contraction principle by considering an auxiliary function, which has captured the
attention of many researchers. In 2012, Samet et al. [19] presented fixed point theo-
rems for α -ψ -contractive-type mappings and derived theorems regarding fixed points
for such mappings. Subsequently, Karapinar and Samet [13] generalized the results
presented in [19]. They achieved this by introducing a novel concept known as gener-
alized α -ψ -contractive type mappings. In 2013, Karapinar et al. [12] introduced the
notion of α -ψ -Meir-Keeler contractive mappings via a triangular α -admissible map-
ping in metric spaces. Afterwards, Cho et al. [7] introduced the concept of α -Geraghty
contraction mappings in metric spaces and provided a proof of some fixed point results
of such mappings. In 2014, Popescu [17] conducted research on fixed point theorems
for mappings that belong to the generalized α -Geraghty type contraction in complete
metric spaces. The notion of ϕE -Geraghty contractions was introduced by Fulga and
Proca [9], and they established a fixed point result in complete metric spaces.

In 1989, Bakhtin [4] introduced the concept of a b -metric space, which was fur-
ther utilized by Czerwick [8] to establish various fixed point results on this platform.
The study of b -metric space holds a crucial place in fixed point theory from multiple
perspectives. In 2019, Aydi et al. [3] extended the results of [9] by presenting the
concept of α -βE -Geraghty type contraction mappings and establishing the existence
as well as the uniqueness of a fixed point for such mappings in the context of b -metric
spaces.
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Matrix equations play a crucial role in numerous engineering and applied mathe-
matics problems. Stability analysis [22], ladder networks [2], control theory [23, 27],
and system theory [24, 25, 26] all involve various matrix equations. To test the existence
of solutions to matrix equations, several advanced methods exist. One such method in-
volves the application of tools from fixed point theory. By utilizing fixed point results,
many researchers have successfully verified the existence and uniqueness of solutions
to matrix equations [5, 14, 18, 20].

Inspired by [3], we introduce a new concept of α -βM -Geraghty type contrac-
tions to demonstrate the existence and uniqueness of a fixed point in complete b -metric
spaces. We provide examples to support our results. Moreover, we utilize the derived
results to establish the existence of solutions to matrix equations.

2. Preliminaries

The following section is dedicated to recalling certain important notations and
definitions that are imperative to comprehend the main results. Throughout this paper,
let X represent a nonempty set.

DEFINITION 1. [4, 8] A mapping d : X ×X → [0,∞) is referred to as a b -metric
on X if it satisfies the following conditions for all u,v,w ∈ X and some s � 1:

(i) d(u,v) = 0 if and only if u = v ;

(ii) d(u,v) = d(v,u) ;

(iii) d(u,w) � s[d(u,v)+d(v,w)].

Furthermore, the triplet (X ,d,s) is identified as a b -metric space.

It is noteworthy to mention that each metric space can be regarded as a b -metric
space with a constant value of s = 1. In general, a b -metric is not continuous. Below,
we present some examples of b -metric spaces.

EXAMPLE 1. 1. Let X = R , and define the mapping d : X ×X → [0,∞) as

d(u,v) = (u− v)2 for all u,v ∈ X .

This construction ensures that (X ,d,2) is a b -metric. It is obvious that, here,
s = 2.

2. Let X = {p,q,r} , and define the mapping d : X ×X → [0,∞) as follows:

d(p, p) = d(q,q) = d(r,r) = 0, d(p,q) = d(q, p) = 2,

d(q,r) = d(r,q) = 3 and d(p,r) = d(r, p) = 10.

Then, (X ,d,2) is a b -metric. It is obvious that, here, s = 2.
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3. [6] Let X = lq(R) with 0 < q < 1 where lq(R) := {{un} ⊂ R :
∞

∑
n=1

|un|q < ∞} ,

and define the mapping d : X ×X → [0,∞) by

d(u,v) =

(
∞

∑
n=1

|un− vn|q
)1/q

,

where u = {un},v = {vn}. Then, d is a b -metric with a constant value of s =
21/q.

4. Let X = R\ {0}, the mapping d : X ×X → [0,∞) defined by

d(u,v) = (u− v)2 +
(

1
u
− 1

v

)2

for all u,v ∈ X .

It can be shown that d is a b -metric on X with a constant value of s = 2.

For additional intriguing examples of b -metric spaces, see e.g. [1, 11]. In con-
clusion, the above examples demonstrate the versatility and applicability of b -metric
spaces in diverse settings.

