A GENERALIZED REFINEMENT OF YOUNG'S INEQUALITY

Yonghui Ren

(Communicated by M. Krnić)

Abstract. In this paper, we mainly give a generalized refinement of Young's inequality due to Yang and Wang [J. Math. Inequal., 17 (2023), 205-217]. More precisely, we show that

$$
\frac{\left(a \nabla_{v} b\right)^{m}-K(h, 2)^{m v}\left(a \not \sharp_{v} b\right)^{m}}{\left(a \nabla_{\tau} b\right)^{m}-K(h, 2)^{m \tau}(a \sharp \tau b)^{m}} \geqslant \frac{v(1-v)}{\tau(1-\tau)},
$$

where $0<v \leqslant \tau<\frac{1}{2}, m \in \mathbb{N}^{+}, a>b>0, K(h, 2)=\frac{(h+1)^{2}}{4 h}$ and $h=\frac{b}{a}$. As applications, we obtain some inequalities for operator, Hilbert-Schmidt norm and trace class norm.

1. Introduction

Let $(\mathscr{H},\langle\cdot, \cdot\rangle)$ be a complex Hilbert space and $B(\mathscr{H})$ denote the algebra of all bounded linear operators acting on \mathscr{H}. A self adjoint operator A is said to be positive if $\langle A x, x\rangle \geqslant 0$ for all $x \in \mathscr{H}$, while it is said to be strictly positive if A is positive and invertible, denoted by $A>0$. We say $A>B$ means $A-B>0$ and $A \geqslant B$ implies $A-B \geqslant 0$, respectively.

In addition, \mathbb{M}_{n} denotes the space of all $n \times n$ complex matrices. The unitarily invariance of the $\|\cdot\|_{u}$ on \mathbb{M}_{n} means that $\|U A V\|_{u}=\|A\|_{u}$ for any $A \in \mathbb{M}_{n}$ and all unitary matrices $U, V \in \mathbb{M}_{n}$. The singular values of A, that is, the eigenvalues of the positive semi-definite matrix $|A|=\left(A^{*} A\right)^{\frac{1}{2}}$, is denoted by $s_{j}(A), j=1,2, \cdots, n$, and arranged in a non-increasing order. For $A \in \mathbb{M}_{n}$, we define $\|A\|_{p}=\left(\sum_{j=1}^{n} s_{j}^{p}(A)\right)^{\frac{1}{p}}$, then we call it as the trace norm and Hilbert-Schmidt norm of A when $p=1$ and $p=2$, respectively. It is well know that $\|\cdot\|_{2}$ is unitarily invariant.

As usual, we denote the v-weighted operator arithmetic mean and geometric mean by

$$
A \nabla_{v} B=(1-v) A+v B \quad \text { and } \quad A \not \sharp_{v} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{v} A^{\frac{1}{2}}
$$

respectively, where $A, B>0$ and $v \in[0,1]$. Similarly, we define the v-weighted AMGM means as $a \nabla_{v} b=(1-v) a+v b$ and $a \not \sharp_{v} b=a^{1-v} b^{v}$ for $a, b>0$ and $0 \leqslant v \leqslant 1$.

[^0]Keywords and phrases: AM-GM, trace, operators, inequality.

The Kantorovich constant and the Specht's ratio are defined by

$$
K(h, 2)=\frac{(h+1)^{2}}{4 h} \text { for } h>0
$$

and

$$
S(h)=\left\{\begin{array}{cl}
\frac{h^{\frac{1}{h-1}}}{e \log \left(h^{\frac{1}{h-1}}\right)} & \text { if } h \in(0,1) \cup(1, \infty) \\
1 & \text { if } h=1
\end{array}\right.
$$

