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GENERALIZATION OF TWO–POINT OSTROWSKI’S INEQUALITY
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(Communicated by J. Pečarić)

Abstract. The paper presents a novel approach to generalize the two-point weighted Ostrowski’s
formula for Riemann-Stieltjes integrals by utilizing a unique class of functions of bounded r -
variation. The proposed approach yields several results that exhibit sharp and better bounds
compared to existing established results by using parameters and weights. Additionally, the
paper also captures many of the known results as special cases.

Main objective of present paper is to generalize two-point Ostrowski’s inequality
by using weights with parameter. In this way our results would be more generalized
than existing literature on the topic. This would be two-fold generalization, one in
terms of weight and the other in terms of parameter.

1. Introduction and preliminaries

1.1. Ostrowski inequality

A celebrated integral inequality involving mappingwith bounded derivative known
with the name of Ostrowski’s inequality was introduced by Alexander Markovich Os-
trowski in year 1938 [19] can be stated as:

PROPOSITION 1.1. Let ρ be real-valued continuous mapping on [ j,k] and dif-
ferentiable on ( j,k) such that ρ ′ is bounded by some real constant K . Then

∣∣∣∣∣ρ(θ )−
∫ k

j ρ(†)d†

k− j

∣∣∣∣∣ �

⎡
⎢⎣1

4
+

(
θ − j+k

2

)2

(k− j)2

⎤
⎥⎦K(k− j)

=
[
(θ − j)2 +(k−θ )2

2(k− j)

]
K. (1.1)

REMARK 1.2. (1) Here constant 1
4 in first inequality is the best possible in the

sense that it cannot be replaced by smaller one.
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(2) In latest versions K is usually replace by ‖ρ ′‖∞ = ess sup
θ∈( j,k)

|ρ ′(θ )| < ∞ .

(3) Since ρ ′ is bounded so the result is also valid for functions of bounded variation.

(4) In this result some assumptions may be relaxed by using the condition of abso-
lutely continuous functions.

(5) This result may be proved in variety of ways by using different techniques includ-
ing Lagrange mean value theorem, Montgomery identity and direct calculation
etc.

(6) One of the importance of Ostrowski’s inequality is that it is helpful to estimate
the bound of first inequality in Hermite-Hadamard’s double inequalities.

(7) This inequality may be interpreted in the following manners:

(a) It gives estimation of deviation of functional values with bounded deriva-
tive from integral mean.

(b) It measure the estimate of approximating area under the curve by rect-
angle.

(8) The celebrated inequality has vast applications in numerical integration, proba-
bility theory and special mean(s) among many others.

(9) It has close connection with other celebrated inequalities including Čebyšev and
Grüss inequalities.

1.2. Two-point Ostrowski’s formula

The well known integral mean-value theorem (IMVT) states that for a continuous
mapping ρ defined on [ j,k] ∃ θ ∈ [ j,k] such that

ρ(θ ) =
1

k− j

∫ k

j
ρ(†)d†.

In terms of numerical integration, the LHS of (1.1) can be regarded as a general one-
point quadrature formula

∫ k

j
ρ(†)d† ≈ (k− j)ρ(θ ) ∀ θ ∈ [ j,k],

with sharp error estimate in RHS of (1.1). Now we move towards two-point formula,
for continuous mapping ρ defined on [ j,k] , the IMVT guarantees that ∃ κ1,κ2 ∈ [ j,k] ,
such that ∫ k

j
ρ(†)d† = (θ − j)ρ(κ1)+ (k−θ )ρ(κ2), (1.2)

for all θ ∈ [ j,k] (see [1]). This is the starting point of two-point Ostrowski formula.
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Related to this result in [7] author considered the case for κ1 = j and κ2 = k
using different approach and this result named as generalized trapezoid formula, it may
be read as: ∫ k

j
ρ(†)d† ≈ (θ − j)ρ( j)+ (k−θ )ρ(k), ∀ θ ∈ [ j,k] (1.3)

Guessab and Schmeisser in [14] stated an important two-point formula using ap-
proach in connection with Ostrowski’s formula. They stated that a real mapping ρ
defined on [ j,k] , gives us:

∫ k

j
ρ(†)d† ≈ (k− j)

ρ(θ )+ ρ( j + k−θ )
2

, ∀ θ ∈
[

j,
j + k
2

]
(1.4)

The formula (1.4) was further studied in [2, 3, 4, 5, 6, 8, 9, 10, 16, 20].
In year 2017 [1], Alomari worked on (1.2) to further generalize the two-point

Ostrowski’s formula. To be more specific, in his work he stated general two-point
Ostrowski’s formula ∫ k

j
ρ(†)d† ≈ (θ − j)ρ(y0)+ (k−θ )ρ(y1),

for all j � y0 � θ � y1 � k . In same article he also obtained some sharp bounds for
mappings of bounded r -variation and mappings satisfy Lipschitz condition with Lk -
bounds (1 � k � ∞) . So, (1.1) becomes special case when y0 = θ = y1 , similarly (1.3)
follows when y0 = j and y1 = k , and (1.4) holds when y0 = h , y1 = j + k− h and
θ = ( j + k)/2, for each h ∈ [ j,( j + k)/2] .

Our aim of present work is to further generalize two-point Ostrowski’s inequality
given by Alomari [1] by using weight and parameter. In this way we would get more
results with better bounds and would recapture many established results by varying on
weight and parameter.

1.3. Bounded variation

Here we recall a definition from [17]. Throughout this section (X ,d) is a metric
space and T is a totally ordered set.

DEFINITION 1.3. Let ρ : T → (X ,d) be a mapping. The total variation of map-
ping ρ is quantity ∨

T

(ρ) = sup
D

∑
†k∈D

d(ρ(†k),ρ(†k−1))

where D ranges over all finite partitions of the interval T .

DEFINITION 1.4. Let ρ : T → (X ,d) . The mapping ρ is of bounded variation
(BV (T )) on T if its total variation is finite, i. e.,

ρ ∈ BV [T ] ⇐⇒
∨
T

(ρ) < +∞.
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Specifically for real-valued continuous mappings defined on compact subset of R

we give definition in following way:

DEFINITION 1.5. Total variation of a continuous real-valued mapping ρ , defined
on [ j,k] is

k∨
j

(ρ) = sup
P∈P[ j,k]

nP−1

∑
i=0

|ρ(θi+1)−ρ(θi)|

where P = {θ0, · · · ,θnP} , be a partition of [ j,k] satisfying θi � θi+1 for 0 � i � nP−1
and supremum is taken over P[ j,k] = {P|P is partition of [ j,k]} of all partitions of
[ j,k] .

DEFINITION 1.6. Continue real-valued mapping ρ on R is of bounded variation
(BV [ j,k]) on [ j,k] ⊂ R if its total variation is finite, i. e.,

ρ ∈ BV [ j,k] ⇐⇒
k∨
j

(ρ) < +∞.

Function of bounded variation, also known as BV mapping, is a real-valued map-
ping whose total variation is bounded (finite): the graph of a mapping having this prop-
erty is well behaved in a precise sense. For a continuous mapping of a single variable,
being of bounded variation means that the distance along the direction of the y-axis,
neglecting the contribution of motion along x -axis, traveled by a point moving along
the graph has a finite value.

Functions of bounded variation are precisely those with respect to which one may
find Riemann-Stieltjes integrals of all continuous mappings.

Another characterization states that the mappings of bounded variation on a com-
pact interval are exactly those ρ which can be written as a difference g−h , where both
g and h are bounded monotone.

One of the most important aspects of mappings of bounded variation is that they
form an algebra of discontinuous mappings whose first derivative exists almost every-
where: due to this fact, they can use to define generalized solutions of nonlinear prob-
lems involving mappings, ordinary and partial differential equations in mathematics,
physics and engineering. Further, the ability of BV mappings to deal with disconti-
nuities has made their use widespread in the applied sciences: solutions of problems
in mechanics, physics, chemical kinetics are very often representable by mappings of
bounded variation. The book [15] details a very ample set of mathematical physics
applications of BV mappings.

Now we move towards generalization of this important concept of mappings of
bounded variation.

1.4. α -Hölder continuity

DEFINITION 1.7. A mapping ρ : X →Y is called α -Holder continuous. If ∃C >
0, such that ∀ y,y0 ∈ X

dY (ρ(y),ρ(y0)) � C[dX(y,y0)]α . (1.5)
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where α1 ∈ [0,∞) and (X ,dX) and (Y,dY ) be two metric spaces.