DEFINITION 2. [8] A sequence {un} in a b -metric space (X ,d,s) is Cauchy
if for any ε > 0, there exists a positive integer N such that d(un,um) < ε , for all
n,m � N , and converges to u ∈ X if for any ε > 0, there exists a positive integer N
such that d(un,u) < ε , for any n � N . We use the notation as lim

n,m→∞
d(un,um) = 0

and lim
n→∞

d(un,u) = 0, respectively. It is worth noting that (X ,d,s) is complete if every

Cauchy sequence converges in X .

In 2014, Popescu [17] has extended the concept of a triangular α -admissible map-
ping [12] as follows:

DEFINITION 3. [17] For a function α : X ×X → R , a mapping f : X → X is
referred to as a triangular α -orbital admissible if the given conditions hold:

(T1) if α(u, f u) � 1 then α( f u, f 2u) � 1.

(T2) if α(u,v) � 1 and α(v, f v) � 1 then α(u, f v) � 1, for all u,v ∈ X .

Furthermore, the collection of functions β : [0,∞) → [0, 1
s ) , where s � 1, that

satisfy the condition if lim
n→∞

β (xn) = 1
s then lim

n→∞
xn = 0. This collection is denoted as

Fs . If s = 1, then F = F1 . Geraghty type contraction mappings within the context
of b -metric spaces were introduced by Aydi et al. [3] through the concept of α −βE -
Geraghty type.
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DEFINITION 4. [3] Let (X ,d,s) denote a b -metric space, α : X ×X → R , and
f : X → X . If there is β ∈ Fs such that

α(u,v) � 1 implies that d( f u, f v) � β (E(u,v))E(u,v),

for any u,v ∈ X , where E(u,v) = d(u,v)+ |d(u, f u)− d(v, f v)|, then f is referred to
as an α −βE -Geraghty type contraction.

Denote Fix( f ) to be the collection of fixed points belonging to the mapping f .
Aydi et al. [3] proved a fixed point result for α −βE -Geraghty type contraction map-
pings within the context of b -metric spaces as follows:

THEOREM 1. [3] Let (X ,d,s) be a b-metric space, α : X ×X → R , and f : X →
X be a mapping on X . Under the given conditions, which are as follows:

(i) f is α −βE -Geraghty type contraction;

(ii) f is triangular α -orbital admissible;

(iii) α(u0, f u0) � 1 for some u0 ∈ X ;

(iv) f is continuous,

it is concluded that Fix( f ) is nonempty and { f nu0} converges to w ∈ Fix( f ) .

3. Main results

In this particular segment, our objective is to broaden the scope of the outcomes
expounded in the publication by [3] to encompass a more comprehensive range of map-
pings.

DEFINITION 5. Let (X ,d,s) denote a b -metric space, with α : X ×X → R , and
f : X → X representing a mapping on X . If there exists β ∈ Fs such that

α(u,v) � 1 implies that d( f u, f v) � β (M(u,v))M(u,v), (1)

for all u,v ∈ X , where

M(u,v) = max

⎧⎨
⎩

d(u,v)+ |d(u, f u)−d(v, f v)|,
d(u, f u)+ |d(u,v)−d(v, f v)|,
d(v, f v)+ |d(u,v)−d(u, f u)|

⎫⎬
⎭ .

Then, f is α −βM -Geraghty type contraction.

Our first main theorem offers a sufficient condition for the existence of a fixed
point for the previously mentioned mappings in a b -metric space. A deduction of
Theorem 1 is obtained, which broadens its scope.
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THEOREM 2. Let (X ,d,s) be a b-metric space, with α : X×X →R , and f : X →
X representing a mapping on X . We assume that f satisfies the following conditions:

(i) f is α −βM -Geraghty type contraction;

(ii) f is triangular α -orbital admissible;

(iii) α(u0, f u0) � 1 for some u0 ∈ X ;

(iv) f is continuous.

It follows that the set Fix( f ) is nonempty and the sequence { f nu0} converges to w ∈
Fix( f ) .

Proof. By assuming the condition (iii), there exists an element u0 ∈ X satisfying
α(u0, f u0) � 1. A sequence {un} in a metric space (X ,d,s) is established by defining
un = f un−1 = f nu0 for all n � 1. If there exists a nonnegative real number n such that
un = un+1 = f un , the proof is thereby concluded. Throughout the proof, it is assumed
that un �= un+1 for any nonnegative real number n .

It is known that α(u0,u1) = α(u0, f u0) � 1, and by condition (ii), it can be con-
cluded that α(un,un+1) = α( f nu0, f n+1u0) � 1 for all n � 0. This process can be
repeated to obtain the inequality

if α(un,un+1) � 1 and α(un+1, f un+1) � 1 then α(un,un+2) � 1.