The classical weighted arithmetic-geometric mean inequality reads

$$
\begin{equation*}
\prod_{i=1}^{n} a_{i}^{p_{i}} \leqslant \sum_{i=1}^{n} p_{i} a_{i} \tag{1}
\end{equation*}
$$

where $a_{i}, p_{i} \geqslant 0$ and $\sum_{i=1}^{n} p_{i}=1$. Then we can get the famous Young's inequality by (1) when $n=2$,

$$
\begin{equation*}
a^{1-v} b^{v} \leqslant(1-v) a+v b \tag{2}
\end{equation*}
$$

where $a, b \geqslant 0$ and $v \in[0,1]$.
Zuo et al. [6] and Furuichi [1] improved (2) and Liao et al. [3] gave a reverse of (2) as follows

$$
\begin{equation*}
S\left(h^{r}\right) a \sharp_{v} b \leqslant K(h, 2)^{r} a \sharp_{v} b \leqslant a \nabla_{v} b \leqslant K(h, 2)^{R} a \sharp_{v} b, \tag{3}
\end{equation*}
$$

where $a, b>0,0 \leqslant v \leqslant 1, r=\min \{v, 1-v\}, R=\max \{v, 1-v\}, K(h, 2)=\frac{(h+1)^{2}}{4 h}$ and $h=\frac{b}{a}$.

Very recently, Yang and Wang [5] showed a new refinement and reverse of inequality (3): if $\frac{1}{2}<v \leqslant \tau<1, K(h, 2)=\frac{(h+1)^{2}}{4 h}, h=\frac{b}{a}$ and $a, b>0$, then

$$
\begin{equation*}
\frac{K(h, 2)^{v} a \sharp_{\nu} b-a \nabla_{v} b}{K(h, 2)^{\tau} a \not \sharp_{\tau} b-a \nabla_{\tau} b} \leqslant \frac{v}{\tau} . \tag{4}
\end{equation*}
$$

Moreover, they [5] also presented that

$$
\begin{equation*}
\frac{\left(a \nabla_{v} b\right)^{2}-\left(a \sharp_{v} b\right)^{2}-v^{2}(a-b)^{2}}{\left(a \nabla_{\tau} b\right)^{2}-\left(a \not \sharp_{\tau} b\right)^{2}-\tau^{2}(a-b)^{2}} \geqslant \frac{v}{\tau} . \tag{5}
\end{equation*}
$$

for $0<v \leqslant \tau<\frac{1}{2}$ and $a, b>0$.
In this short paper, we will give a refinement of inequality (4) and (5) when $0<$ $v \leqslant \tau<\frac{1}{2}$, which can be regarded as some complement of Yang and Wang [5]. As applications, we obtain some inequalities for operator, Hilbert-Schmidt norm and trace class norm.

2. Main results

Firstly, we give the corresponding result of inequality (4) when $0<v \leqslant \tau<\frac{1}{2}$. In fact, the following theorem can be obtained from ([5] Theorem 2.2). Here, we provide the details for the convenience of readers.

Theorem 1. Let $0<v \leqslant \tau<\frac{1}{2}, a, b>0$ and $K(h, 2)=\frac{(h+1)^{2}}{4 h}, h=\frac{b}{a}$. Then

$$
\frac{a \nabla_{v} b-K(h, 2)^{v} a \sharp_{v} b}{a \nabla_{\tau} b-K(h, 2)^{\tau} a \sharp_{\tau} b} \geqslant \frac{v}{\tau} .
$$

Proof. Let $f(v)=\frac{(1-v+v x)-K(x, 2)^{v}\left(x^{v}\right)}{v}$. Then $f^{\prime}(v)=\frac{h(x)}{v^{2}}$, where

$$
h(x)=\left[1-2 v \ln \left(\frac{x+1}{2}\right)\right]\left(\frac{x+1}{2}\right)^{2 v}-1
$$

and then $h^{\prime}(x)=-2 v^{2}\left(\frac{x+1}{2}\right)^{2 v-1} \ln \left(\frac{x+1}{2}\right)$. It is clearly that $h^{\prime}(x) \leqslant 0$ for $x \in[1, \infty]$ and $h^{\prime}(x) \geqslant 0$ for $x \in(0,1]$, so $h(x) \leqslant h(1)=0$, and $f^{\prime}(v) \leqslant 0$, which means $f(v) \geqslant f(\tau)$ when $0<v \leqslant \tau<\frac{1}{2}$. Taking $x=\frac{b}{a}$, as desired.

We now try to present a further improvement of Theorem 1.

