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Abstract. We propose and solve a new type of additive functional inequality. We also obtain
the Hyers-Ulam stability of such functional inequality in a complex Banach space by using two
different approaches.

1. Introduction and preliminaries

In 1940, Ulam [29] mentioned a question regarding the stability of (group) homo-
morphisms which motivated the study of the stability problems of functional equations.

Every consequence of the Cauchy functional equation:

g(u+ v) = g(u)+g(u)

is said to be an additive mapping. The properties of Cauchy functional equations are
vigorous tools in almost every field of natural and social sciences. Hyers [12] obtained
a partial answer to the question for additive mappings in Banach spaces. The stability
of functional equations has been also known as Hyers-Ulam stability. It was later ex-
tended by Aoki [1] for additive mappings, and by Rassias [27] for linear mappings by
concerning an unbounded Cauchy difference. Replacing the unbounded Cauchy dif-
ference by a general control function, Găvruta [10] also extended the Rassias theorem.
Park [22, 23] recently defined additive ρ -functional inequalities and proved the Hyers-
Ulam stability of those inequalities in non-Archimedean Banach spaces and Banach
spaces. The stability results of the Jensen functional equation:

g

(
u+ v

2

)
=

g(u)+g(v)
2

have been scrutinized by several authors, see [14, 17, 18], for example.
Applications of stability theory of functional equations for proving fixed point the-

orems and applications in nonlinear analysis were introduced by Isac and Rassias [13]
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in 1996. A large number of research articles concerning the stability problems of sev-
eral functional equations for instance set-valued functional equation, Cauchy functional
equation, Drygas functional equation, and various definitions of stability by using the
fixed pointed technique have been widely studied in great details in [4, 5, 7, 24, 26, 28].

In this article, we let N,R,R+ and C denote the set of positive integers, of real
numbers, of positive real numbers and of complex numbers. Also, we let N0 = N∪{0}
and R

+
0 = R+∪{0} .

For (ρ1,ρ2)∈
{

(z,z′) ∈ C\ {0}×C\ {0} :
√

2|z|+ |z′| < 1
}

, the following addi-

tive (ρ1,ρ2)-functional inequality:∥∥∥∥2g

(
u+ v

2

)
−g(u)−g(v)

∥∥∥∥ � ‖ρ1 (g(u+ v)+g(u− v)−2g(u))‖
+‖ρ2 (g(u+ v)−g(u)−g(v))‖

was introduced and solved in 2017 by Yun and Shin [30]. Recently, Park [25] also
proposed and solved the additive (ρ1,ρ2)-functional inequality as follows:

‖g(u+ v)−g(u)−g(v)‖ � ‖ρ1 (g(u+ v)+g(u− v)−2g(u))‖
+

∥∥∥∥ρ2

(
2g

(
u+ v

2

)
−g(u)−g(v)

)∥∥∥∥ .

Moreover, the Hyers-Ulam stability solutions for the additive (ρ1,ρ2)-functional in-
equalities are proved in a complex Banach space. The stability problems of varied
functional equations and functional inequalities have been studied considerably; for
instance, see [2, 8, 9, 15, 16, 19, 21, 31].

We begin with a useful result in theory of fixed point.

THEOREM 1. [3, 6] Let (X ,d) be a complete generalized metric space, and let
u ∈ X . For a strict Lipschitz contraction T : X → X with the Lipschitz constant
μ < 1, either

• d(T nu,T n+1u) = ∞ for all n ∈ N0 or

• there exists n0 ∈ N for which d(T nu,T n+1u) < ∞ for all n � n0 ; {T nu}→ v∗
where v∗ is a unique fixed point of T in Xn0 := {v ∈ X | d(T n0u,v) < ∞} ;
d(v,v∗) � 1

1−μ d(v,T v) for all v ∈ Xn0 .

In this paper, we study the functional inequality (1). This inequality is called addi-
tive (t1, t2)-functional inequality. We prove the Hyers-Ulam stability of such functional
inequality by applying the direct technique in Section 2. While in Section 3, the Hyers-
Ulam stability of (1) using the fixed point technique is given.