Here we discuss different cases by varying on values of α and C .

Case 1 : Bounded function. If α = 0 and dX(y,y0) �= 0 ∀ y,y0 ∈X , then inequality
(1.5) becomes dY (ρ(y),ρ(y0)) � C ∀ y,y0 ∈ X , i. e., ρ is bounded.

Case 2 : Lipshitz continuity. If α = 1, then inequality (1.5) becomes

dY (ρ(y),ρ(y0)) � CdX(y,y0), ∀y,y0 ∈ X (1.6)

here ρ is said to be Lipshitz continuous and C is called Lipshitz constant.
In theory of differential equations Lipshitz continuity is the central condition of the

Picard-Linderlöff theorem which guarantees the existence and uniqueness of solution
of Initial Value Problem.

Secondly, Lipshitz continuous mappings are absolutely continuous. On one hand
absolutely continuous mappings are of bounded variation and on the other hand ab-
solutely continuous mappings are differentiable almost everywhere and hence satisfy

Fundamental Theorem of Calculus, i. e.,
∫ k

j
ρ ′(θ )dθ = ρ(k)−ρ( j) . Here mapping

need not be differentiable but absolutely continuous only. Further, absolute continuity
gives us uniform continuity and in turn it gives us continuity.

We can also establish a connection between mapping of bounded variation and
Lipshitz continuous mappings as follows:

If ρ : [ j,k] → X is a mapping of bounded variation and ν : X → Y a Lipschitz
continuous map, then g ◦ρ is also a mapping of bounded variation and

d∨
c

(ν ◦ρ) � Lip(ν)
d∨
c

(ρ),

where Lip(ν) denotes the Lipschitz constant of ν .
Here we have further subcases of Lipshitz continuity by considering inequality

(1.6) :

Subcase 2(a): If 0 < C � 1, then the mapping is called Contraction mapping.
Contraction mapping helps us prove Banach Fixed Point Theorem. Banach Fixed

Point Theorem has numerous applications for example to solve iterative System of
Liner Algebraic Equations, in study of existence and uniqueness of solution(s) of ODE,
in Theory of Integral Equations and in Dynamical Systems etc.

Subcase 2(b): If we consider that ρ is mapping from a metric space (X ,d) to
itself and satisfies following equation

d(ρ(y),ρ(y0)) = Cd(y,y0)

for all points y,y0 ∈ X and C is some positive real number, then the mapping ρ is
called Dilation.

1Actual definition is with α ∈ (0,∞) but we have extended this definition a little bit by including a point
α = 0 in it.
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In Euclidean space, such a dilation is a similarity of the space. Dilations change
the size but not the shape of an object or figure.

Every dilation of a Euclidean space that is not a congruence has a unique fixed
point that is called the center of dilation. Some congruences have fixed points and
others do not.

Subcase 2(c): If C = 1 and equality holds in (1.5) then we get Isometry. In math-
ematics, an isometry is a distance-preserving transformation between metric spaces,
usually assumed to be bijective.

Isometries are often used in constructions where one space is embedded in another
space. For instance, the completion of a metric space X involves an isometry from X
into X ′ , a quotient set of the space of Cauchy sequences on X . The original space X is
thus isometrically isomorphic to a subspace of a complete metric space, and it is usually
identified with this subspace. Other embedding constructions show that every metric
space is isometrically isomorphic to a closed subset of some normed vector space and
that every complete metric space is isometrically isomorphic to a closed subset of some
Banach space.

Case 3 : Constant function. If α > 1, then clearly α −1 > 0. In this case inequal-
ity (1.5) becomes

dY (ρ(y),ρ(y0)) � C [dX(y,y0)]
α ∀ y,y0.

Subcase 3(a): If dX(y,y0) = 0 ∀ y,y0 ∈ X , then clearly 0 � dY (ρ(y),ρ(y0)) �
0 ⇐⇒ dY (ρ(y),ρ(y0)) = 0 ∀ y,y0 ∈ X ⇐⇒ ρ(y) = ρ(y0) ∀ y,y0 ∈ X , and hence we
conclude that the mapping ρ is constant.

Subcase 3(b): If dX(y,y0) �= 0 ∀ y,y0 ∈ X , then

0 � dY (ρ(y),ρ(y0))
dX(y,y0)

� C[dX(y,y0)]α−1

⇒ 0 � lim
dX (y,y0)→0

dY (ρ(y),ρ(y0))
dX(y,y0)

� lim
dX (y,y0)→0

C[dX(y,y0)]α−1

⇒ 0 � lim
dX (y,y0)→0

dY (ρ(y),ρ(y0))
dX(y,y0)

� 0

⇐⇒ lim
dX (y,y0)→0

dY (ρ(y),ρ(y0))
dX(y,y0)

= 0.

That is metric derivative of the mapping ρ is zero for all values of y and y0 . Finally in
this subcase as well we conclude that the mapping ρ is constant.

1.5. Bounded r -variation

Here we recall generalized notion of mappings of bounded r -variation taken from
[1]. In mathematical analysis, r -variation is a collection of seminorms on mappings
from an ordered set to a metric space, indexed by a real number 1 � r < ∞ . r -variation
is a measure of the regularity or smoothness of a mapping. Specifically,
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DEFINITION 1.8. Let ρ : T → (X ,d) be a mapping from a totally ordered set T
to a metric space (X ,d) . Then r -variation of ρ is defined as

‖ρ‖r-var =

(
sup
D

∑
†k∈D

d(ρ(†k),ρ(†k−1))r

)1/r

where D ranges over all finite partitions of the interval T .

DEFINITION 1.9. ρ : T → (X ,d) is called mapping of bounded r -variation if its
r -variation is finite, i. e., ‖ρ‖r-var < ∞.

The r -variation of a mapping decreases with ρ . If ρ has finite r -variation and g is

an α -Hölder continuous mapping, then g◦ρ has finite
r
α

-variation. Further Wiener in

[21] showed that the class of α -Hölder continuous mappings is a subset of the class of
mappings of bounded r - variation. More precisely, if ρ has an α -Hölder property, then
ρ is of bounded r -variation with r = 1

α . However, a continuous mapping of bounded

r -variation need not satisfies a Hölder condition. For example, the series
∞

∑
k=1

sin(k†)
†log(k)

(0 < † � 1) converges uniformly to the sum g , which is absolutely continuous and
hence is of bounded r -variation for all 1 � r < ∞ , however g does not satisfies α -
Hölder property for all α ∈ (0,1] , for more details the reader may refer to [12, 13].

The case when r = 1 gives total variation, and mappings with a finite 1-variation
becomes mapping of bounded variation.

For real-valued continuous mappings defined on a compact subset of R , we may
define in this way:

DEFINITION 1.10. Total r -variation of a continuous real-valued mapping ρ , de-
fined on interval [ j,k] is the quantity

k∨
j

(ρ ;r) = sup
nP−1

∑
i=0

(|ρ(θi+1)−ρ(θi)|r)
1
r 1 � r < ∞

where P = {θ0, · · · ,θnP} , be a partition of [ j,k] satisfying θi � θi+1 for 0 � i � nP−1
and supremum is taken over P[ j,k] = {P|P is partition of [ j,k]} of all partitions of
[ j,k] .

DEFINITION 1.11. A continue real-valued mapping ρ on R is of bounded r -
variation (BVr[ j,k]) on [ j,k] if its total r -variation is finite, i. e.,

ρ ∈ BVr([ j,k]) ⇐⇒
k∨
j

(ρ ;r) < +∞.

Variation of order ∞ of ρ on [ j,k] may be define as:
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DEFINITION 1.12. A continue real-valued mapping ρ on [ j,k] is said to be of
bounded ∞-variation on [ j,k] if

n

∑
i=1

Osc
(

ρ ;
[
θ (n)

i−1,θ
(n)
i

])
=

n

∑
i=1

(sup− inf)ρ(†i) < R, †i ∈
[
θ (n)

i−1,θ
(n)
i

]
,

for all partition of [ j,k] , where, R is a positive real constant and

k∨
j

(ρ ,∞) = sup
{
∑(ρ) : ρ ∈ P[ j,k]

}
:= Osc(ρ ; [ j,k]),

is called oscillation of ρ on [ j,k] . Equivalently, [11]:

k∨
j

(ρ ;∞) = lim
r→∞

k∨
j

(ρ ;r) = sup
θ∈[ j,k]

{ρ(θ )}− inf
θ∈[ j,k]

{ρ(θ )}

= Osc(ρ : [ j,k]).