Using induction, it can be deduced that

α(un,um) � 1, for any m � n � 0.

For convenience, let dn = d(un−1,un) for all n � 1. From Equation (1), it follows that

0 < dn+1 = d( f un−1, f un) � β (M(un−1,un))M(un−1,un), for all n � 1. (2)

Note that
M(un−1,un) = max{dn + |dn−dn+1|,dn+1}.

Suppose there exists an integer n > 0 such that dn � dn+1 . Utilizing equation (2), we
can derive the following inequality,

dn+1 � β (dn+1)dn+1 < s−1dn+1,

this leads to a contradiction. So, we conclude that dn+1 < dn, for any n > 0. Conse-
quently, it follows that

M(un−1,un) = 2dn−dn+1, for any n � 1.

Since the sequence {dn} is decreasing and bounded below by 0, there exists a value
t � 0 such that lim

n→∞
dn = t. It is assumed that t > 0. By taking n → ∞ in (2), we derive

s−1t = s−1 lim
n→∞

dn+1 � lim
n→∞

dn+1 � lim
n→∞

β (M(un−1,un))M(un−1,un) � s−1t.
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This yields
lim
n→∞

β (M(un−1,un))M(un−1,un) = s−1t,

and therefore, we can conclude that

lim
n→∞

β (M(un−1,un)) = s−1.

Since β ∈ Fs ,
t = lim

n→∞
M(un−1,un) = 0.

This leads to a contradiction, and hence we can deduce that

lim
n→∞

d(un−1,un) = 0. (3)

We shall prove the Cauchy property of the sequence {un} by contradiction. To
be precise, for every i , we can identify a positive value ε > 0 such that we can locate
subsequences {um(i)} and {un(i)} of {un} , where m(i) > n(i) > i , and

d(um(i),un(i)) � ε. (4)

Moreover, for every n(i) , we can select m(i) as the smallest integer greater than n(i)
that satisfies (4). Consequently,

d(um(i)−1,un(i)) < ε. (5)

By virtue of the inequality α(un(i),um(i)) � 1, it can be inferred from equations (1) and
(4) that the following holds true:

sε � sd(un(i),um(i)) � sβ (M(un(i)−1,um(i)−1))M(un(i)−1,um(i)−1)

< M(un(i)−1,um(i)−1), (6)

where

M(un(i)−1,um(i)−1) = max

⎧⎨
⎩

d(un(i)−1,um(i)−1)+ |d(un(i)−1,un(i))−d(um(i)−1,um(i))|,
d(un(i)−1,un(i))+ |d(un(i)−1,um(i)−1)−d(um(i)−1,um(i))|,
d(um(i)−1,um(i))+ |d(un(i)−1,um(i)−1)−d(un(i)−1,un(i))|

⎫⎬
⎭ .

By utilizing the triangle inequality and equation (5), it is possible to deduce that

M(un(i)−1,um(i)−1) � d(un(i)−1,um(i)−1)+d(un(i)−1,un(i))+d(um(i)−1,um(i))

� s[d(un(i)−1,un(i))+d(un(i),um(i)−1)]

+d(un(i)−1,un(i))+d(um(i)−1,um(i))

� sd(un(i)−1,un(i))+ sε +d(un(i)−1,un(i))+d(um(i)−1,um(i)). (7)

From (3), (6) and (7), we have

lim
i→∞

sβ (M(un(i)−1,um(i)−1))M(un(i)−1,um(i)−1) = lim
i→∞

M(un(i)−1,um(i)−1) = sε. (8)
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This implies that
lim
i→∞

β (M(un(i)−1,um(i)−1)) = s−1.

Since β ∈ Fs ,
lim
i→∞

M(un(i)−1,um(i)−1) = 0,

this result is in contradiction with equation (8). Therefore, it can be inferred that the
sequence {un} is a Cauchy sequence. By completeness of b -metric space, there exists
an element ω ∈ X such that

lim
n→∞

d(un,ω) = 0.

By continuity of f , we have ω = lim
n→∞

un+1 = lim
n→∞

f un = f ( lim
n→∞

un) = fω , that is,

ω ∈ Fix( f ) . Since un = f nu0 , we can conclude { f nu0} converges to ω . �

Next, we proceed to present our second main theorem. We substitute the continuity
condition of the mapping f from Theorem 2 with an alternative criterion.