Theorem 2. Let $0<v \leqslant \tau<\frac{1}{2}$. If $a>b>0$, then

$$
\begin{equation*}
\frac{a \nabla_{v} b-K(h, 2)^{v} a \sharp_{v} b}{a \nabla_{\tau} b-K(h, 2)^{\tau} a \not \sharp_{\tau} b} \geqslant \frac{v(1-v)}{\tau(1-\tau)} \geqslant \frac{v}{\tau}, \tag{6}
\end{equation*}
$$

where $K(h, 2)=\frac{(h+1)^{2}}{4 h}$ and $h=\frac{b}{a}$.

Proof. Let $f(v)=\frac{(1-v+v x)-K(x, 2)^{v}\left(x^{v}\right)}{v(1-v)}=\frac{(1-v+v x)-\left(\frac{1+x}{2}\right)^{2 v}}{v(1-v)}$. Then $f^{\prime}(v)=\frac{h(x)}{v^{2}(1-v)^{2}}$ for

$$
h(x)=v(1-v)\left[x-1-2\left(\frac{1+x}{2}\right)^{2 v} \ln \frac{1+x}{2}\right]+(2 v-1)\left[(1-v+v x)-\left(\frac{1+x}{2}\right)^{2 v}\right]
$$

so we have

$$
\begin{aligned}
h^{\prime}(x)= & v(1-v)\left[1-2 v\left(\frac{1+x}{2}\right)^{2 v-1} \ln \frac{1+x}{2}-\left(\frac{1+x}{2}\right)^{2 v-1}\right] \\
& +(2 v-1)\left[v-v\left(\frac{1+x}{2}\right)^{2 v-1}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
h^{\prime \prime}(x) & =v(1-v)\left[-2 v(2 v-1) \frac{1}{2}\left(\frac{1+x}{2}\right)^{2 v-2} \ln \frac{1+x}{2}-2 v \frac{1}{2}\left(\frac{1+x}{2}\right)^{2 v-2}\right. \\
& \left.-(2 v-1) \frac{1}{2}\left(\frac{1+x}{2}\right)^{2 v-2}\right]+(2 v-1)\left[-v(2 v-1) \frac{1}{2}\left(\frac{1+x}{2}\right)^{2 v-2}\right] \\
& =v\left(\frac{1+x}{2}\right)^{2 v-2}\left[v(v-1)(2 v-1) \ln \frac{1+x}{2}-\frac{v}{2}\right]
\end{aligned}
$$

We have $h^{\prime \prime}(x) \leqslant 0$ for $v \in\left(0, \frac{1}{2}\right]$ and $x \in(0,1)$, which implies $h^{\prime}(x) \geqslant h^{\prime}(1)=0$, and then $h(x) \leqslant h(1)=0$, it means $f^{\prime}(v) \leqslant 0$. So $f(v) \geqslant f(\tau)$ when $0<v \leqslant \tau<\frac{1}{2}$. We complete the proof by putting $x=\frac{b}{a}$.

Next, we give a generalization of Theorem 2.
THEOREM 3. Let $0<v \leqslant \tau<\frac{1}{2}$ and $m \in \mathbb{N}^{+}$. If $a>b>0$, then

$$
\begin{equation*}
\frac{\left(a \nabla_{v} b\right)^{m}-K(h, 2)^{m v}\left(a \sharp_{v} b\right)^{m}}{\left(a \nabla_{\tau} b\right)^{m}-K(h, 2)^{m \tau}\left(a \nVdash_{\tau} b\right)^{m}} \geqslant \frac{v(1-v)}{\tau(1-\tau)}, \tag{7}
\end{equation*}
$$

where $K(h, 2)=\frac{(h+1)^{2}}{4 h}$ and $h=\frac{b}{a}$.
Proof. Letting $f(v)=(1-v+v x)^{m}-\left(\left(\frac{1+x}{2}\right)^{2 v}\right)^{m}$. Then $f(v)=((1-v+v x)-$ $\left.\left(\frac{1+x}{2}\right)^{2 v}\right) h(v)$, where $h(v)=\sum_{k=1}^{m}(1-v+v x)^{m-k}\left(\left(\frac{1+x}{2}\right)^{2 v}\right)^{k-1}$. So we have

$$
\begin{aligned}
h^{\prime}(v)= & \sum_{k=1}^{m}(m-k)(x-1)(1-v+v x)^{m-k-1}\left(\left(\frac{1+x}{2}\right)^{2 v}\right)^{k-1} \\
& +\sum_{k=1}^{m} 2(k-1)(1-v+v x)^{m-k}\left(\left(\frac{1+x}{2}\right)^{2 v}\right)^{k-1} \ln \frac{1+x}{2}
\end{aligned}
$$