Interestingly

Osc(ρ ; [ j,k]) �
k∨
j

(ρ ;r) �
k∨
j

(ρ ;1).

Moreover, if ρ(θ ) is differentiable on [ j,k] , then

k∨
j

(ρ ;r) =
(∫ k

j
|ρ ′(†)|rd†

) 1
r

= ‖ρ ′‖r, 1 � r < ∞.

Further, [19, p. 232] if ρ ∈BV [ j,k] , the Riemann-Stieltjes integral
∫ k

j
ω(†)dρ(†) exist

and the inequality ∣∣∣∣
∫ k

j
ω(†)dρ(†)

∣∣∣∣ � ‖ω‖∞.
k∨
j

(ρ) (1.7)

holds and sharp, where ‖ω‖∞ = sup
†∈[ j,k]

|ω(†)| < ∞.

Its generalization is given in following lemmas [1]:

LEMMA 1.13. Fix 1 � r < ∞ . Let ρ ,ν : [ j,k] → R be such that ρ is continuous

on [ j,k] and ν ∈ BVr[ j,k] . Then
∫ k

j
ρ(†)dν(†) exists and

∣∣∣∣
∫ k

j
ω(†)du(†)

∣∣∣∣� ‖ω‖∞ ·Osc(u; [ j,k]) � ‖ω‖∞ ·
k∨
j

(u;r), (1.8)

holds. Here 1 in both the inequalities is best possible constant.
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Here we have another result related to Lipshitz function with Lipshitz constant M :∣∣∣∣
∫ k

j
ω(†)du(†)

∣∣∣∣� M‖ω‖1, (1.9)

Its further generalization for Lr -space is as under:

LEMMA 1.14. Let 1 � r < ∞ . Let ω ,u : [ j,k] → R be such that ω ∈ Lr[ j,k] and
u has a Lipschitz properly on [ j,k] . Then the inequality∣∣∣∣

∫ k

j
ω(†)du(†)

∣∣∣∣� LipMu(†)(k− j)1− 1
r · ‖ω‖r, (1.10)

holds and constant 1 in RHS is best possible, where

‖ω‖r =
(∫ k

j
|ω(t)|rd†

) 1
r

, 1 � r < ∞. (1.11)

REMARK 1.15. Clearly, when r = 1 in (1.10) we get (1.9) .

Also we have with weak conditions:

LEMMA 1.16. Let 1 � r < ∞ . Let ω ,ν : [ j,k] → R be such that ω ∈ Lr[ j,k] and
ν is of bounded variation on [ j,k] . Then the inequality

∣∣∣∣
∫ k

j
ω(†)dv(†)

∣∣∣∣�
(

k∨
j

(v)

)1− 1
r

· ‖v′‖
1
r∞ · ‖ω‖r a. e. (1.12)

holds provided that integral
∫ k

j
w(†)d†0(†) exist. Here constant 1 on RHS is the best

possible.

REMARK 1.17. If ρ is M -Lipschitz then

LipM(ρ) = sup
(y,y0)∈[ j,k]

∣∣∣∣ρ(y0)−ρ(θ )
y0−θ

∣∣∣∣< ∞

Now (1.12) becomes:

∣∣∣∣
∫ k

j
ω(†)dρ(†)

∣∣∣∣� (LipM(ρ))
1
r

(
k∨
j

(ρ)

)1− 1
r

· ‖ω‖r, (1.13)

which is valid everywhere and constant 1 on RHS is the best possible. Moreover, (1.13)
reduces to (1.7), as r → ∞ , and to (1.9), as r → 1.
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2. Bounds for functions of bounded r -variation (1 � r < ∞)

Let ρ : [ j,k] → R . To approximate
∫ k

j
ρ(†)d†, we define

∫ k

j
ω(†)ρ(†)d† = Qω (ρ ;λ ,y0,θ ,y1)+Eω(ρ ;λ ,y0,θ ,y1), (2.1)

where Qω (ρ ;λ ,y0,θ ,y1) is generalized quadrature formula involving weight and pa-
rameter defined as

Qω(ρ ;λ ,y0,θ ,y1) = ρ(y0)
∫ y0

α
ω(†0)d†0−ρ( j)

∫ j

α
ω(†0)d†0

+ρ(y1)
∫ y1

θ
ω(†0)d†0 −ρ(y0)

∫ y0

θ
ω(†0)d†0

+ρ(k)
∫ k

β
ω(†0)d†0−ρ(y1)

∫ y1

β
ω(†0)d†0,

where α = j + λ k− j
2 , β = k−λ k− j

2 , ∀ θ ∈ [y0,y1] ⊆ [ j,k] with λ ∈ [0,1] and ω is a
probability density mapping. Here error term is given as

Eω(ρ ;λ ,y0,θ ,y1) :=
∫ k

j
Kω (†;λ ,y0,θ ,y1)dρ(†), (2.2)

where

Kω(†;λ ,y0,θ ,y1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ †

α
ω(†0)d†0, if j � † � y0,∫ †

θ
ω(†0)d†0, if y0 < † < y1,∫ †

β
ω(†0)d†0, if y1 � † � k.

We find bounds of Eω(ρ ;λ ,y0,θ ,y1) , as follows:

THEOREM 2.1. Let ρ : [ j,k]→R be of bounded r -variation (1 � r < ∞)on [ j,k] .
Then following inequality holds∣∣∣∣ρ(y0)

∫ y0

α
ω(†0)d†0 −ρ( j)

∫ j

α
ω(†0)d†0 + ρ(y1)

∫ y1

θ
ω(†0)d†0

−ρ(y0)
∫ y0

θ
ω(†0)d†0 + ρ(k)

∫ k

β
ω(†0)d†0 −ρ(y1)

∫ y1

β
ω(†0)d†0

−
∫ k

j
ω(†)ρ(†)d†

∣∣∣∣
� max

{
sup

†∈[ j,y0]

∫ †

α
ω(†0)d†0, sup

†∈[y0,y1]

∫ †

θ
ω(†0)d†0, sup

†∈[y1,k]

∫ †

β
ω(†0)d†0

}

×
k∨
j

(ρ ;r), (2.3)
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where α = j + λ k− j
2 , β = k−λ k− j

2 , ∀ θ ∈ [y0,y1] ⊆ [ j,k] with λ ∈ [0,1] and ω is a
probability density mapping.

Proof. Using integration-by-part, we get

Eω(ρ ;λ ,y0,θ ,y1) =
∫ k

j
Kω (†;λ ,y0,θ ,y1)dρ(†) = Qω(ρ ;λ ,y0,θ ,y1)−

∫ k

j
ω(†)ρ(†)d†.

Clearly, from the definition of the function Kω(†;y0,θ ,y1) , we obtain∣∣∣∣
∫ k

j
Kω (†;λ ,y0,θ ,y1)dρ(†)

∣∣∣∣
�
∣∣∣∣
∫ y0

j

∫ †

α
ω(†0)d†0dρ(†)

∣∣∣∣+
∣∣∣∣
∫ y1

y0

∫ †

θ
ω(†0)d†0dρ(†)

∣∣∣∣+
∣∣∣∣
∫ k

y1

∫ †

β
ω(†0)d†0dρ(†)

∣∣∣∣
� sup

†∈[ j,y0]

∫ †

α
ω(†0)d†0

y0∨
j

(ρ ;r)+ sup
†∈[y0,y1]

∫ †

θ
ω(†0)d†0

y1∨
y0

(ρ ;r)

+ sup
†∈[y1,k]

∫ †

β
ω(†0)d†0

k∨
y1

(ρ ;r)

� max

{
sup

†∈[ j,y0]

∫ †

α
ω(†0)d†0, sup

†∈[y0,y1]

∫ †

θ
ω(†0)d†0, sup

†∈[y1,k]

∫ †

β
ω(†0)d†0

}
k∨
j

(ρ ;r).