THEOREM 3. Let (X ,d,s) be a b-metric space, with α : X×X →R , and f : X →
X representing a mapping on X . We assume that f satisfies the following conditions:

(i) f is α −βM -Geraghty type contraction;

(ii) f is triangular α -orbital admissible;

(iii) α(u0, f u0) � 1 for some u0 ∈ X ;

(iv) if a sequence {un} convergences to u ∈ X and complies with the condition
α(un,un+1) � 1 for every n, then the existence of a subsequence {un(i)} from
{un} is guaranteed, which satisfies α(un(i),u) � 1 for every i .

It follows that the set Fix( f ) is nonempty and the sequence { f nu0} converges to w ∈
Fix( f ) .

Proof. According to the statements presented in Theorem 2, it can be deduced
that the sequence, which is defined as un = f nu0 , converges to a limit point ω ∈ X .
Through the application of condition (iv), there exists a subsequence denoted as {un(i)}
of {un} such that α(un(i),ω) � 1 for all i . Additionally, based on the condition (i), it
can be established that

d(un(i)+1, fω) � β (M(un(i),ω))M(un(i),ω), (9)

where

M(un(i),ω) = max

⎧⎨
⎩

d(un(i),ω)+ |d(un(i),un(i)+1)−d(ω , fω)|,
d(un(i),un(i)+1)+ |d(un(i),ω)−d(ω , fω)|,
d(ω , fω)+ |d(un(i),ω)−d(un(i),un(i)+1)|

⎫⎬
⎭ .
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Suppose that d(ω , fω) > 0. Applying the triangle inequality and (9), we obtain for all
i

s−1d(ω , fω)−d(ω ,un(i)+1) � d(un(i)+1, fω) � β (M(un(i),ω))M(un(i),ω)

� s−1M(un(i),ω).

Taking limit i → ∞ , we obtain

lim
i→∞

β (M(un(i),ω))M(un(i),ω) � lim
i→∞

s−1M(un(i),ω) = s−1d(ω , fω). (10)

We deduce that
lim
i→∞

β (M(un(i),ω)) = s−1.

Since β ∈ FS , we get
lim
i→∞

M(un(i),ω) = 0,

this contradicts to (10). Henceforth, it can be inferred that d(ω , fω) = 0, which implies
that ω represents a fixed point of f . Furthermore, it can be observed that the sequence
{ f nu0} exhibits convergence towards ω . �

We shall now proceed to establish the uniqueness of such a fixed point.

THEOREM 4. Suppose, in addition to the hypotheses of Theorem 2 (resp. Theo-
rem 3), that

(U): α(u,v) � 1 , for all u,v ∈ Fix( f ) .

Then, Fix( f ) = {ω} .

Proof. We present a proof by means of contradiction. Specifically, there exist
ω ,υ ∈ X such that ω = fω and υ = fυ with ω �= υ . From assumption (U), we get
α(ω ,υ) � 1. Thus, by (1), we have

s−1d(ω ,υ) = d(ω ,υ) = d( fω , fυ) � β (M(ω ,υ))M(ω ,υ) � s−1M(ω ,υ)

� s−1 max

⎧⎨
⎩

d(ω ,υ)+ |d(ω , fω)−d(υ , fυ)|,
d(ω , fω)+ |d(ω ,υ)−d(υ , fυ)|,
d(υ , fυ)+ |d(ω ,υ)−d(ω , fω)|

⎫⎬
⎭= s−1d(ω ,υ),

that is a contradiction. Therefore ω = υ . �

We state the following corollary by setting α(u,v) = 1 in Theorem 3.

COROLLARY 1. Let (X ,d,s) be a complete b-metric space and f : X → X rep-
resenting a mapping on X . Suppose there exists β ∈ Fs such that

d( f u, f v) � β (M(u,v))M(u,v) (11)
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for all u,v ∈ X , where

M(u,v) = max

⎧⎨
⎩

d(u,v)+ |d(u, f u)−d(v, f v)|,
d(u, f u)+ |d(u,v)−d(v, f v)|,
d(v, f v)+ |d(u,v)−d(u, f u)|

⎫⎬
⎭ .

Then, Fix( f ) = {ω} and { f nu0} converges to ω for all u0 ∈ X .

We can also obtain the following two results.

COROLLARY 2. Let (X ,d,s) be a complete b-metric space and a mapping f :
X → X satisfying the condition

d( f u, f v) � M(u,v)
s+M(u,v)

, (12)

for all u,v ∈ X , where

M(u,v) = max

⎧⎨
⎩

d(u,v)+ |d(u, f u)−d(v, f v)|,
d(u, f u)+ |d(u,v)−d(v, f v)|,
d(v, f v)+ |d(u,v)−d(u, f u)|

⎫⎬
⎭ .