It is easy to see that $h^{\prime}(v) \leqslant 0$ when $x \in(0,1)$, which means $h(v) \geqslant h(\tau)$ when $0<$ $v \leqslant \tau<\frac{1}{2}$. Therefore,

$$
\begin{aligned}
\frac{f(v)}{f(\tau)} & =\frac{(1-v+v x)^{m}-\left(\left(\frac{1+x}{2}\right)^{2 v}\right)^{m}}{(1-\tau+\tau x)^{m}-\left(\left(\frac{1+x}{2}\right)^{2 \tau}\right)^{m}} \\
& =\frac{\left((1-v+v x)-\left(\frac{1+x}{2}\right)^{2 v}\right) h(v)}{\left((1-\tau+\tau x)-\left(\frac{1+x}{2}\right)^{2 \tau}\right) h(\tau)} \\
& \geqslant \frac{(1-v+v x)-\left(\frac{1+x}{2}\right)^{2 v}}{(1-\tau+\tau x)-\left(\frac{1+x}{2}\right)^{2 \tau}} \\
& \geqslant \frac{v(1-v)}{\tau(1-\tau)} \quad(\text { by }(6)) .
\end{aligned}
$$

Taking $x=\frac{b}{a}$, we get the desired results.
Motivated by the idea of Theorem 2, we now give a further improvement of (5).
THEOREM 4. Let $0<v \leqslant \tau<\frac{1}{2}$. If $a>b>0$, then

$$
\begin{equation*}
\frac{\left(a \nabla_{v} b\right)^{2}-\left(a \sharp_{\nu} b\right)^{2}-v^{2}(a-b)^{2}}{\left(a \nabla_{\tau} b\right)^{2}-\left(a \not \sharp_{\tau} b\right)^{2}-\tau^{2}(a-b)^{2}} \geqslant \frac{v(1-v)}{\tau(1-\tau)} . \tag{8}
\end{equation*}
$$

Proof. Let $f(v)=\frac{(1-v+v x)^{2}-x^{2 v}-v^{2}(x-1)^{2}}{v(1-v)}$. Then $f^{\prime}(v)=\frac{h(x)}{v^{2}(1-v)^{2}}$ for

$$
h(x)=(1-v+v x)(-1+v+v x)+x^{2 v}[(1-2 v)+2 v(v-1) \ln x]-v^{2}(x-1)^{2}
$$

so we have

$$
h^{\prime}(x)=2 v^{2} x+2 v x^{2 v-1}[1-2 v+2 v(v-1) \ln x]+2 v(v-1) x^{2 v-1}-2(x-1) v^{2}
$$

and

$$
h^{\prime \prime}(x)=x^{2 v-2}[4(2 v-1)(v-1) \ln x-2] v^{2} .
$$

We have $h^{\prime \prime}(x) \leqslant 0$ for $v \in\left(0, \frac{1}{2}\right]$ and $x \in(0,1)$, which implies $h^{\prime}(x) \geqslant h^{\prime}(1)=0$, and then $h(x) \leqslant h(1)=0$, it means $f^{\prime}(v) \leqslant 0$. So $f(v) \geqslant f(\tau)$ when $0<v \leqslant \tau<\frac{1}{2}$. We complete the proof by putting $x=\frac{b}{a}$.

Hirzallah and Kittaneh [2] showed a quadratic refinements of Young's inequality

$$
\begin{equation*}
\left(a^{1-v} b^{v}\right)^{2}+\min \{v, 1-v\}^{2}(a-b)^{2} \leqslant((1-v) a+v b)^{2} \tag{9}
\end{equation*}
$$

for $a, b>0$ and $0 \leqslant v \leqslant 1$. Our inequality (8) is a refinement and reverse of (9) when $0<v \leqslant \frac{1}{2}$.