This is our required inequality. �

If we put ω(†) = 1
k− j in (2.3) , then:

COROLLARY 2.2. Let ρ : [ j,k] → R be a mapping of bounded r -variation (1 �
r < ∞) and λ ∈ [0,1] . Then we have∣∣∣∣

(
θ − j−λ

k− j
2

)
ρ(y0)+ λ

k− j
2

ρ( j)+ ρ(k)
2

+
(

k−λ
k− j

2
−θ

)
ρ(y1)−

∫ k

j
ρ(†)d†

∣∣∣∣
� max

{
y0− j−λ

k− j
2

,
y1− y0

2
+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣ ,k−λ
k− j

2
− y1,λ

k− j
2

}

×
k∨
j

(ρ ;r)

� max

{
y0− j−λ

k− j
2

,
y1− y0

2
1
r

+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣ ,k−λ
k− j

2
− y1,λ

k− j
2

}

×
k∨
j

(ρ ;r)
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where for λ = 0 we obtain 1 as the sharp constant while corresponding to value of
λ = 1 we get sharp constant 1/2 .

Proof. The first inequality easily follows by substituting ω(†) =
1

k− j
in Theo-

rem 2.1. The second inequality follows since 1
2 � 1

2
1
r

, for all r ∈ [1,∞) and hence

result is proved.
Now we do work for sharpness of the inequalities.
For an arbitrary real constant C > 0 let second inequality in (2.3) holds such as∣∣∣∣
(

θ − j−λ
k− j

2

)
ρ(y0)+ λ

k− j
2

(
ρ( j)+ ρ(k)

2

)
+
(

k−λ
k− j

2
−θ

)
ρ(y1)

−
∫ k

j
ρ(†)d†

∣∣∣∣� C ·max

{
y0− j−λ

k− j
2

,

[
y1− y0

2
1
r

+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣
]
,

k−λ
k− j

2
− y1,λ

k− j
2

}
·

k∨
j

(ρ ;†). (2.4)

Now we discuss different cases to find best bound(s).

Case 1 : If

max

{
y0 − j−λ

k− j
2

,

[
y1− y0

2
1
r

+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣
]
,k−λ

k− j
2

− y1,λ
k− j

2

}

= y0− j−λ
k− j

2
,

then consequently, (2.4) reduces to∣∣∣∣
(

θ − j−λ
k− j

2

)
ρ(y0)+ λ

k− j
2

(
ρ( j)+ ρ(k)

2

)
+
(

k−λ
k− j

2
−θ

)
ρ(y1)

−
∫ k

j
ρ(†)d†

∣∣∣∣� C

(
y0− j−λ

k− j
2

)
·

k∨
j

(ρ ;†) (2.5)

Choose ρ : [ j,k] → R given by

ρ(†) =
{

0, if † ∈ [ j,k),
1, if † = k.

Clear,
∫ k

j
ρ(†)d† = 0 and

k∨
j

(ρ ,†) = 1. For y0 = θ = y1 = k , we get (k− j)(4−3λ )
2

� C(k− j)(2−λ ), and hence C � 4−3λ
2(2−λ ) . The first case in first inequality is similar.

Case 2 : If

max

{
y0 − j−λ

k− j
2

,

[
y1− y0

2
1
r

+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣
]
,k−λ

k− j
2

− y1,λ
k− j

2

}

= k−λ
k− j

2
− y1,
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then consequently, (2.4) reduces to∣∣∣∣
(

θ − j−λ
k− j

2

)
ρ(y0)+ λ

k− j
2

(
ρ( j)+ ρ(k)

2

)
+
(

k−λ
k− j

2
−θ

)
ρ(y1)

−
∫ k

j
ρ(†)d†

∣∣∣∣� C

(
k−λ

k− j
2

− y1

)
·

k∨
j

(ρ ;†) (2.6)

Choose ρ : [ j,k] → R given by

ρ(†) =
{

0, if † ∈ ( j,k]
1, if † = j.

Clear,
∫ k

j
ρ(†)d† = 0 and

k∨
j

(ρ ,†) = 1. For y0 = θ = y1 = j , we get (k− j)(4−3λ )
2 �

C(k− j)(2−λ ), which implies that C � 4−3λ
2(2−λ ) . The second case in the first inequality

goes similar.

Case 3 : If

max

{
y0 − j−λ

k− j
2

,

[
y1− y0

2
1
r

+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣
]
,k−λ

k− j
2

− y1,λ
k− j

2

}

=
y1− y0

2
1
r

+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣ ,
then consequently, (2.4) reduces to∣∣∣∣

(
θ − j−λ

k− j
2

)
ρ(y0)+ λ

k− j
2

(
ρ( j)+ ρ(k)

2

)
+
(

k−λ
k− j

2
−θ

)
ρ(y1)

−
∫ k

j
ρ(†)d†

∣∣∣∣� C

[
y1− y0

2
1
r

+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣
]
·

k∨
j

(ρ ;†) (2.7)

Choose ρ : [ j,k] → R given by

ρ(†) =
{

0, if † ∈ ( j,k)
1, if † = j,k.

Clear,
∫ k

j
ρ(†)d† = 0 and

k∨
j

(ρ ,r) = 2
1
r . For θ = y0+y1

2 , y0 = j and y1 = k, we get

(k− j)(2−λ )
2 � C(k− j) which implies that C � 2−λ

2 . This case produces a bit different
constant.

Now we consider the last case for second inequality.

Case 4 : If

max

{
y0 − j−λ

k− j
2

,

[
y1− y0

2
1
r

+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣
]
,k−λ

k− j
2

− y1,λ
k− j

2

}

= λ
k− j

2
,
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then consequently, (2.4) reduces to∣∣∣∣
(

θ − j−λ
k− j

2

)
ρ(y0)+ λ

k− j
2

(
ρ( j)+ ρ(k)

2

)
+
(

k−λ
k− j

2
−θ

)
ρ(y1)

−
∫ k

j
ρ(†)d†

∣∣∣∣� Cλ
k− j

2
·

k∨
j

(ρ ;†)

Choose ρ : [ j,k] → R given by

ρ(†) =
{

0, if † ∈ [ j,k)
1, if † = k.

Clearly,
∫ k

j
ρ(†)d† = 0 and

k∨
j

(ρ ;†) = 1. For θ = j+k
2 , y0 = j , y1 = k we get

(k− j)(2−λ )
4

� Cλ
k− j

2
,

which implies that C � 2−λ
2λ .

Finally we consider our last case for our first inequality.

Case 5 : If

max

{
y0 − j−λ

k− j
2

,

[
y1− y0

2
+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣
]
,k−λ

k− j
2

− y1,λ
k− j

2

}

=
y1− y0

2
+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣ ,
then consequently, (2.4) reduces to∣∣∣∣

(
θ − j−λ

k− j
2

)
ρ(y0)+ λ

k− j
2

(
ρ( j)+ ρ(k)

2

)
+
(

k−λ
k− j

2
−θ

)
ρ(y1)

−
∫ k

j
ρ(†)d†

∣∣∣∣� C

[
y1− y0

2
+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣
]
·

k∨
j

(ρ ;†).

Choose ρ : [ j,k] → R given by

ρ(†) =
{

0, if † ∈ [ j,k)
1, if † = k.

Clearly,
∫ k

j
ρ(†)d† = 0 and

k∨
j

(ρ ;†) = 1. For θ = j+k
2 , y0 = j , y1 = k we get

(k− j)(2−λ )
4

� C
(k− j)

2
,
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which implies that C � (2−λ )
2 .

Now we have obtained three different values namely, C � 4−3λ
2(2−λ ) , C � 2−λ

2 and

C � 2−λ
2λ ,
To find the unique best possible constant in the first and second inequality we

equate the three different values in order to find value(s) of λ .

4−3λ
2(2−λ )

=
2−λ

2

which gives us two different values of λ , λ = 0 and λ = 1.

4−3λ
2(2−λ )

=
2−λ
2λ

which gives us repeated values of λ , λ = 1.

2−λ
2λ

=
2−λ

2

which gives us only value of λ that is λ = 1.
Corresponding to λ = 0, in all cases we get C � 1 and hence 1 is our best possible

constant. Corresponding to λ = 1, in all cases we get C � 1
2 and hence 1

2 is our best
possible constant.