Then, Fix( f ) = {ω} and { f nu0} converges to ω for all u0 ∈ X .

Proof. Consider

β (t) =

{
1

s+t , if t > 0
1

s+1 , if t = 0.

Clearly, β ∈ Fs . If u �= v , M(u,v) �= 0, hence (12) becomes

d( f u, f v) � β (M(u,v))M(u,v).

In the case u = v , we have d( f u, f v) = M(u,v) = 0 and thus

d( f u, f v) � β (M(u,v))M(u,v)

holds trivially. By applying Corollary 1, the proof is completed. �

COROLLARY 3. Let (X ,d,s) be a complete b-metric space and a mapping f :
X → X satisfying the condition

d( f u, f v) � qM(u,v) (13)

for all u,v ∈ X , where q ∈ (0, 1
s ) and

M(u,v) = max

⎧⎨
⎩

d(u,v)+ |d(u, f u)−d(v, f v)|,
d(u, f u)+ |d(u,v)−d(v, f v)|,
d(v, f v)+ |d(u,v)−d(u, f u)|

⎫⎬
⎭ .
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Then, Fix( f ) = {ω} and { f nu0} converges to ω for all u0 ∈ X . Moreover, we have

d( f nu0,ω) � γn−1 λ s
1− γ

d( f u0,u0), (14)

where

γ =
2q

1+q
, λ = ∑

n�1
s2nγ2n−1

.

Proof. From (11) in Corollary 1, it suffices to consider for all nonnegative real
number t , β (t) = q. Let u0 ∈ X and un = f nu0 , thus (13) becomes

d(un,un+1) � qM(un−1,un), (15)

where

M(un−1,un) = max
{
d(un−1,un)+ |d(un−1,un)−d(un,un+1)|,d(un,un+1)

}
.

Since d(un−1,un) � d(un,un+1), for all n � 1, then

M(un−1,un) = 2d(un−1,un)−d(un,un+1), for all n � 1.

From (13), we obtain that

d(un,un+1) � γd(un−1,un),

where γ = 2q
1+q . Following the proof of Corollary 2.6 [3], we derive (14). �

4. Examples

In this section, we provide some examples where known results, in particular The-
orem 1, in literature are not applicable.

EXAMPLE 2. Let X = R and d(u,v) = (u− v)2 for all u,v ∈ X , then (X ,d,s) is
a complete b -metric space with a constant value of s = 2. We take β (t) = 1

2 for all
t � 0. Now, let’s define f : X → X and α : X ×X → R as follows:

f u =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2, if u < 0

u+2, if 0 � u < 1

−u+7
2

, if 1 � u � 3

−4(u−3)2 +2, if u > 3

, α(u,v) =

{
1, if u,v ∈ [−3,3]
0, otherwise.

It should be noted that Theorem 1 is not applicable for any β ∈ Fs . This is evident
when we consider u = 0 and v = 1, we have α(0,1) = 1 and

d( f0, f1) = 1 � β (E(0,1)) = β (E(0,1))E(0,1).
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which is a contradiction. It can be easily proven that f is triangle α -orbital admissible.
Additionally, f is continuous, we have α(0, f0) = α(0,2) � 1, for u0 = 0. Next, we
will show that f is α−βM -Geraghty type contraction mapping. By (1) and considering
the case when α(u,v) � 1, we require consideration of the following cases:

Case 1: u,v � 0 and u > v , we distinguish the following three subcases:
Subcase 1.1) u,v ∈ [0,1) , then

d( f u, f v) = (u− v)2 � 1 � 1
2
(4)

� 1
2

max

{
(u− v)2 + |4−4|,
4+ |(u− v)2−4|

}

= β (M(u,v))M(u,v).

Subcase 1.2) u,v ∈ [1,3] , then

d( f u, f v) =
(

u− v
2

)2

� 1
2
(u− v)2

� 1
2

max

⎧⎪⎪⎨
⎪⎪⎩

(u− v)2 + |( 3u−7
2 )2− ( 3v−7

2 )2|,
( 3u−7

2 )2 + |(u− v)2− ( 3v−7
2 )2|,

( 3v−7
2 )2 + |(u− v)2− ( 3u−7

2 )2|

⎫⎪⎪⎬
⎪⎪⎭

= β (M(u,v))M(u,v).