We do not get the same generalization as (6) for (8) for the time being. Interested readers could have a try.

Next, we give some inequalities for operator, Hilbert-Schmidt norm and trace class norm as promised.

LEMMA 5. ([4]) Let $X \in B(\mathscr{H})$ be self-adjoint and f and g be continuous real functions such that $f(t) \geqslant g(t)$ for all $t \in \operatorname{Sp}(X)$ (the spectrum of X). Then $f(X) \geqslant$ $g(X)$.

THEOREM 6. Let $A, B \in B(\mathscr{H}), 0<v \leqslant \tau<\frac{1}{2}$. If $0<h A \leqslant B \leqslant h^{\prime} A$, then we have

$$
\begin{equation*}
A \nabla_{v} B \geqslant \frac{v(1-v)}{\tau(1-\tau)}\left(A \nabla_{\tau} B-K(h, 2)^{\tau}\left(A \not \sharp_{\tau} B\right)\right)+K\left(h^{\prime}, 2\right)^{v}\left(A \not \sharp_{v} B\right), \tag{10}
\end{equation*}
$$

where $h^{\prime}=\frac{m^{\prime}}{M^{\prime}}$ and $h=\frac{m}{M}$.

Proof. Taking $a=1$ in inequality (6), then we obtain

$$
\begin{equation*}
1 \nabla_{v} b-K(b, 2)^{v}\left(1 \sharp_{v} b\right) \geqslant \frac{v(1-v)}{\tau(1-\tau)}\left(1 \nabla_{\tau} b-K(b, 2)^{\tau}\left(1 \sharp_{\tau} b\right)\right) . \tag{11}
\end{equation*}
$$

Under our conditions, we can get $I \geqslant h^{\prime} I=\frac{m^{\prime}}{M^{\prime}} I \geqslant X=A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \geqslant h I=\frac{m}{M} I$, and then $S p(X) \subseteq\left[h, h^{\prime}\right] \subseteq(0,1)$. The operator X has a positive spectrum, then by Lemma 5 and the inequality (11), we have

$$
\begin{equation*}
I \nabla_{v} X \geqslant \frac{v(I-v)}{\tau(I-\tau)}\left(I \nabla_{\tau} X-\max _{h \leqslant x \leqslant h^{\prime}} K(x, 2)^{\tau}\left(I \not \sharp_{\tau} X\right)\right)+\min _{h \leqslant x \leqslant h^{\prime}} K(x, 2)^{v}\left(I \sharp_{v} X\right) . \tag{12}
\end{equation*}
$$

Since the Kantorovich constant $K(t, 2)=\frac{(t+1)^{2}}{4 t}$ is a decreasing function on $(0,1)$, then

$$
\begin{equation*}
I \nabla_{v} X \geqslant \frac{v(I-v)}{\tau(I-\tau)}\left(I \nabla_{\tau} X-K(h, 2)^{\tau}\left(I \sharp_{\tau} X\right)\right)+K\left(h^{\prime}, 2\right)^{v}\left(I \sharp_{\nu} X\right), \tag{13}
\end{equation*}
$$

Multiplying $A^{\frac{1}{2}}$ on both left and right sides of the inequality (13), we can get (10) directly.

THEOREM 7. Let $X \in \mathbb{M}_{n}$ and $A, B \in \mathbb{M}_{n}$ be positive for $0<v \leqslant \tau<\frac{1}{2}$. If $A>B$, then we have

$$
\begin{aligned}
& \|(1-v) A X+v X B\|_{2}^{2} \\
& \geqslant \frac{v(1-v)}{\tau(1-\tau)}\left[\|(1-\tau) A X+\tau X B\|_{2}^{2}-K_{2}^{2 \tau}\left\|A^{1-\tau} X B^{\tau}\right\|_{2}^{2}\right]+K_{1}^{2 v}\left\|A^{1-v} X B^{v}\right\|_{2}^{2},
\end{aligned}
$$

where $K_{1}:=\min _{1 \leqslant i, l \leqslant n} K\left(\frac{\lambda_{i}}{x_{l}}, 2\right), K_{2}:=\max _{1 \leqslant i, l \leqslant n} K\left(\frac{\lambda_{i}}{x_{l}}, 2\right)$ and λ_{i}, x_{l} are eigenvalues of A, B respectively.

