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VARIABLE ANISOTROPIC HERZ-MORREY-HARDY
SPACES AND THEIR APPLICATIONS

AITING WANG

(Communicated by Y. Sawano)

Abstract. Let A be an expansive dilation on R" and let a(-) € L”(R"). Also let p(-)
:R" — (0, ) be a variable exponent function satisfying the globally log-Hélder continuous

condition. In this paper, the authors first introduce the variable anisotropic Herz-Morrey-Hardy
spaces HMK;:‘(());L’ (A;R") and HMKI(:((_'):f (A; R™), via the non-tangential grand maximal func-
tion, and then establish their atomic decompositions. As applications, the authors obtain the
boundedness of some sublinear operators from HMK a(')’f (A;R") to MKZ((:)“; (A; R") and from

(),
(), Y a(:), . Ton
HMKP(.);(A,R ) to MKp(l)‘f(A,R ).

1. Introduction

The theory of Hardy spaces on the Euclidean space R" plays an important role
in various fields of analysis and partial differential equations; see [5, 10, 16]. It is
well known that the Hardy space is a good substitution of LP(R") when p € (0,1].
Since some of the singular integrals (for example, the Riesz transform) are bounded on
HP(R™), but not on LP(R") when p € (0, 1]. The real-variable theory of Hardy spaces
on the n-dimensional Euclidean space R" was originally studied by Stein and Weiss
[17] and systematically developed by Fefferman and Stein in a seminal paper [10].

In recent years, the theory of function spaces with variable exponents has been
developed in the papers [0, 14, 15, 18], and applied in fluid dynamics [2], image pro-
cessing [4], partial differential equations and variational calculus and harmonic anal-
ysis. In 2012, Almeida and Drihem [1] introduced the Herz spaces with two variable
exponents and obtained the boundedness of some sublinear operators on those spaces.
In the same year, Wang et al. [19] introduced the Herz-type Hardy spaces with vari-
able exponents H Klf‘(’;f(R") and H KZ’_‘{(R"), which are the generalization of classical

Herz-type Hardy spaces. In 2015, Dong et al. [9] introduced the Herz-type Hardy
spaces with two variable exponents H I.(;((,'))’q(R") and H K;((f))’q(R") . In the same year,
Xu et al. [21] also introduced the Herz-Morrey-Hardy spaces with variable exponents

H MK;(())f (R") and H MK;(())f (R™), and obtained their atomic characterizations.
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On the other hand, extending classic function spaces arising in harmonic analysis
of Euclidean spaces to other domains and non-isotropic settings is an important topic.
For example, in 2003, Bownik [3] introduced the anisotropic Hardy space HY (R"). In
2008, Ding et al. [8] introduced the anisotropic Herz-type Hardy space HK),?(A; R")
and HK, Y (A; R").

Inspired by previous papers, we would like to declare that the goal of this paper
is to introduce new Herz-Morrey-Hardy spaces with variable exponents and give their
applications.

Precisely, this article is organized as follows.

In Section 2, we first recall some notations and definitions concerning expan-
sive dilations, variable exponent, variable Lebesgue space LP(')(R”) and the variable

anisotropic Herz-Morrey spaces MK (()) (A; R") and MK (()) (A; R™). Then, moti-
vated by Xu et al. [21] and Ding et al. [8], we introduce anisotropic Herz-Morrey-
Hardy spaces with variable exponents via non-tangential grand maximal function. The

aim of Section 3 is to establish the atomic characterization of HMK;C((,'))ff (A; R") and

HMKI?((.'))ff (A; R") (see Theorem 3.2 below). As applications of the atomic charac-
terization of HMKIS‘((_'));{{(A; R") and HMKIS‘((_'));{{(A; R"), in Section 4, we obtain the
boundedness of some sublinear operators from H MKg(())f (A;R") to MI'(Z(.'))’/{{(A; R")

and from HMK;("))’/{I(A; R") to MKZ((.'))’/{I(A; R") (see Theorem 4.3 below).

Finally, we make some conventions on notation. Let N:= {1,2,...} and Z; :=
{0} UN. Denote by . (R") the space of all Schwartz functions and &' (R") its dual
space (namely, the space of all tempered distributions). For any o = (ay,...,04) €
Zh = (Zy)", let ot ;=0 +--- + o, and 9% := (3%)0‘1 (aixn)o‘". Throughout the
whole paper, we denote by C a positive constant which is independent of the main
parameters, but it may vary from line to line. The symbol D < F means that D < CF .
If DS F and F < D, we then write D ~ F. For any g € [1, 0], we denote by ¢’ its
conjugate index, namely, 1/g+1/¢' = 1. We also use Cla,p,..) to denote a positive
constant depending on the indicated parameters o, 3, .... If E is a subset of R", we
denote by xg its characteristic function. If there are no special instructions, any space
2 (R™) is denoted simply by .2". For instance, L?(R") is simply denoted by L>. For
any a € R, |a| denotes the maximal integer not larger than a.