It should be noted that for λ = 0, our Case 4 would not be discussed because λ
is in multiple and we cannot do further work in this case. In this way Case 4 would be
vanish for λ = 0 it would only work for λ = 1. �

REMARK 2.3. Previous corollary may be summarize in following manner: Under
the assumptions of Corollary 2.2, we obtain here two inequalities for two different
values of λ with sharp constants as follows:∣∣∣∣(θ − j)ρ(y0)+ (k−θ )ρ(y1)−

∫ k

j
ρ(†)d†

∣∣∣∣
� max

{
y0− j,

y1− y0

2
+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣ ,k− y1

} k∨
j

(ρ ;r)

� max

{
y0− j,

y1− y0

2
1
r

+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣ ,k− y1

} k∨
j

(ρ ;r)

here in last two inequalities 1 is sharp constant.∣∣∣∣
(

θ − j− k− j
2

)
ρ(y0)+

k− j
2

ρ( j)+ ρ(k)
2

+
(

k− k− j
2

−θ
)

ρ(y1)−
∫ k

j
ρ(†)d†

∣∣∣∣
� max

{
y0 − j− k− j

2
,
y1 − y0

2
+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣ ,k− k− j
2

− y1,
k− j

2

} k∨
j

(ρ ;r)
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� max

{
y0 − j− k− j

2
,
y1 − y0

2
1
r

+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣ ,k− k− j
2

− y1,
j− k
2

} k∨
j

(ρ ;r)

here in last two inequalities 1
2 is sharp constant.

COROLLARY 2.4. Let ρ : [ j,k] → R be of infinite variation on [ j,k] . Then in-
equality∣∣∣∣

(
θ − j−λ

k− j
2

)
ρ(y0)+ λ

k− j
2

(
ρ( j)+ ρ(k)

2

)
+
(

k−λ
k− j

2
−θ

)
ρ(y1)

−
∫ k

j
ρ(†)d†

∣∣∣∣
� max

{
y0− j−λ

k− j
2

,

[
y1− y0

2
+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣
]
,k−λ

k− j
2

− y1,λ
k− j

2

}
×Osc(ρ , [ j,k])

holds for all j � y0 � θ � y1 � k , where for λ = 0 we obtain 1 as the sharp constant
while corresponding to value of λ = 1 we get sharp constant 1/2 .

Proof. The result is an immediate consequence of Theorem 2.1 and Lemma 1.13.
�

COROLLARY 2.5. Let all the assumptions of Corollary 2.2 be valid. Then the
following inequalities hold:

(1) The Ostrowski type inequality:

∣∣∣∣(k− j)(1−λ )ρ(θ )−λ
k− j

2

(
ρ( j)+ ρ(k)

2

)
−
∫ k

j
ρ(†)d†

∣∣∣∣
� max

(
θ − j−λ

k− j
2

,k−λ
k− j

2
−θ ,λ

k− j
2

)
·

k∨
j

(ρ ;†) (2.8)

for all θ ∈ [ j,k].
(2) The generalized two-point inequality:

∣∣∣∣(k− j)(1−λ )
(

ρ(y0)+ ρ(y1)
2

)
+ λ

k− j
2

(
ρ( j)+ ρ(k)

2

)
−
∫ k

j
ρ(†)d†

∣∣∣∣
� max

{
y0− j−λ

k− j
2

,

[
y1 − y0

2
+
∣∣∣∣ j + k

2
− y0 + y1

2

∣∣∣∣
]
,k−λ

k− j
2

− y1,λ
k− j

2

}

×
k∨
j

(ρ ;†)
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� max

{
y0− j−λ

k− j
2

,

[
y1 − y0

2
1
r

+
∣∣∣∣ j + k

2
− y0 + y1

2

∣∣∣∣
]
,k−λ

k− j
2

− y1,λ
k− j

2

}

×
k∨
j

(ρ ;†) (2.9)

for all j � y0 � j+k
2 � y1 � k . Both inequalities are sharp corresponding to values

of λ = 0 and λ = 1 as discussed earlier. In special case, if one chooses y0 = j and
y1 = k , then we refer to the trapezoid type inequality∣∣∣∣(k− j)

(
1− λ

2

)(
ρ( j)+ ρ(k)

2

)
−
∫ k

j
ρ(†)d†

∣∣∣∣
� max

{
k− j

2
,λ

k− j
2

} k∨
j

(ρ ;†)

� max

{
k− j

2
1
r

,λ
k− j

2

} k∨
j

(ρ ;†). (2.10)

(3) The companion of Ostrowski type inequality∣∣∣∣(k− j)(1−λ )
(

ρ(y0)+ ρ(y1)
2

)
+ λ

k− j
2

(
ρ( j)+ ρ(k)

2

)
−
∫ k

j
ρ(†)d†

∣∣∣∣
� max

{
λ − j−λ

k− j
2

,
j + k
2

,λ
k− j

2

} k∨
j

(ρ ;†) (2.11)

for all θ ∈ [ j, j+k
2 ] . Previous remarks about λ are still valid here.

(4) The Cerone-Dragomir type inequality:∣∣∣∣(θ − j)ρ( j)+ (k−θ )ρ(k)−λ
k− j

2

(
ρ( j)+ ρ(k)

2

)
−
∫ k

j
ρ(†)d†

∣∣∣∣
� max

{
k− j

2
+
∣∣∣∣θ − j + k

2

∣∣∣∣ ,λ k− j
2

}
·

k∨
j

(ρ ;†)

� max

{
k− j

2
1
r

+
∣∣∣∣θ − j + k

2

∣∣∣∣ ,λ k− j
2

}
·

k∨
j

(ρ ;†) (2.12)

for all θ ∈ [ j,k] . One can choose λ = 0 and λ = 1 to find corresponding best possible
constant.

(5) The midpoint-trapezoid Ostrowski’s type inequality:∣∣∣∣
(

θ − j−λ
k− j

2

)
ρ
(

j + θ
2

)
+
(

k−λ
k− j

2
−θ

)
ρ
(

θ + k
2

)

+λ
k− j

2

(
ρ( j)+ ρ(k)

2

)
−
∫ k

j
ρ(†)d†

∣∣∣∣
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� max
2

{
θ − j−λ (k− j),

k− j
2

+
∣∣∣∣θ − j + k

2

∣∣∣∣ ,(k−θ )−λ (k− j),λ (k− j)
}

×
k∨
j

(ρ ;†)

� max
2

{
θ − j−λ (k− j),

k− j

2
1
r

+
∣∣∣∣θ − j + k

2

∣∣∣∣ ,(k−θ )−λ (k− j),λ (k− j)
}

×
k∨
j

(ρ ;†) (2.13)

for all θ ∈ [ j,k] . To calculate the corresponding best possible constant values one
can use λ = 0 and λ = 1 respectively.

Proof. (1) The Ostrowski type inequality: setting y0 = θ = y1, in (2.3) , then we
get inequality∣∣∣∣(k− j)(1−λ )ρ(θ )−λ

k− j
2

(
ρ( j)+ ρ(k)

2

)
−
∫ k

j
ρ(†)d†

∣∣∣∣
� max

(
θ − j−λ

k− j
2

,k−λ
k− j

2
−θ ,λ

k− j
2

)
·

k∨
j

(ρ ;†)

and this proves (2.8) .
(2) The generalized two-point inequality: Setting θ = j+k

2 , in (2.3) , then we get
the result (1.2) .

(3) The companion of Ostrowski type inequality: Setting θ = j+k
2 , y0 = λ and

y1 = j + k−λ in (2.3) .∣∣∣∣(k− j)(1−λ )
(

ρ(y0)+ ρ(y1)
2

)
+ λ

k− j
2

(
ρ( j)+ ρ(k)

2

)
−
∫ k

j
ρ(†)d†

∣∣∣∣
� max

{
λ − j−λ

k− j
2

,
j + k
2

,λ
k− j

2

} k∨
j

(ρ ;†).

(4) The Cerone-Dragomir type inequality: Setting y0 = c and y1 = k , in (2.3) ,
then we get the desired result (2.12) .