For all over this article, let X and Y be a (real or complex) normed space and

a complex Banach space, respectively. We let (t1,t2) ∈
{
(z,z′) ∈ C \ {0}×C \ {0} :

|z|+ |z′| < 1√
2

}
. Also, we denote the class of mapping { f : X → Y : f (0) = 0} by

M0(X ,Y ) , the class of mapping f : X → Y which is additive by A (X ,Y ) , and
A0(X ,Y ) := M0(X ,Y )∩A (X ,Y ) .
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2. Stability results: direct technique

In this section, the stability outcomes of the additive (t1,t2)-functional inequality
(1) are solved and investigated by using the direct technique. We start with the following
lemma:

LEMMA 1. If a mapping g : X →Y satisfies the following functional inequality:

‖g(u+ v)−g(u)−g(v)‖ � ‖t1 (g(u+ v)+g(u− v)−2g(u))‖
+

∥∥∥∥t2

(
2g

(
u+ v

2

)
+g(u− v)−2g(u)

)∥∥∥∥ (1)

for all u,v ∈ X , then g ∈ A (X ,Y ) .

Proof. Putting u = v = 0 into (1), we gain (1−|t2|)‖g(0)‖ � 0 and so g(0) = 0,
since |t2| < 1. Next, by taking v = u in (1) and from |t1| < 1, we obtain

2g(u) = g(2u) (2)

for all u ∈ X . From (1), it follows

‖g(u+ v)−g(u)−g(v)‖� (|t1|+ |t2|)‖g(u+ v)+g(u− v)−2g(u)‖ (3)

for all u,v ∈ X . Setting u = u+ v and v = u− v in (1), we gain
∥∥∥∥g(u)−g

(
u + v

2

)
−g

(
u− v

2

)∥∥∥∥ � (|t1|+ |t2|)
∥∥∥∥g(u)+g(v)−2g

(
u + v

2

)∥∥∥∥ .

This implies by the equation (2) that

1
2
‖g(u + v)+g(u− v)−2g(u)‖ � (|t1|+ |t2|)‖g(u + v)−g(u)−g(v)‖ (4)

for all u, v ∈ X . Using (3) and (4), we obtain

1
2
‖g(u+ v)−g(u)−g(v)‖� (|t1|+ |t2|)2 ‖g(u+ v)−g(u)−g(v)‖

for all u,v ∈ X . This follows from |t1|+ |t2| < 1√
2

that g(u+ v) = g(u)+g(v) for all

u,v ∈ X , that is, g ∈ A (X ,Y ) . �

This time, we provide the main results.

THEOREM 2. Let a fixed function ϕ : X ×X → R
+
0 satisfy

Φ(u,v) :=
∞

∑
j=1

2 jϕ
(
2− ju,2− jv

)
< ∞ (5)
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for all u,v ∈ X . If g ∈ M0(X ,Y ) and

‖g(u+ v)−g(u)−g(v)‖ � ‖t1 (g(u+ v)+g(u− v)−2g(u))‖
+

∥∥∥∥t2

(
2g

(
u+ v

2

)
+g(u− v)−2g(u)

)∥∥∥∥+ ϕ(u,v) (6)

for all u,v ∈ X , then there is a unique mapping G ∈ A0(X ,Y ) such that

‖g(u)−G(u)‖� Φ(u,u)
2(1−|t1|) (7)

for all u ∈ X .

Proof. By taking v = u in (6), for all u ∈ X , we gain

(1−|t1|)‖g(2u)−2g(u)‖� ϕ(u,u) (8)

and so
∥∥∥g(u)−2g

(u
2

)∥∥∥ � 1
1−|t1|ϕ

(u
2
,
u
2

)
.

Then, for all m, l ∈ N0 with m > l and all u ∈ X ,

∥∥∥2lg
(
2−lu

)
−2mg

(
2−mu

)∥∥∥ �
m−1

∑
j=l

∥∥∥2 jg
(
2− ju

)−2 j+1g
(
2−( j+1)u

)∥∥∥

� 1
2(1−|t1|)

m

∑
j=l+1

2 jϕ
(
2− ju,2− ju

)
. (9)

Thus, {2ng(2−nu)} is a Cauchy sequence for all u ∈ X and hence a convergent se-
quence due to the completeness of Y . Define G : X → Y by

G(u) := lim
n→∞

2ng
(
2−nu

)

for all u∈X . Next, select l = 0 and let m→∞ in (9). Then, we have that the mapping
G satisfies (7). That follows from (5) and (6) as

‖G(u+ v)−G(u)−G(v)‖
= lim

n→∞
2n

∥∥g
(
2−n(u+ v)

)−g
(
2−nu

)−g
(
2−nv

)∥∥
� |t1| lim

n→∞
2n

∥∥g
(
2−n(u+ v)

)
+g

(
2−n(u− v)

)−2g
(
2−nu

)∥∥
+|t2| lim

n→∞
2n

∥∥∥2g
(
2−(n+1)(u+ v)

)
+g

(
2−n(u− v)