Subcase 1.3) u ∈ [1,3] and v ∈ [0,1) , then

d( f u, f v) =
(

u+2v−3
2

)2

� 1 � 1
2
(4)

� 1
2

max

⎧⎪⎪⎨
⎪⎪⎩

(u− v)2 + |( 3u−7
2 )2 −4|,

( 3u−7
2 )2 + |(u− v)2−4|,

4+ |(u− v)2− ( 3u−7
2 )2|

⎫⎪⎪⎬
⎪⎪⎭

= β (M(u,v))M(u,v).

Case 2: u,v < 0, then f u = f v = 2. We have

0 = d( f u, f v) � β (M(u,v))M(u,v).

Case 3: u � 0 and v < 0, we distinguish the following two subcases:
Subcase 3.1) u ∈ [0,1) and v < 0, then

d( f u, f v) = u2 � 1 � 1
2
(4)

� 1
2

max

⎧⎪⎪⎨
⎪⎪⎩

(u− v)2 + |4− (v−2)2|,
4+ |(u− v)2− (v−2)2|,
(v−2)2 + |(u− v)2−4|

⎫⎪⎪⎬
⎪⎪⎭

= β (M(u,v))M(u,v).
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Subcase 3.2) u ∈ [1,3] and v < 0, then

d( f u, f v) =
(

3−u
2

)2

� 1 � 1
2
(v−2)2

� 1
2

max

⎧⎪⎪⎨
⎪⎪⎩

(u− v)2 + |( 3u−7
2 )2 − (v−2)2|,

( 3u−7
2 )2 + |(u− v)2− (v−2)2|,

(v−2)2 + |(u− v)2− ( 3u−7
2 )2|

⎫⎪⎪⎬
⎪⎪⎭

= β (M(u,v))M(u,v).

This means that the assumption (i) is satisfied for all u,v ∈ X such that α(u,v) � 1.
Since all requirements of Theorem 2 are satisfied, thus f has a fixed point, which is

ω =
7
3

.

EXAMPLE 3. Let X = {0,1,2,3} and d(u,v) = (u− v)2 for all u,v ∈ X , then
(X ,d,s) is a complete b -metric space with a constant value of s = 2. For all t > 0, let
β (t) = 2

4+t and β (0) = 1
4 . Consider the mapping f : X → X given by

f0 = f2 = f3 = 2, and f1 = 3.

Then, d( f0, f2) = d( f0, f3) = d( f2, f3) = 0 is trivial. Moreover, we have that

d( f0, f1) = 1 � 14
11

=
2

4+7
max

{
1+ |4−4|,
4+ |1−4|

}
= β (M(0,1))M(0,1).

d( f1, f2) = 1 � 10
9

=
2

4+5
max

⎧⎨
⎩

1+ |4−0|,
4+ |1−0|,
0+ |1−4|

⎫⎬
⎭= β (M(1,2))M(1,2).

d( f1, f3) = 1 � 14
11

=
2

4+7
max

{
4+ |4−1|,
1+ |4−4|

}
= β (M(1,3))M(1,3).

Hence, we obtain, d( f u, f v) � β (M(u,v))M(u,v) for all u,v ∈ X . As a result, by sat-
isfying all the hypotheses of Corollary 1, thus f has a unique fixed point, which is
ω = 2.

5. Application on matrix equations

In the real world, it is widely acknowledged that various problems can be presented
as mathematical models. In order to obtain a solution to these problems, the equations
must be solved. Certain studies have suggested using fixed point theory to propose
solutions to such problems. As a result, we are interested in applying our findings to
some of these problems. In fact, we utilize Corollary 3 to study the existence of a
unique Hermitian positive definite solution of the nonlinear matrix equation

UN =
(

AU
− 1

M A∗ +B

) 1
L

+C, (16)



FIXED POINT THEOREMS FOR α −βM -GERAGHTY TYPE 1455

where A is a nonsingular n× n matrix, A∗ represents the conjugate transpose of the
matrix A , matrices B and C are n× n positive semidefinite and N,M,L are positive
integer numbers.

Indication that the equation (16) is equivalent to

U = f (U) =

[(
AU

− 1
M A∗ +B

) 1
L

+C

] 1
N

, (17)

in other words U is a fixed point of the mapping f .
In this investigation, we use the Thompson metric proposed by Thompson [21]

for study solutions of nonlinear matrix equations related to contraction mappings on
b -metric spaces. We first review the Thompson metric on the open convex cone Pn

for n � 2, the set of all n×n Hermitian positive definite matrices. Let A,B ∈ Pn , the
Thompson metric for A and B is defined by