(5) The midpoint-trapezoid Ostrowski’s type inequality: Setting y0 = j+θ
2 and

y1 = θ+k
2 , we get

∣∣∣∣
(

θ − j−λ
k− j

2

)
ρ
(

j + θ
2

)
+
(

k−λ
k− j

2
−θ

)
ρ
(

θ + k
2

)

+λ
k− j

2

(
ρ( j)+ ρ(k)

2

)
−
∫ k

j
ρ(†)d†

∣∣∣∣
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� max
2

{
θ − j−λ (k− j),

k− j
2

+
∣∣∣∣θ − j + k

2

∣∣∣∣ ,k−θ −λ (k− j),λ (k− j)
}

×
k∨
j

(ρ ;†)

� max
2

{
θ − j−λ (k− j),

k− j

2
1
r

+
∣∣∣∣θ − j + k

2

∣∣∣∣ ,k−θ −λ (k− j),λ (k− j)
}

×
k∨
j

(ρ ;†) (2.14)

Now, since

M :=
[
k− j

2
+
∣∣∣∣θ − j + k

2

∣∣∣∣
]

= max
θ∈[ j,k]

{θ − j−λ (k− j),k−θ −λ (k− j)}

therefore, M � (θ − j−λ (k− j)) and M � (k−θ −λ (k− j)) . Thus,

max

{
θ − j−λ (k− j),

k− j
2

+
∣∣∣∣θ − j + k

2

∣∣∣∣ ,k−θ −λ (k− j)
}

= M,

i. e. ∣∣∣∣
(

θ − j−λ
k− j

2

)
ρ
(

j + θ
2

)
+
(

k−λ
k− j

2
−θ

)
ρ
(

θ + k
2

)

+λ
k− j

2

(
ρ( j)+ ρ(k)

2

)
−
∫ k

j
ρ(†)d†

∣∣∣∣
� 1

2

[
(k− j)(1−2λ )

2
+
∣∣∣∣θ − j + k

2

∣∣∣∣
]
·

k∨
j

(ρ ;†)

� 1
2

[
(k− j)(1−2λ )

2
1
r

+
∣∣∣∣θ − j + k

2

∣∣∣∣
]
·

k∨
j

(ρ ;†) (2.15)

and the last inequality holds since 1
2 � 1

2
1
r

, for all † ∈ [1,∞) and this proves the in-

equality (2.13) .
The sharpness of each inequality follows from (2.3) . Hence, the proof is com-

pletely established. �

If we put λ = 0 in Corollary 2.5, then we get the following results which could
be found in [1].

COROLLARY 2.6. Let ρ : [ j,k] → R be of bounded r -variation (1 � r < ∞) .
Then following inequalities hold:
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(1) The Ostrowski’s inequality:

∣∣∣∣(k− j)ρ(θ )−
∫ k

j
ρ(†)d†

∣∣∣∣�
[
k− j

2
+
∣∣∣∣θ − j + k

2

∣∣∣∣
]
·

k∨
j

(ρ ;†)

�
[
k− j

2
1
r

+
∣∣∣∣θ − j + k

2

∣∣∣∣
]
·

k∨
j

(ρ ;†) (2.16)

for all θ ∈ [ j,k]. The constants 2−1 and 2−
1
r are the best possible. For instant, choos-

ing θ = j+k
2 , we get the Midpoint inequality:

∣∣∣∣(k− j)ρ
(

j + k
2

)
−
∫ k

j
ρ(†)d†

∣∣∣∣� k− j
2

·
k∨
j

(ρ ;†) � k− j

2
1
r

·
k∨
j

(ρ ;†)

(2) The generalized two-point inequality:

∣∣∣∣(k− j)
(

ρ(y0)+ ρ(y1)
2

)
−
∫ k

j
ρ(†)d†

∣∣∣∣
� max

{
y0− j,

[
y1− y0

2
+
∣∣∣∣ j + k

2
− y0 + y1

2

∣∣∣∣
]
,k− y1

} k∨
j

(ρ ;†)

� max

{
y0− j,

[
y1− y0

2
1
r

+
∣∣∣∣ j + k

2
− y0 + y1

2

∣∣∣∣
]
,k− y1

} k∨
j

(ρ ;†),

for all j � y0 � j+k
2 � y1 � k . Both inequalities are sharp. In special case, if one

chooses y0 = j and y1 = k , then we refer to the trapezoid inequality

∣∣∣∣(k− j)
(

ρ( j)+ ρ(k)
2

)
−
∫ k

j
ρ(†)d†

∣∣∣∣� k− j
2

k∨
j

(ρ ;†) � k− j

2
1
r

k∨
j

(ρ ;†)

(3) The companion of Ostrowski type inequality

∣∣∣∣(k− j)
ρ( j + k−θ )+ ρ(θ )

2
−
∫ k

j
ρ(†)d†

∣∣∣∣
�
[
k− j

4
+

θ
2
−
∣∣∣∣θ − 3 j + k

4

∣∣∣∣
] k∨

j

(ρ ;r)

�
[
k− j

4
1
p

+
θ
2
−
∣∣∣∣θ − 3 j + k

4

∣∣∣∣
] k∨

j

(ρ ;r) (2.17)

for all θ ∈ [ j, j+k
2 ] , The constant 4−1 and 4

−1
r are the best possible.
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(4) The Cerone-Dragomir type inequality:∣∣∣∣(θ − j)ρ( j)+ (k−θ )ρ(k)−
∫ k

j
ρ(†)d†

∣∣∣∣
�
[
k− j

2
+
∣∣∣∣θ − j + k

2

∣∣∣∣
]
·

k∨
j

(ρ ;†)

�
[
k− j

2
1
r

+
∣∣∣∣θ − j + k

2

∣∣∣∣
]
·

k∨
j

(ρ ;†) (2.18)

for all θ ∈ [ j,k] , The constant 2−1 and 2
−1
r are the best possible for all r � 1 .

(5) The midpoint-trapezoid Ostrowski’s type inequality:∣∣∣∣(θ − j)ρ
(

j + θ
2

)
+(k−θ )ρ

(
θ + k

2

)
−
∫ k

j
ρ(†)d†

∣∣∣∣
� 1

2

[
k− j

2
+
∣∣∣∣θ − j + k

2

∣∣∣∣
]
·

k∨
j

(ρ ;†)

� 1
2

[
k− j

2
1
r

+
∣∣∣∣θ − j + k

2

∣∣∣∣
]
·

k∨
j

(ρ ;†) (2.19)

for all θ ∈ [ j,k] , The constant 1
2 in the first inequality, and the constants 1

2 , 1

2
1
r

in the

second inequality are the best possible.

COROLLARY 2.7. Let I be an interval of real numbers, such that j,k ∈ I0 : the
interior of I where j < k . Let ρ : [ j,k] → R be of bounded r -variation (1 � r < ∞)
on I. If ρ is differentiable on [ j,k] , then inequality∣∣∣∣

(
θ − j−λ

k− j
2

)
ρ(y0)+ λ

k− j
2

(
ρ( j)+ ρ(k)

2

)
+
(

k−λ
k− j

2
−θ

)
ρ(y1)

−
∫ k

j
ρ(†)d†

∣∣∣∣
� max

{
y0 − j−λ

k− j
2

,
y1− y0

2
+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣ ,k−λ
k− j

2
− y1

}
‖ρ ′‖r,

holds for all j � y0 � θ � y1 � k with λ ∈ [0,1] .

Proof. The result is an immediate consequence of Corollary 2.2 and Lemma 1.13;
since ρ is differentiable on [ j,k] , then we have

k∨
j

(ρ ;r) =
(∫ k

j
|ρ ′(†)|rd†

) 1
r

= ‖ρ ′‖r, 1 � r < ∞,
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which proof the inequality. �
If we put λ = 0, then we get the result of Corollary 3 of [1] which may be stated

as:

COROLLARY 2.8. Let I be an interval of real numbers, such that j,k ∈ I0 : the
interior of I where j < k . Let ρ : [ j,k] → R be of bounded r -variation (1 � r < ∞)
on I. If ρ is differentiable on [ j,k] , then following inequality holds∣∣∣∣(θ − j)ρ(y0)+ (k−θ )ρ(y1)−

∫ k

j
ρ(s)ds

∣∣∣∣
max

{
(y0− j),

(
y1− y0

2
+
∣∣∣∣θ − y0 + y1

2

∣∣∣∣ ,(k− y1)
)}

‖ρ ′‖p.

3. Lp -bounds for Lipshitz functions (1 � p < ∞)

In this section we obtain Lp -bounds for our proposed generalized Two-point Os-
trowski’s inequality using the lemma in Section 2.