Proof. Since A, B are positive definite matrices, it follows by spectral theorem that there exist unitary matrices $U, V \in \mathbb{M}_{n}$ such that $A=U \Lambda_{1} U^{*}$ and $B=V \Lambda_{2} V^{*}$, where $\Lambda_{1}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$ and $\Lambda_{2}=\operatorname{diag}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ for λ_{i}, x_{i} are eigenvalues of A, B respectively, so $\lambda_{i}, x_{i}>0, i=1,2, \cdots, n$. Let $Y=U^{*} X V=\left[y_{i l}\right]$. Then

$$
\begin{aligned}
(1-v) A X+v X B & =U\left[(1-v) \Lambda_{1} Y+v Y \Lambda_{2}\right] V^{*} \\
& =U\left[\left((1-v) \lambda_{i}+v x_{l}\right) y_{i l}\right] V^{*}
\end{aligned}
$$

and

$$
A^{1-v} X B^{v}=U\left[\left(\lambda_{i}^{1-v} x_{l}^{v}\right) y_{i l}\right] V^{*}
$$

By (7) and the unitarily invariance of the Hilbert-Schmidt norm, we have

$$
\begin{aligned}
& \|(1-v) A X+v X B\|_{2}^{2}-K_{1}^{2 v}\left\|A^{1-v} X B^{v}\right\|_{2}^{2} \\
& =\sum_{i, l=1}^{n}\left((1-v) \lambda_{i}+v x_{l}\right)^{2}\left|y_{i l}\right|^{2}-\sum_{i, l=1}^{n} \min K\left(\frac{\lambda_{i}}{x_{l}}, 2\right)^{2 v}\left(\lambda_{i}^{1-v} x_{l}^{v}\right)^{2}\left|y_{i l}\right|^{2} \\
& =\sum_{i, l=1}^{n}\left[\left((1-v) \lambda_{i}+v x_{l}\right)^{2}-\min K\left(\frac{\lambda_{i}}{x_{l}}, 2\right)^{2 v}\left(\lambda_{i}^{1-v} x_{l}^{v}\right)^{2}\right]\left|y_{i l}\right|^{2} \\
& \geqslant \sum_{i, l=1}^{n}\left[\left((1-v) \lambda_{i}+v x_{l}\right)^{2}-K\left(\frac{\lambda_{i}}{x_{l}}, 2\right)^{2 v}\left(\lambda_{i}^{1-v} x_{l}^{v}\right)^{2}\right]\left|y_{i l}\right|^{2} \\
& \geqslant \sum_{i, l=1}^{n} \frac{v(1-v)}{\tau(1-\tau)}\left[\left((1-\tau) \lambda_{i}+\tau x_{l}\right)^{2}-K\left(\frac{\lambda_{i}}{x_{l}}, 2\right)^{2 \tau}\left(\lambda_{i}^{1-\tau} x_{l}^{\tau}\right)^{2}\right]\left|y_{i l}\right|^{2} \\
& \geqslant \sum_{i, l=1}^{n} \frac{v(1-v)}{\tau(1-\tau)}\left[\left((1-\tau) \lambda_{i}+\tau x_{l}\right)^{2}-\max K\left(\frac{\lambda_{i}}{x_{l}}, 2\right)^{2 \tau}\left(\lambda_{i}^{1-\tau} x_{l}^{\tau}\right)^{2}\right]\left|y_{i l}\right|^{2} \\
& =\frac{v(1-v)}{\tau(1-\tau)}\left[\sum_{i, l=1}^{n}\left((1-\tau) \lambda_{i}+\tau x_{l}\right)^{2}\left|y_{i l}\right|^{2}-\sum_{i, l=1}^{n} \max K\left(\frac{\lambda_{i}}{x_{l}}, 2\right)^{2 \tau}\left(\lambda_{i}^{1-\tau} x_{l}^{\tau}\right)^{2}\left|y_{i l}\right|^{2}\right] \\
& =\frac{v(1-v)}{\tau(1-\tau)}\left[\|(1-\tau) A X+\tau X B\|\left\|_{2}^{2}-K_{2}^{2 \tau}| | A^{1-\tau} X B^{\tau}\right\|_{2}^{2}\right] .
\end{aligned}
$$

