lournal of
athematical
nequalities

Volume 17, Number 4 (2023), 1463-1470 doi:10.7153/jmi-2023-17-96

A GENERALIZED REFINEMENT OF YOUNG’S INEQUALITY

YONGHUI REN

(Communicated by M. Krni¢)

Abstract. In this paper, we mainly give a generalized refinement of Young’s inequality due to
Yang and Wang [J. Math. Inequal., 17 (2023), 205-217]. More precisely, we show that

(aV,b)" — K(h,2)™ (ayb)" _ v(1-v)
(aVb)"m — K(h,2)"% (atb)" ~ (1 —1)’

1 + o (h+l)2 _ b P
where 0 <v<1<37,meN ,a>b>0, K(h?2)= s~ and h= 7. As applications, we

obtain some inequalities for operator, Hilbert-Schmidt norm and trace class norm.

1. Introduction

Let (47,(-,-)) be a complex Hilbert space and B(.%’) denote the algebra of all
bounded linear operators acting on .7Z”. A self adjoint operator A is said to be positive
if (Ax,x) > 0 for all x € 27, while it is said to be strictly positive if A is positive and
invertible, denoted by A > 0. We say A > B means A—B >0 and A > B implies
A — B >0, respectively.

In addition, M, denotes the space of all n x n complex matrices. The unitarily
invariance of the || - ||, on M, means that ||[UAV||, = ||A||, for any A € M, and all
unitary matrices U,V € M,,. The singular values of A, that is, the eigenvalues of the
positive semi-definite matrix |A| = (A*A)% , is denoted by s;(A), j=1,2,---,n, and

n P
arranged in a non-increasing order. For A € M,,, we define ||A||, = ( > s? (A)) , then
=1

we call it as the trace norm and Hilbert-Schmidt norm of A when p=1 and p =2,
respectively. It is well know that || - ||2 is unitarily invariant.
As usual, we denote the v-weighted operator arithmetic mean and geometric mean
by
AV,B=(1—v)A+vB and Af,B=A?(A"2BA )AL,

respectively, where A,B > 0 and v € [0, 1]. Similarly, we define the v-weighted AM-
GM means as aV,b = (1 —v)a+vb and af,b = a' ™" for a,b>0and 0<v< 1.
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The Kantorovich constant and the Specht’s ratio are defined by

h+1)2
K(h2) = ¢ :h> for i > 0
and
w1 if he (0,1)U(1,)
— 1 1 € ) »°)s
S(h> - elog(hﬁ)
1 if h=1.

The classical weighted arithmetic-geometric mean inequality reads
n n
[T < Y piai, (1)
i=1 i=1

where a;,p; > 0 and Y, p; = 1. Then we can get the famous Young’s inequality by (1)
i=1
when n=2,

a7’ < (1 —v)a+vb, (2)

where a,b >0 and v € [0,1].
Zuo et al. [6] and Furuichi [1] improved (2) and Liao et al. [3] gave a reverse of
(2) as follows

S(h)atb < K (h,2) atyb < aVyb < K (h,2)Rat,b, 3)

2
Wherhe a,b>0,0<v< 1, r=min{v,1 —v}, R=max{v,1 —v}, K(h,2) = % and
h=2.
Very recently, Yang and Wang [5] showed a new refinement and reverse of in-

2
equality (3): if L <v<t<1,K(h,2) =" =5 and a,b> 0, then

K(h,2) at,b —aV,b SV

< - 4
K(h,2)%alitb—aVib ~ 1T @
Moreover, they [5] also presented that
(aV,b)* — (aﬁvb)z —v}(a—b)? . 5)
I R2a-b2 T

(aV+:b)? — (aticD)

forO<v<t< % and a,b > 0.

In this short paper, we will give a refinement of inequality (4) and (5) when 0 <
VT < %, which can be regarded as some complement of Yang and Wang [5]. As
applications, we obtain some inequalities for operator, Hilbert-Schmidt norm and trace
class norm.
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2. Main results
Firstly, we give the corresponding result of inequality (4) when 0 <v < T < % .In

fact, the following theorem can be obtained from ([5] Theorem 2.2). Here, we provide
the details for the convenience of readers.

| N UES VA
THEOREM 1. Let 0 <v< 1< 5, a,b>0 and K(h,2) = =7, h= 2. Then

aV,b—K(h,2)"at,b SV
aVib—K(h,2)%atb ~ T

Proof. Let f(v) = U0=KeD') ppep £/(y) = @ , where

v

h(x) = {1 ~2vIn (’“2’1” (’“2’1>2V— 1,

and then 1'(x) = —2v*(31)>~1In(241). Tt is clearly that ' (x) <0 for x € [1,0] and
I'(x) >0 for x € (0,1], so h(x) <h(1) =0, and f'(v) <0, which means f(v) > f(7)
when 0 <v <7< % Taking x = g, as desired. [

We now try to present a further improvement of Theorem 1.