2. Preliminaries

In this section, we introduce the definitions of the homogeneous anisotropic Herz-
Morrey-Hardy space with variable exponents H MKg(())f (A; R") and the non-homoge-

neous anisotropic Herz-Morrey-Hardy space with variable exponents HM K;‘((, ))f (A; R™)

via the non-tangential grand maximal function My (f).

We begin with recalling the notion of an expansive dilation on R"; see [3, p.5]. A
real n X n matrix A is called an expansive dilation, shortly a dilation, if miny cq4)|A4]>
1, where 6(A) denotes the set of all eigenvalues of A. Let A_ and A be two positive
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numbers such that
l<A_<min{|A|: A €0(A)} <max{|A|: L €0(A)} < Ay. 2.1)

In the case when A is diagonalizable over C, we can even take A_ :=min{|A|: A €
0(A)} and Ay :=max{|A|: A € o(A)}. Otherwise, we need to choose them suffi-
ciently close to these equalities according to what we need in our arguments.

By [3, Lemma 2.2], we have that, for a given dilation A, there exist a number
re(l,) andaset A:={x € R": |Px| < 1}, where P is some non-degenerate n X n
matrix, such that

A C A C AA,

and one can and do additionally assume that |A| = 1, where |A| denotes the n-dimen-
sional Lebesgue measure of the set A. Let By := A*A for k € Z. Then By is open,
By C rBy C By, and |Bi| = b, here and hereafter, b := |detA|. An ellipsoid x + By
for some x € R" and k € Z is called a dilated ball. Denote by B the set of all such
dilated balls, namely,

B:={x+B;: xeR" keZ}. (2.2)

Throughout the whole paper, let ¢ be the smallest integer such that 2By C A° By and,
for any subset E of R", let EC .= R" \ E. Then, for all k, j € Z with k < j, it holds
true that

Bi+B; CBj.o, 2.3)
Bi+ (Biso)t C (BYY, 2.4)

where E + F denotes the algebraic sum {x+y: x€ E,y € F} of sets E, F C R".

DEFINITION 2.1. A quasi-norm, associated with a dilation A, is a Borel measur-
able mapping ps : R” — [0,00), for simplicity, denoted by p, satisfying

(i) p(x)> 0 forall x e R"\ {0,}, here and hereafter, 0, denotes the origin of R”;
(ii) p(Ax) =bp(x) for all x € R", where, as above, b := |detA|;

(iii) p(x+y) <Calp(x)+p(y)] for all x,y € R", where C4 € [1,0) is a constant
independent of x and y.

In the standard dyadic case A :=21,,, p(x) := |x|" for all x € R" is an example
of a homogeneous quasi-norm associated with A, here and hereafter, I,,», denotes the
n X n unit matrix, | -| always denotes the Euclidean norm in R".

It was proved, in [3, p. 6, Lemma 2.4], that all homogeneous quasi-norms associ-
ated with a given dilation A are equivalent. Therefore, for a given dilation A, in what
follows, for simplicity, we always use the step homogeneous quasi-norm p defined by
setting, for all x € R",

plx) =Y bkakH\Bk(x) ifx#0,, orelse p(0,):=0.
keZ.
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By (2.3), we know that, for all x,y € R",

p(x+y) <b% (max{p(x), p(y)}) <b[p(x) +p ()]s

see [3, p.8]. If we let A, and A_ be any numbers satisfying (2.1), then there exists a
constant C, > 0 such that, for all x € R",

) 2.5

Cglp(x)ln}ur/lnb <
< (2.6)

x| < Cap ()™ for p(x) <
C;lp(x)ln/l,/lnb >

| 1
x| < Cop ()/4+/19% for p(x) > 1

Now we recall that a measurable function p(-) : R” — (0, o) is called a variable
exponent. For any variable exponent p(-), let

p— = essinf p(x) and p, := esssup p(x). (2.7
xeRn xeRn

Denote by & the set of all variable exponents p(-) satisfying p_ > 1 and p; < .
Let f be a measurable function on R" and p(-) € &. Then the modular function
(or, for simplicity, the modular) p,.y, associated with p(+), is defined by setting

ppoy(f)i= [ If(x )P
and the Luxemburg (also called Luxemburg-Nakano) quasi-norm || f||, ) by
1F |z = inf{A € (0,0) : ) (f/A) < 1}

Moreover, the variable Lebesgue space LPU) is defined to the set of all measurable
functions f satisfying that p,,(.)(f) < e, equipped with the quasi-norm || 1| () -

We recall the definition of Hardy-Littlewood maximal function My (f). For any
fe Ll and x e R",

loc

1 1
M ()00 i=sup sup o [ [7@)ldz= swp o [If@)laz, @8)
kezyex+By [Bl Jy+B vepews |B| /B

where ‘B is as in (2.2).

Let # is the set of p(-) € & satisfying the condition that My, is bounded on
LPO) | Tt is well known that if p(-) € & and satisfies the following global log-Holder
continuous then p(-) € A.

DEFINITION 2.2. Let g(+) be a real function on R”.
(1) g(-) is locally log-Hélder continuous, if there exists a constant C > 0 such that

_ c
~ log(e+1/lx—yl)

forany x,y € R" and [x—y| < 1/2.
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(2) g(-) is locally log-Holder continuous at the origin (or has a log decay at the
origin), if there exists a constant C > 0 such that

c
) =8O < e 1/

for any x € R".