THEOREM 8. Let $X \in \mathbb{M}_{n}$ and $A, B \in \mathbb{M}_{n}$ be positive for $0<v \leqslant \tau<\frac{1}{2}$. If $A>B$, then we have

$$
\begin{aligned}
& \|(1-v) A X+v X B\|_{2}^{2}-\left\|A^{1-v} X B^{v}\right\|_{2}^{2}-v^{2}\|A X+X B\|_{2}^{2} \\
& \geqslant \frac{v(1-v)}{\tau(1-\tau)}\left[\|(1-\tau) A X+\tau X B\|_{2}^{2}-\left\|A^{1-\tau} X B^{\tau}\right\|_{2}^{2}-\tau^{2}\|A X+X B\|_{2}^{2}\right] .
\end{aligned}
$$

Proof. Combination inequality (8) and Theorem 7, we can get the proof easily, so we omit it.

THEOREM 9. Let $A, B \in \mathbb{M}_{n}$ be positive and $0<v \leqslant \tau<\frac{1}{2}$. If $A \geqslant B$, then we have

$$
\frac{\|(1-v) A+v B\|_{1}-K(h, 2)^{v}\|A\|_{1}^{1-v}\|B\|_{1}^{v}}{\|(1-\tau) A+\tau B\|_{1}-K(h, 2)^{\tau}\|A\|_{1}^{1-\tau}\|B\|_{1}^{\tau}} \geqslant \frac{v(1-v)}{\tau(1-\tau)}
$$

where $K(h, 2)=\frac{(h+1)^{2}}{4 h}$ and $h=\frac{\mathrm{tr} B}{\mathrm{tr} A}$.

Proof. By the inequality (6), we have

$$
\begin{aligned}
& \|(1-v) A+v B\|_{1}=\operatorname{tr}((1-v) A+v B)=(1-v) \operatorname{tr}(A)+v \operatorname{tr}(B) \\
& \geqslant \frac{v(1-v)}{\tau(1-\tau)}\left((1-\tau) \operatorname{tr}(A)+\tau \operatorname{tr}(B)-K(h, 2)^{\tau} \operatorname{tr}(A)^{1-\tau} \operatorname{tr}(B)^{\tau}\right)+K(h, 2)^{v} \operatorname{tr}(A)^{1-v} \operatorname{tr}(B)^{v} \\
& =\frac{v(1-v)}{\tau(1-\tau)}\left(\|(1-\tau) A+\tau B\|_{1}-K(h, 2)^{\tau}\|A\|_{1}^{1-\tau}\|B\|_{1}^{\tau}\right)+K(h, 2)^{v}\|A\|_{1}^{1-v}\|B\|_{1}^{v} .
\end{aligned}
$$

Acknowledgement. The author wish to express his sincere thanks to the referee for his/her detailed and helpful suggestions for revising the manuscript.

REFERENCES

[1] S. Furuichi, Refined Young inequalities with Specht's ratio, J. Egyptian Math. Soc., 20 (2012), 4649.
[2] O. Hirzallah, F. Kittaneh, Matrix Young inequalities for the Hilbert-Schmidt norm, Linear Algebra Appl., 308 (2000), 77-84.
[3] W. LiaO, J. Wu, J. ZhaO, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math., 19 (2015), 467-479.
[4] J. Pečarić, T. Furuta, J. Hot, Y. Seo, Mond-Pečarić Method in Operator Inequalities, Element, Zagreb (2005).
[5] C. Yang, Z. WANG, Some new improvements of Young's inequalities, J. Math. Inequal., 17 (2023), 205-217.
[6] H. Zuo, G. Shi, M. Fujir, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.
(Received August 20, 2023) Yonghui Ren
School of Mathematics and Statistics
Zhoukou Normal University
Zhoukou 466001, China
e-mail: yonghuiren1992@163.com

[^0]: Mathematics subject classification (2020): 15A45, 47A63, 47A30, 15A60.