THEOREM 2. Let 0<v<T<3.Ifa>b>0, then

aV,b—K(h,2)"at,b < v(l—v)

>
avVib—K(h,2)at:b ~ t(1—1) ~

) (6)

Qal<

where K(h,2) = U’Lpz and h="5.

_ (I—v4wx)—K(x,2)"(x") _ (lvarvX)*(l;er)zv _ Then f/(v) _ 2h(x)

Proof. Let f(v) T Wiy iy
for
1+x\% 14x 14+x\2%
hx)=v(l—v)|x—1-2 2 In 2 +2v—=1)|(1=v+wx)— 5 ,
so we have

B (x) =v(1—v) [1 _2‘}(1_2”)%1111 1 —ka - (1 ;_x)2v1:|

+(2v— 1){v—v<1;x)2ﬂ],
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and

2v—2 2v-2
1/1+x 1+x 1/1+4+x
" _ _ _ _ i _ i
' (x) =v(1 v)[ 2v(2v 1)2< 2 ) In 7 2v2< 7 )

—(2v— 1)%(%)%2} +(2v—-1) {—v(2v— 1)%(1 ;—x)2V2]

:v<1;—x>2v2[‘)(‘)_1)(2‘}_1)1111;-36_%.

2

We have h”(x) <0 for v € (0,3] and x € (0,1), which implies 4'(x) > h'(1) =0, and
then 7(x) < h(1) =0, it means f'(v) <0. So f(v) > f(1) when 0 <v< 7 < . We
complete the proof by putting x = Z g

Next, we give a generalization of Theorem 2.

THEOREM 3. Let0<v<’r<%andmeN*.Ifa>b>0,then

(aVyb)" — K(h,2)"™ (afl,b)"™ < v(l—v)

(aVeb)" —K(h,2)" (atb)" = t(1—7)’ ™

where K(h,2) = ( ) and h =

Proof. Letting f(v) = (1 —v+vx)" — ((X2)2)". Then f(v) = (1 —v+wx)—
(%)w)h(v),Where h(v) :é (1 —v+vx)"" ( 1+

=) )k ' So we have
‘W)=Y (m—k)(x— l)(l—v+vX)m_k_1<<l%c>2V)k1

+ §2(k— 1)(1 —v+vx)mk<<l%c)2v>klln l%c

k=1

It is easy to see that #'(v) < 0 when x € (0,1), which means i(v) > h(7) when 0 <
VST < % Therefore,

FO) (L= vwx)m— (L))"
f(1) (I—1+mx)m— (L))"
_ (1 =v+vx)— () n(v)
((1 =7+ ) — (L2)27) (1)
(1—v+wx)— (5%
(1—1+1x) — (L)
> M2 by (6)).
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Taking x = 2, we get the desired results. [

a

Motivated by the idea of Theorem 2, we now give a further improvement of (5).
THEOREM 4. Let 0<v<T<3.Ifa>b>0, then

(aV,b)? — (aj:ivb)2 —v*(a—b)? - v(l—v)
(aVb)? — (aﬁfb)z —12(a—b)? T r(l-1)

®)

Proof. Let f(V) _ (17v+vx)zv(71)f‘;)fv2(x71)2 Then f’(v) _ VZ(hl(—f)v)Z for

h(x)=(1—=v+vx)(=1+v+wx) +x2v[(l —2v)+2v(v—1)Inx] —(x—1)%,
so we have
1 (x) = 202+ 20 [T =20+ 2v(v — 1) Inx] +2v(v — D)x® 1 = 2(x — 1)?
and
B (x) = x*"2 [4(2v—1)(v—1)Inx—2] V2.

We have 1" (x) <0 for v € (0,4] and x € (0,1), which implies //(x) > 4(1) =0, and
then h(x) < h(1) =0, it means f'(v) <0. So f(v) > f(1) when 0 <v< T < 5. We
complete the proof by putting x = s g

Hirzallah and Kittaneh [2] showed a quadratic refinements of Young’s inequality
(@ b")* +min{y,1 —v}*(a—b)* < (1 —v)a+ vb)2 )

for a,b >0 and 0 < v < 1. Our inequality (8) is a refinement and reverse of (9) when
0<v< % .

We do not get the same generalization as (6) for (8) for the time being. Interested
readers could have a try.

Next, we give some inequalities for operator, Hilbert-Schmidt norm and trace class
norm as promised.