d(A,B) = max

{
log

(
M

(
A
B

))
, log

(
M

(
B
A

))}
,

where M
(

A
B

)
= inf{λi > 0 : A � λiB, i = 1, · · · ,n} = λmax

(
B

− 1
2 AB

− 1
2

)
, maximum

eigenvalues of B
− 1

2 AB
− 1

2 . Here A � B means that B−A is positive semidefinite and
A < B means that B−A is positive definite. Thompson [21] (also discussed in [15, 16])
has demonstrated the completeness of Pn as a metric space under the Thompson met-
ric b and we have

d(A,B) =
∥∥∥∥log

(
A

− 1
2 BA

− 1
2

)∥∥∥∥ ,

where ‖.‖ represent the spectral norm. The Thompson metric exists on any open nor-
mal convex cone in real Banach spaces [16, 21]. It is particularly applicable to the
open convex cone of positive definite operators within a Hilbert space. Notably, the
Thompson metric remains invariant under both matrix inversion and congruence trans-
formations, for any nonsingular matrix M , we derive

d(A,B) = d(A−1,B−1) = d(MAM∗,MBM∗),

An important outcome is the property of nonpositive curvature of the Thompson metric,
we derive,

d(Ar,Br) � rd(A,B), 0 � r � 1. (18)

By utilizing the invariant properties of the metric, we can observe that

d(MArM∗,MBrM∗) � |r|d(A,B), −1 � r � 1, (19)

for all A,B ∈ Pn and nonsingular matrix M .

LEMMA 1. [14] For every A,B,C,D ∈ Pn , we obtain

d(A+B,C+D) � max{d(A,C),d(B,D)} .
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Furthermore, for all positive semidefinite A and B,C ∈ Pn ,

d(A+B,A+C) � d(B,C). (20)

Consider the b -metric di : Pn ×Pn → [0,∞) defined as follows

di(U,V ) = di(U,V ), (21)

where i is a positive integer.

THEOREM 5. For numbers L,N,M, i are positive integer and s � 1 , the problem
(16) has a unique solution U ∈ Pn . Furthermore, for all U(0) ∈ Pn , the sequence
U(k)k�0 defined by

U(k+1) =

[(
AU(k)

− 1
M A∗ +B

) 1
L

+C

] 1
N

, (22)

converges to U and the error estimation is

di(U(k),U) �
(

(NLM)i +1
(NLM)i −1

)(
2

(NLM)i +1

)k−1

λEi (U(1)U(0)) , (23)

where

λ = ∑
n�1

s2n
(

2
(NLM)i +1

)2n−1

.

Proof. First, to show that the problem (16) has a unique solution and the iteration
(22) converges to U ∈ Pn . Let U,V ∈ Pn , from (17) we have

di( f (U), f (V )) = di

⎛
⎜⎝
[(

AU
− 1

M A∗ +B

) 1
L

+C

] 1
N

,

[(
AV

− 1
M A∗ +B

) 1
L

+C

] 1
N

⎞
⎟⎠ ,

by using (21) we get

di( f (U), f (V )) = di

⎛
⎜⎝
[(

AU
− 1

M A∗ +B

) 1
L

+C

] 1
N

,

[(
AV

− 1
M A∗ +B

) 1
L

+C

] 1
N

⎞
⎟⎠ .

From equations (18), (19) and (20), the result is

di( f (U), f (V )) � 1
(NLM)i d

i(U,V )

=
1

(NLM)i di(U,V ).
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Since di(U,V ) � Ei(U,V ) for all positive integer i , where Ei(U,V ) is defined in Defi-
nition 1.10 by substituting di(U,V ) into d(U,V ) . It is obtain that

di( f (U), f (V )) � 1
(NLM)i Ei(U,V ) = qEi(U,V ),

where q =
1

(NLM)i .

Applying Corollary 3, the mapping f has a unique fixed point U ∈ Pn . Conse-
quently, the problem (17) has a unique fixed point, indicating that the nonlinear matrix
equation (16) has a unique solution in Pn . Moreover, the iteration (22) converges to
U ∈ Pn .

Next, we will show that the error estimation satisfies (23). Since q =
1

(NLM)i , by

Corollary 3 the following result is obtained

γ =
2q

q+1
=

2
(NLM)i +1

,

1
1− γ

=
(NLM)i +1
(NLM)i −1

,

λ = ∑
n�1

s2nγ2n−1
= ∑

n�1
s2n
(

2
(NLM)i +1

)2n−1

.

Hence

di(U(k),U) � γk−1

1− γ
sλdi (U(1),U(0))

� γk−1

1− γ
sλEi (U(1),U(0))

�
(

(NLM)i +1
(NLM)i −1

)(
2

(NLM)i +1

)k−1

sλEi (U(1),U(0)) .