THEOREM 3.1. Let ρ : [ j,k]→R be of M -Lipschitz on [ j,k] and λ ∈ [0,1] . Then
we have∣∣∣∣ρ(y0)

∫ y0

α
ω(†0)d†0 −ρ( j)

∫ j

α
ω(†0)d†0 + ρ(y1)

∫ y1

θ
ω(†0)d†0

−ρ(y0)
∫ y0

θ
ω(†0)d†0 + ρ(k)

∫ k

β
ω(†0)d†0 −ρ(y1)

∫ y1

β
ω(†0)d†0−

∫ k

j
ω(†)ρ(†)d†

∣∣∣∣
� LipM(ρ)

(p+1)
1
p

max{(y0− j)1− 1
p ,(y1− y0)

1− 1
p ,(k− y1)

1− 1
p }

[((∫ y0

j

(∫ †

α
ω(†0)d†0

)p

d†

) 1
p
)

+

((∫ y1

y0

(∫ †

θ
ω(†0)d†0

)p

d†

) 1
p
)

+

((∫ k

y1

(∫ †

β
ω(†0)d†0

)p

d†

) 1
p
)]

(3.1)

where α = j + λ k− j
2 , β = k−λ k− j

2 , ∀ θ ∈ [y0,y1] ⊆ [ j,k] with λ ∈ [0,1] and ω is a
probability density function.

Proof. Employing the triangle inequality on the identity (2.2) and then using
Lemma 1.14, we get∣∣∣∣

∫ k

j
K(†;y0,θ ,y1)dρ(†)

∣∣∣∣
�
∣∣∣∣
∫ y0

j

∫ †

α
ω(†0)d†0dρ(†)

∣∣∣∣+
∣∣∣∣
∫ y1

y0

∫ †

θ
ω(†0)d†0dρ(†)

∣∣∣∣+
∣∣∣∣
∫ k

y1

∫ †

β
ω(†0)d†0dρ(†)

∣∣∣∣
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� LipM(ρ)
(∫ y0

j

(∫ †

α
ω(†0)d†0

)p

d†

) 1
p

(y0 − j)1− 1
p

+LipM(ρ)(y1− y0)
1− 1

p

(∫ y1

y0

(∫ †

θ
ω(†0)d†0

)p

d†

) 1
p

+LipM(ρ)(k− y1)
1− 1

p

(∫ k

y1

(∫ †

β
ω(†0)d†0

)p

d†

) 1
p

� LipM(ρ)max{(y0− j)1− 1
p ,(y1 − y0)

1− 1
p ,(k− y1)

1− 1
p }[(∫ y0

j

(∫ †

α
ω(†0)d†0

)p

d†

) 1
p

+
(∫ y1

y0

(∫ †

θ
ω(†0)d†0

)p

d†

) 1
p

+
(∫ k

y1

(∫ †

β
ω(†0)d†0

)p

d†

) 1
p
]

. �

REMARK 3.2. Another bound can be obtained by applying (1.13) instead of
(1.8) .

If we put ω(†) = 1
k− j in (3.1) , then we get the following result.

COROLLARY 3.3. Let ρ : [ j,k] → R be of M -Lipschitz on [ j,k] , then∣∣∣∣(θ −α)ρ(y0)+ (β −θ )ρ(y1)−
∫ k

j
ρ(s)ds

∣∣∣∣
� LipM(ρ)

(p+1)
1
p

·max{(y0−α)1− 1
p ,(y1 − y0)

1− 1
p ,(β − y1)

1− 1
p }

×[(y0−α)
p+1
p +{(y1−θ )p+1 +(θ − y0)p+1

1
p }+(β − y1)

p+1
p ],

for all j � y0 � θ � y1 � k and ∀p � 1 , where α = j + λ k− j
2 , β = k− λ k− j

2 with
λ ∈ [0,1] .

REMARK 3.4. If we put λ = 0 then we get following results as special case of
previous corollary which can be found in [1]. We can also state similar results for λ = 1
as well.

COROLLARY 3.5. Let ρ : [ j,k] → R be of M -Lipschitz on [ j,k] , then∣∣∣∣(θ − j)ρ(y0)+ (k−θ )ρ(y1)−
∫ k

j
ρ(s)ds

∣∣∣∣
� LipM(ρ)

(p+1)
1
p

·max{(y0− j)1− 1
p ,(y1 − y0)

1− 1
p ,(k− y1)

1− 1
p }

×[(y0− j)
p+1
p +{(y1−θ )p+1 +(θ − y0)p+1} 1

p +(k− y1)
p+1
p ],

for all j � y0 � θ � y1 � k and ∀p � 1 .
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Further consequences of Corollary 3.5 are as under (see also [1]):

COROLLARY 3.6. Let all assumptions of Corollary 3.5 be valid. Then the fol-
lowing inequalities holds:

(1) The Ostrowski inequality:∣∣∣∣(k− j)ρ(θ )−
∫ k

j
ρ(s)ds

∣∣∣∣
� LipM(ρ) ·

[
k− j

2
+
∣∣∣∣θ − j + k

2

∣∣∣∣
]1− 1

p

· (θ − j)
p+1
p +(k−θ )

p+1
p

(p+1)
1
p

∀ θ ∈ [ j,k] . For instance, choosing θ = j+k
2 , we get the Midpoint inequality:∣∣∣∣(k− j)ρ

(
j + k
2

)
−
∫ k

j
ρ(s)ds

∣∣∣∣� LipM(ρ)
(k− j)2

2(p+1)/p
,

(2) The generalized two-point inequality: For all j � y0 � j+k
2 � y1 � k , we have∣∣∣∣(k− j)

ρ(y0)+ ρ(y1)
2

−
∫ k

j
ρ(s)ds

∣∣∣∣
� LipM(ρ)

(p+1) 1
p

max
{
(y0− j)1− 1

p ,(y1 − y0)
1− 1

p ,(k− y1)
1− 1

p

}

×
[
(y0− j)

p+1
p +

{(
y1− j + k

2

)p+1

+
(

j + k
2

− y0

)p+1
} 1

p

+(k− y1)
p+1
p

]
.

In special case, if we choose y0 = j and y1 = k , then we get the trapezoid inequality∣∣∣∣(k− j) · ρ( j)+ ρ(k)
2

−
∫ k

j
ρ(s)ds

∣∣∣∣� LipM(ρ) · (k− j)2

2(p+1) 1
p

.

(3) The companion of Ostrowski inequality: For all h ∈ [ j, j+k
2 ] , we have∣∣∣∣(k− j) · ρ(h)+ ρ( j + k−h)

2
−
∫ k

j
ρ(s)ds

∣∣∣∣
� LipM(ρ)

(p+1)
1
p

·
[
k− j

4
+
∣∣∣∣h− 3 j + k

4

∣∣∣∣
]1− 1

p

⎡
⎣2(h− j)

p+1
p +2

1
p

(
j + k
2

−h

) p+1
p

⎤
⎦ .

(4) The Cerone–Dragomir inequality: For all θ ∈ [ j,k] , we have∣∣∣∣(θ − j)ρ( j)+ (k−θ )ρ(k)−
∫ k

j
ρ(s)ds

∣∣∣∣
� LipM(ρ) · (k− j)1− 1

p

(
(k−θ )p+1 +(θ − j)p+1

) 1
p

(p+1)
1
p

.
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(5) The midpint–trapezoid–Ostrowski’s inequality: For all θ ∈ [ j,k] , we have∣∣∣∣(θ − j) ·ρ
(

j + θ
2

)
+(k−θ )ρ

(
j + θ

2

)
−
∫ k

j
ρ(s)ds

∣∣∣∣
� LipM(ρ)

(p+1)
1
p

·
(

k− j
2

)1− 1
p

×
⎡
⎣(θ − j

2

) p+1
p

+

{(
k−θ

2

)p+1

+
(

θ − j
2

)p+1
} 1

p

+
(

j−θ
2

) p+1
p

⎤
⎦ .

4. Bounds in L∞ -norm

Here we state some results which involves L∞ -norm.