LEMMA 5. ([4]) Let X € B(J) be self-adjoint and f and g be continuous real
Sunctions such that f(t) > g(t) for all t € Sp(X) (the spectrum of X ). Then f(X) >

g(X).

THEOREM 6. Let A,B € B(), 0 <v<T<2i. If0<hA<B<MWA, then we
have

AV,B > % (AV:B—K(h,2)"(A4:B)) + K(K',2)" (A,B), (10)

r_ _m
where ' = 37 and h= 3;.
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Proof. Taking a =1 in inequality (6), then we obtain

v V(l _V) T
Vb= K(6,2)' (1) > £ (1Veh — K(b,2)%(14:b)). (11)

Under our conditions, we can get I > h'[ = %,I >X = A’%BA’% >hl = %1, and then
Sp(X) C [h,h'] C(0,1). The operator X has a positive spectrum, then by Lemma 5 and
the inequality (11), we have

v([—v) .
IV,X > IV X — K(x,2)"(If:X K(x,2)"(I4,X). 12
y T(_T)( oX — max K(x,2)" (I ))+hr<r)1€1<nh, (x,2)"(I4X). (12
2
Since the Kantorovich constant K (z,2) = (H;”l L isa decreasing function on (0, 1), then
V(I_ V) T ! ~A\V
IV,X > =1 (IVTX—K(ILZ) (IﬁTX)) +K(1',2) (Ij:iVX)7 (13)

Multiplying A on both left and right sides of the inequality (13), we can get (10)
directly. [

THEOREM 7. Let X € M, and A,B € M, be positive for 0 <v < 1< % IfA>B,
then we have

|(1—v)AX +vXB||3
v(l—v)
(1 —1)

=

1(1 = 7)AX + X B||; — K3"||A" "X BT|[3| + K{"[|AT X B3,

where K| := min1<i7l<nK(i—]"72), K, = max1<i7l<nK(i—]",2) and A;,x; are eigenvalues
of A, B respectively.

Proof. Since A,B are positive definite matrices, it follows by spectral theorem
that there exist unitary matrices U,V € M, such that A =UA|U* and B = VA,V*,
where A = diag(A1,A2,--+,A,) and Ay = diag(xy,xp,---,x,) for A;,x; are eigenvalues
of A, B respectively, so Aj,x; >0, i=1,2,---,n. Let Y = U*XV = [y;]. Then

(1=v)AX +vXB=U[(1—v)A1Y +vY Ay |V*
=U[((1=v)Ai+vx;)yu]V*

and

AYVXBY = U [(A])yu ]V
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By (7) and the unitarily invariance of the Hilbert-Schmidt norm, we have
1(1—v)AX +vXB|5— K{'||[A' "X B"||3

n 2, 2y
3 (1 =) 2+ vx) ] — 2 mmK<_ 2) (A5 al?

i1=1 ijl=1

) 2v
((l—v)k,-—f—vxl)z—minK(&,Z) (/l1 'x;) ]|yll
X1

I
M=

((1—v)?Li+vxl)2—K<)/}—;72)2v(7Ll X)) ]b}zl
L ) R
K(l_r)/liﬂxl)z—maxK@—l’}z)zT(/ll x7) ]yzz

n 27
e XGRS L R MR

WV

WV

L
;i <
|
R

t(1-1) [, =1
- v(l—v) 2711 A l—Ty pT
=i )[|\(1—T)AX+TXB|\2—K2 |A""xB|3]. O

THEOREM 8. Let X € M, and A,B € M, be positive for 0 <v < 1< % IfA>B,
then we have

||[(1—v)AX +vXB|[5—||A' " XB"||5 — v*||AX + XB||5
< v(1—v)

> 10D ||(1—1)AX +TXB|[5 —||A'""XB"||3 — t*||AX + XB||3|.

Proof. Combination inequality (8) and Theorem 7, we can get the proof easily, so
we omitit. [J

THEOREM 9. Let A,B € M, be positive and 0 <v < T < % If A > B, then we
have

[1(1=v)A+vBI[ —K(h,2)"[|A[[; "[IBII; _ v(1—v)
(1 —1)A+ B[ — K(h,2)T||Al|{7|1B||T ~ ©(1—-7)

where K(h,2) = ( ) and h= 5.
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Proof. By the inequality (6), we have

1(1=v)A+vB||; = tr((1 — v)A +vB) = (1 —v)tr(A) + vtr(B)

> :Ei_: :)5 (1= 7)u(A) + 7e(B) — K (,2)"tr(A) ~"ur(B)") + K (h,2)"tr(A) " u(B)”
- %(H(l — T)A+1B||1 — K(h,2)"|A|l}"IBIIT) + K (h,2)"||Al[}Y||B][}. O
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