The proof is completed. �

EXAMPLE 4. [3] Put N = M = 2 and L = 3, the nonlinear equation (16) reduced
to

U2 =
(

AU
− 1

2 A∗ +B

) 1
3

+C. (24)

If i = s = 2, then the error estimation (23) becomes

d2(U(k),U) �
(

290
143

)(
2

145

)k−1

λE2 (U(1)U(0)) ,

where

λ = ∑
n�1

4n
(

2
145

)2n−1

.
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EXAMPLE 5. Put N = 3 and M = L = 2, the nonlinear equation (16) reduced to

U3 =
(

AU
− 1

2 A∗ +B

) 1
2

+C. (25)

The sequence U(k)k�0 of (25) defined by

U(k+1) =

[(
AU(k)

− 1
2 A∗ +B

) 1
2

+C

] 1
3

. (26)

If i = s = 1, then the error estimation (23) becomes

d(U(k),U) �
(

13
11

)(
2
13

)k−1

λE (U(1),U(0)) ,

where

λ = ∑
n�1

(
2
13

)2n−1

.

Next, we investigate a numerical example to demonstrate our findings by using
the iteration (26) to solve the problem (25). Consider the nonsingular matrix A , the
positive semidefinite B and C ∈ Pn defined by

A =

⎡
⎢⎢⎣

1 1 −1 0
0 2 −1 1
1 0 −1 3
0 1 4 2

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

1 0 2 0
0 2 1 0
2 1 5 0
0 0 0 0

⎤
⎥⎥⎦ and C =

⎡
⎢⎢⎣

1 −1 0 0
−1 3 1 0
0 1 4 0
0 0 0 1

⎤
⎥⎥⎦ ,

note that spectrums of B and C are spec(B)= {0,0.0885,1.8705,6.0410} and spec(C)
= {0.5395,1.0000,2.7609,4.6996} respectively. First, we select the diagonal positive
definite matrix

U1(0) =

⎡
⎢⎢⎣

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

⎤
⎥⎥⎦ ,

mention that spec(U1(0)) = {1,2,3,4} . Using the iterative algorithm (26), after 10
iterations, we derive the unique positive definite solution

U1(10) =

⎡
⎢⎢⎣

1.3011 −0.0424 0.0253 −0.0050
−0.1879 1.7371 0.1516 0.0011
0.0668 0.1575 1.9631 0.0380
0.0909 0.0395 0.0302 1.6512

⎤
⎥⎥⎦ ,

note that spec(U1(10)) = {1.2899,2.0455,1.6858,1.6313}. The residual error is

R(U1(10)) =

∥∥∥∥∥∥∥U1(10)−
[(

AU1(10)
− 1

2 A∗ +B

) 1
2

+C

] 1
3

∥∥∥∥∥∥∥= 3.1592×10−13.
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Next, we choose the different positive definite matrix

U2(0) =

⎡
⎢⎢⎣

4 1 1 −2
1 3 −1 −1
1 −1 3 −1
−2 −1 −1 4

⎤
⎥⎥⎦ ,

remark that spec(U2(0)) = {1.1716,2,4,6.8284}. We use the iterative algorithm (26),
after 10 iterations, we obtian the unique positive definite solution

U2(10) =

⎡
⎢⎢⎣

1.3011 −0.0424 0.0253 −0.0050
−0.1879 1.7371 0.1516 0.0011
0.0668 0.1575 1.9631 0.0380
0.0909 0.0395 0.0302 1.6512

⎤
⎥⎥⎦ ,

and its residual error

R(U2(10)) =

∥∥∥∥∥∥∥U2(10)−
[(

AU2(10)
− 1

2 A∗ +B

) 1
2

+C

] 1
3

∥∥∥∥∥∥∥= 3.9364×10−13.

The algorithm’s convergence history for different initial values of U(0) is illus-
trated in Figure (1). It is evident that U1(k) is close to U2(k) , establishing support for
Theorem (5).

1 2 3 4 5 6 7 8 9 10
Iterations

10-10

10-5

100

E
rr

or
s

X
1
(k)

X
2
(k)

Figure 1: Convergence curve for (26).
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6. Conclusions

The present study reveals a compelling condition for the existence and uniqueness
of the α −βM -Geraghty type contraction mapping that encompasses α −βE -Geraghty
contraction. Furthermore, the outcomes garnered from this investigation were imple-
mented in the development of a theorem pertaining to a nonlinear matrix equation on a
Hermitian positive definite matrix, in addition to examining examples that corresponded
to the aforementioned theorem utilizing a numerical method.

Acknowledgements. This research is supported by Chiang Mai University, and
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