)−2g
(
2−nu

)∥∥∥
+ lim

n→∞
2nϕ

(
2−nu,2−nv

)

= ‖t1 (G(u+ v)+G(u− v)−2G(u))‖+
∥∥∥∥t2

(
2G

(
u+ v

2

)
+G(u− v)−2G(u)

)∥∥∥∥
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for all u,v∈X . By the definition of G with Lemma 1, we obtain that G∈A0(X ,Y ).
Finally, let another mapping F ∈ A0(X ,Y ) satisfy (7). Then,

‖G(u)−F(u)‖ =
∥∥2pG

(
2−pu

)−2pF
(
2−pu

)∥∥
�

∥∥2pG
(
2−pu

)−2pg
(
2−pu

)∥∥+
∥∥2pF

(
2−pu

)−2pg
(
2−pu

)∥∥
� 2p

(1−|t1|)Φ
(
2−pu,2−pu

)

for all u ∈ X . Then, ‖G(u)−F(u)‖→ 0 when p → ∞ and this confirms the unique-
ness of G . �

COROLLARY 1. For s,ϑ ∈ R
+
0 with s > 1, let g ∈ M0(X ,Y ) and

‖g(u+ v)−g(u)−g(v)‖ � ‖t1 (g(u+ v)+g(u− v)−2g(u))‖
+

∥∥∥∥t2

(
2g

(
u+ v

2

)
+g(u− v)−2g(u)

)∥∥∥∥
+ϑ (‖u‖s +‖v‖s) (10)

for all u,v ∈ X . Then, there is a unique mapping G ∈ A0(X ,Y ) such that

‖g(u)−G(u)‖� 2ϑ‖u‖s

(1−|t1|)(2s−2)

for all u ∈ X .

Proof. Let ϕ(u,v) = ϑ(‖u‖s +‖v‖s) for all u,v ∈X , we immediately obtain the
result. �

The structure of the proof of the next result is analogous to the proof of Theorem
2. We include some details for convenience of the readers.

THEOREM 3. Let a fixed function ϕ : X ×X → R
+
0 satisfy

Ψ(u,v) :=
∞

∑
j=0

2− jϕ
(
2 ju,2 jv

)
< ∞

for all u,v ∈ X , and let g ∈ M0(X ,Y ) satisfy (6). Then, there is a unique mapping
G ∈ A0(X ,Y ) such that

‖g(u)−G(u)‖� Ψ(u,u)
2(1−|t1|) (11)

for all u ∈ X .

Proof. It follows from (8) that∥∥∥∥g(u)− 1
2
g(2u)

∥∥∥∥ � ϕ (u,u)
2(1−|t1|)
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for all u ∈ X . Then, for m, l ∈ N0 with m > l,

∥∥∥2−lg(2lu)−2−mg(2mu)
∥∥∥ �

m−1

∑
j=l

∥∥∥2− jg
(
2 ju

)−2−( j+1)g
(
2 j+1u

)∥∥∥

� 1
1−|t1|

m−1

∑
j=l

2−( j+1)ϕ(2 ju,2 ju) (12)

for all u ∈ X . Then, the completeness of Y implies that {2−ng(2nu)} is convergent
for all u ∈ X . Next, we let a mapping G : X → Y by

G(u) := lim
n→∞

2−ng(2nu)

for all u ∈ X . Select l = 0 and let m → ∞ in (12). Then, we have that the mapping G
satisfies (11). The rest of the proof is analogous to that of the former. �

Finally, let ϕ(u,v) = ϑ(‖u‖s +‖v‖s) for all u,v ∈ X . Then, we yield the follow-
ing corollary.

COROLLARY 2. Let s,ϑ ∈ R
+
0 with s < 1. If g ∈M0(X ,Y ) satisfies (10), then

there is a unique mapping G ∈ A0(X ,Y ) such that

‖g(u)−G(u)‖� 2ϑ‖u‖s

(1−|t1|)(2−2s)

for all u ∈ X .

3. Stability results: fixed point technique

In this part, we use the fixed point technique to prove the Hyers-Ulam stability of
the additive (t1, t2)-functional inequality (1).