THEOREM 4.1. Let I be an interval of real numbers, such that j,k ∈ I0 ; the
interior of I where j < k . Let ρ : I → R be a differentiable mapping whose first
derivative is bounded on [ j,k]; sup†∈[ j,k] |ρ(†)| = ‖ρ ′‖∞,[ j,k] < ∞ , then∣∣∣∣ρ(y0)

∫ y0

α
ω(†0)d†0 −ρ( j)

∫ j

α
ω(†0)d†0 + ρ(y1)

∫ y1

θ
ω(†0)d†0

−ρ(y0)
∫ y0

θ
ω(†0)d†0 + ρ(k)

∫ k

β
ω(†0)d†0 −ρ(y1)

∫ y1

β
ω(†0)d†0−

∫ k

j
ω(†)ρ(†)d†

∣∣∣∣
�
[∫ y0

j

∣∣∣∣
∫ †

α
ω(†)d†0

∣∣∣∣d†+
∫ θ

y0

∣∣∣∣
∫ †

θ
ω(†0)d†0

∣∣∣∣d†+
∫ y1

θ

∣∣∣∣
∫ †

θ
ω(†0)d†0

∣∣∣∣d†

+
∫ k

y1

∣∣∣∣
∫ †

β
ω(†0)d†0

∣∣∣∣d†

]
‖ρ ′‖∞,[ j,k]

where α = j + λ k− j
2 , β = k−λ k− j

2 , ∀ θ ∈ [y0,y1] ⊆ [ j,k] with λ ∈ [0,1] and ω is a
probability density function.

Proof. Employing the triangle inequality on the identity (2.2) , since ρ ′ is bounded
on [ j,k] , we have∣∣∣∣

∫ k

j
Kw(†;λ ,y0,θ ,y1)ρ ′(†)d†

∣∣∣∣
�
∣∣∣∣
∫ y0

j

(∫ †

α
ω(†0)d†0

)
ρ ′(†)d†

∣∣∣∣+
∣∣∣∣
∫ y1

y0

(∫ †

θ
ω(†0)d†0

)
ρ ′(†)d†

∣∣∣∣
+
∣∣∣∣
∫ k

y1

(∫ †

β
ω(†0)d†0

)
ρ ′(†)d†

∣∣∣∣
�
∫ y0

j

∣∣∣∣
∫ †

α
ω(†0)d†0

∣∣∣∣ |ρ ′(†)|d†+
∫ y1

y0

∣∣∣∣
∫ †

θ
ω(†0)d†0

∣∣∣∣ |ρ ′(†)|d†

+
∫ k

y1

∣∣∣∣
∫ †

β
ω(†0)d†0

∣∣∣∣ |ρ ′(†)|d†
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� ‖ρ ′‖∞,[ j,y0]

∫ y0

j

∣∣∣∣
∫ †

α
ω(†0)d†0

∣∣∣∣d†+‖ρ ′‖∞,[y0,θ ]

∫ θ

y0

∣∣∣∣
∫ †

θ
ω(†0)d†0

∣∣∣∣d†

+‖ρ ′‖∞,[θ ,y1]

∫ y1

θ

∣∣∣∣
∫ †

θ
ω(†0)d†0

∣∣∣∣d†+‖ρ ′‖∞,[y1,k]

∫ k

y1

∣∣∣∣
∫ †

β
ω(†0)d†0

∣∣∣∣d†

�
[∫ y0

j

∣∣∣∣
∫ †

α
ω(†0)d†0

∣∣∣∣d†+
∫ θ

y0

∣∣∣∣
∫ †

θ
ω(†0)d†0

∣∣∣∣d†+
∫ y1

θ

∣∣∣∣
∫ †

θ
ω(†0)d†0

∣∣∣∣d†

+
∫ k

y1

∣∣∣∣
∫ †

β
ω(†0)d†0

∣∣∣∣d†

]
‖ρ ′‖∞,[ j,k]. �

If we put ω(†) = 1
k− j in (3.1) , then we get the upcoming result.

COROLLARY 4.2. Under the assumptions of Theorem 4.1 with ω(†) =
1

k− j
we

have∣∣∣∣(θ −α)ρ(y0)+ λ
k− j

2
ρ( j)+ ρ(k)

2
+(β −θ )ρ(y1)−

∫ k

j
ρ(s)ds

∣∣∣∣
�
[(

(θ −α)2 +(β −θ )2

4

)
+
(

y0− α + θ
2

)2

+
(

y1 − β + θ
2

)]
· ‖ρ ′‖∞,[ j,k],

for all j � y0 � θ � y1 � k .

COROLLARY 4.3. Under the assumptions of Theorem 4.1 with ω(†) =
1

k− j
and

λ = 0 we have∣∣∣∣(θ − j)ρ(y0)+ (k−θ )ρ(y1)−
∫ k

j
ρ(s)ds

∣∣∣∣
�
[(

(θ − j)2 +(k−θ )2

4

)
+
(

y0− j + θ
2

)2

+
(

y1− k+ θ
2

)]
· ‖ρ ′‖∞,[ j,k],

for all j � y0 � θ � y1 � k . The constant 1
4 is the best possible.

REMARK 4.4. Previous result was stated for λ = 0 which gives us results of ar-
ticle [1] as its special case.

Further results can be obtained by using different values of λ , specifically λ = 1
would give us some interesting results.

COROLLARY 4.5. Let ρ be as in Theorem 4.1 . Then, the following inequalities
hold:

(1) The Ostrowski inequality: For all θ ∈ [ j,k] , we have∣∣∣∣(k− j)ρ(θ )−
∫ k

j
ρ(s)ds

∣∣∣∣�
[
(k− j)2

4
+
(

θ − j + k
2

)]
· ‖ρ ′‖∞,[ j,k].
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(2) The generalized two-point inequality: for all j � y0 � j+k
2 � y1 � k , we have

∣∣∣∣(k− j)
ρ(y0)+ ρ(y1)

2
−
∫ k

j
ρ(s)ds

∣∣∣∣
�
[

(k− j)2

8
+
(

y0 − 3 j + k
2

)2

+
(

θ − a+3b
2

)2
]
· ‖ρ ′‖∞,[ j,k].

(3) The companion of Ostrowski inequality: For all h ∈
[
j, j+k

2

]
, we have

∣∣∣∣(k− j)
ρ(h)+ ρ( j + k−h)

2
−
∫ k

j
ρ(s)ds

∣∣∣∣�
[

(k− j)2

8
+2

(
3 j + k

4
−h

)2
]

×‖ρ ′‖∞,[ j,k].

(4) The Cerone-Dragomir inequality: For all θ ∈ [ j,k] , we have∣∣∣∣(θ − j)ρ( j)+ (k−θ )ρ(k)−
∫ k

j
ρ(s)ds

∣∣∣∣
�
[

(k− j)2

4
+
(

θ − j + k
2

)2
]
· ‖ρ ′‖∞,[ j,k].

(5) The midpoint-trapezoid-Ostrowski’s inequality: For all θ ∈ [ j,k] , we have∣∣∣∣(θ − j)ρ
(

j + θ
2

)
+(k−θ )ρ

(
k+ θ

2

)
−
∫ k

j
ρ(s)ds

∣∣∣∣
� 1

2

[
(k− j)2

4
+2

(
θ − j + k

2

)2
]
· ‖ρ ′‖∞,[ j,k].

The constants 1
4 , 1

8 , and in the last inequality the both constants 1
2 , 1

4 are all best pos-
sible.

Following remarks are valid for our results as well as can be found in [1].

REMARK 4.6. In the representations (3.1)–(3.3) , if one assumes that ρ ′ is con-
vex, r -convex, quasi-convex, s-convex, P-convex, or Q-convex; we can obtain other
new bounds involving convexity.

REMARK 4.7. By following the same approach in establishing Theorem 2.1 in
[14], we can obtain bound of E(ρ ;y0,θ ,y1) involving mappings possess Hölder prop-
erty of order α ∈ (0,1] . An extension to higher order derivatives with symmetric and/or
translation assumptions can be sated by following the same approach of Theorem 2.6
in [14]. We leave the details of this part of the remark for further discussion in future
studies.
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REMARK 4.8. To approximate
∫ k

j ρ(s)ds , the symmetric formula (2.15) was pre-
sented in [14]. However, our formula (3.1) is presented for symmetric and non-
symmetric points y0 and y1 , which they can be chosen arbitrarily in [ j,k] .

REMARK 4.9. In [9], Dragomir introduced a new type of Ostrowski inequality
based on Pompiue’s mean-value theorem. To obtain the corresponding two point of
Dragomir type; we may use the same approach considered in [9] taking into account
the representations (3.1)–(3.3) .
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