THEOREM 4. Let ϕ : X ×X → R
+
0 be a function such that there exists L ∈ R

+
0

with L < 1 satisfying

ϕ
(u

2
,
v
2

)
� L

2
ϕ (u,v) (13)

for all u,v ∈ X . Then, for a mapping g ∈M0(X ,Y ) satisfying (6), there is a unique
mapping G ∈ A0(X ,Y ) such that

‖g(u)−G(u)‖� Lϕ(u,u)
2(1−L)(1−|t1|) (14)

for all u ∈ X .
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Proof. We equip the set M0(X ,Y ) with the generalized metric defined by

d(h,k) = inf
{

β ∈ R
+ : ‖h(u)− k(u)‖� β ϕ (u,u) , for all u ∈ X

}
,

where inf /0 = ∞ as typical. Then, (M0(X ,Y ),d) is complete, in [20]. Define a
mapping T : M0(X ,Y ) → M0(X ,Y ) by

T h(u) := 2h
(u

2

)

for all u ∈ X . Let h,k ∈ M0(X ,Y ) where d(h,k) = ε . Then,

‖h(u)− k(u)‖� εϕ (u,u)

for all u ∈ X . Consequently,

‖T h(u)−T k(u)‖ =
∥∥∥2h

(u
2

)
−2k

(u
2

)∥∥∥ � 2εϕ
(u

2
,
u
2

)

� 2ε
L
2

ϕ (u,u) = Lεϕ (u,u)

for all u ∈ X . Then d(T h,T k) � Lε which means

d(T h,T k) � Ld(h,k)

for all h,k ∈ M0(X ,Y ). It follows from (8) and (13) that

∥∥∥g(u)−2g
(u

2

)∥∥∥ � 1
1−|t1|ϕ

(u
2
,
u
2

)
� L

2(1−|t1|)ϕ(u,u)

for all u ∈ X . Thus

d(g,T g) � L
2(1−|t1|) .

From Theorem 1, there exists G : X → Y satisfying as follows:
(1) G is a unique fixed point of T , i.e.,

G(u) = 2G
(u

2

)

for all u ∈ X . Thus, there exists β ∈ (0,∞) satisfying

‖g(u)−G(u)‖ � β ϕ (u,u)

for all u ∈ X ;
(2) d(T lg,G) → 0 as l → ∞, which implies that

lim
l→∞

2lg
(
2−lu

)
= G(u)

for all u ∈ X ;
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(3) d(g,G) � 1
1−Ld(g,T g) , which can be implied that

‖g(u)−G(u)‖� Lϕ (u,u)
2(1−L)(1−|t1|)

for all u ∈ X . By using the same technique as in the proof of Theorem 2, we can
conclude that G ∈ A0(X ,Y ). �

COROLLARY 3. Let s,ϑ ∈ R
+
0 with s > 1. If g ∈M0(X ,Y ) satisfies (10), then

there is a unique mapping G ∈ A0(X ,Y ) such that

‖g(u)−G(u)‖� 2ϑ‖u‖s

(1−|t1|)(2s−2)

for all u ∈ X .

Proof. The proof follows from Theorem 4 by taking L = 21−s and ϕ(u,v) =
ϑ(‖u‖s +‖v‖s) for all u,v ∈ X . �

THEOREM 5. Let ϕ : X ×X → R
+
0 be a function such that there exists L ∈ R

+
0

with L < 1 satisfying

ϕ (u,v) � 2Lϕ
(u

2
,
v
2

)
(15)

for all u,v ∈ X . Then, for a mapping g ∈M0(X ,Y ) satisfying (6), there is a unique
mapping G ∈ A0(X ,Y ) such that

‖g(u)−G(u)‖� ϕ(u,u)
2(1−L)(1−|t1|) (16)

for all u ∈ X .

Proof. Regard the complete metric space (M0(X ,Y ),d) given as in the proof
of Theorem 4. We consider a mapping T : M0(X ,Y ) → M0(X ,Y ) defined by

T h(u) :=
1
2
h(2u)

for all u ∈ X . As follows from (8),
∥∥∥∥g(u)− 1

2
g(2u)

∥∥∥∥ � ϕ(u,u)
2(1−|t1|)

for all u ∈ X . Also, in the proof of Theorems 2 and 4, there exists a unique mapping
G ∈ A0(X ,Y ) satisfying (16). �

Let L = 2s−1 and ϕ(u,v) = ϑ(‖u‖s +‖v‖s) for all u,v∈X . The following corol-
lary is obtained.
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COROLLARY 4. Let s,ϑ ∈R
+
0 with s < 1, and let g∈M0(X ,Y ) be a mapping

satisfying (10). Then there exists a unique mapping G ∈ A0(X ,Y ) such that

‖g(u)−G(u)‖� 2ϑ‖u‖s

(1−|t1|)(2−2s)

for all u ∈ X .

Conclusion

We have proposed the additive (t1,t2)-functional inequality (1) and have proved
the Hyers-Ulam stability of the proposed functional inequality (1) in a complex Banach
space.
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