(3) g(+) is locally log-Holder continuous at infinity (or has a log decay at infinity), if
there exist g € R and a constant C > 0 such that

C

— O gi
g (x) — gel ogle =]

for any x € R".

If g(-) is both local log-Hélder continuous and log-Holder continuous at infinity,
then g(-) is said to be global log-Holder continuous.

We denote by 25 and 2! the class of all variable exponents p(-) € &, which
are log-Holder continuous at the origin and at infinity respectively. We call pl(~) the

conjugate exponent to p(-), thatis p'(-) = pﬁgzl . We know that p(-) € £ is equivalent

top(-)eB.
A C~ function ¢ is said to belong to the Schwartz class .7 if, for every integer
¢ € Z, and multi-index o, ||@]|¢.c = sup[p(x)]/|0%@(x)| < . The dual space of
xeR"

., namely, the space of all tempered distributions on R” equipped with the weak-
topology, is denoted by .. Forany N € Z, let

In={peS: |@lasr<1, |af <N, L<N};
equivalently,

9 €Iy |¢| = sup sup [|0%p(x)[max {1, [p(x)]"}] <.

|| <N xeR”

In what follows, for ¢ € ., k € Z and x € R", let
o(x) = b <A_kx> . (2.9)

Let f €. . The non-tangential maximal function M, (f) with respect to @ is defined
by setting, for any x € R",

Mo (f)(x) = sup  {|f*@(y)|:x—y € By, k € Z}.
yEX+By kEZ

The radial maximal function Mg (f) with respect to ¢ is defined by setting, for any
xeR",

Mg (f)(x) := sup|f + gi(x)].
keZ
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Moreover, for any given N € N, the non-tangential grand maximal function My(f) of
f €. is defined by setting, for any x € R",

The radial grand maximal function MY(f) of f € .#' is defined by setting, for any
xeR",

My (f)(x) = sup M (f)(x).

PESN

In this paper, we denote C;, = By \ Bx_1 and denote briefly the characteristic func-
tion x5, ;) by X«. The following definition is from [20].

DEFINITION 2.3. Let 0 < g < oo, 0 <A < oo, p(-) € & and o) € L. The
homogeneous variable anisotropic Herz-Morrey space MK (() (A; R") and the non-

),
homogeneous variable anisotropic Herz-Morrey space MK (())’f (A; R™) are defined re-
spectively by setting,

MR (4 R = { £ &L Wy <oo}
and
MK (A RY) ={ €10 A1ty AR,1><oo},
where
L 1/q
Hf”MK (AR E‘EIIZ’TUL {kzwba('>kf7(kzp(,)}
and

1/q
A
5y = S0227 {kzonb“ Ll } .

Here, there is the usual modification when g = oo.

For 0 < g < e, we denote

N [(1/¢g—1)Inb/InA_]+2, 0<g<1
“ 2, q>1,

where A_ is as in Page 2.
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DEFINITION 2.4. Let o) € L, 0 <A < oo, 0 <g< oo, p(-) € and
N > N,. The homogeneous variable anisotropic Herz-Morrey-Hardy space

HM K;C((, ))f (A; R") and the non-homogeneous variable anisotropic Herz-Morrey-Hardy
space HMK;((.'))_’f (A; R™) are defined respectively by setting,

HMK ) H (AR = {1 e 7" M) € MK (AR }

p(),A p(),A
and

O(('), . ny .__ ! . OC(-), . n

HMK, {4 R = {f e " M) € MK (AR ]
where
M, o),
and
[WAp— 0.4 8n) = 1MN ()], 0.0 ;)
REMARK 2.5.

(i) When the exponent functions p(-) and c¢(-) are constant exponents p and o,
these spaces are still new.

(ii) When the exponent functions o(-) := o, A := 0 and A := 2I,,»,,, these spaces
are the Herz-type Hardy spaces with variable exponents HK (")1 and H K (see

[19D).
(iii)) When A := 2I,,«,, these spaces are the Herz-Morrey-Hardy spaces with variable
exponents HMK (()))L and HMK q (see [21]).

LEMMA 2.6. [11] Let p(-) € B. Then there exist 0 < 31, 6, < | depending only
on p(-) and n such that for all B, S € B and S C B,

5
12l ot <c<i> - sl <c<ﬁ)52
128l 00 |B| (P71 |B|
LEMMA 2.7. [13] Let g€ (0,%), p(-) € 2, A €[0,) and au(-) € LN PYEN

e If o(-) is log-Holder continuous both at origin and at infinity, then for any
measurable function f,

1711 atyg < Cmaxq sup 274 Z 24900 || £ 26017
))L L<0,LEZ k=—oo

—1
sup lzwf Y 22O |, +2 WZZ"%foulL,, H
L>0,L€Z k=—oc0 k=0
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LEMMA 2.8. [12] Let p(-) € . If f e L") and g € L”'0) then fg is integrable
on R" and

/Rn [f (g () dx < Cpll fll e gl s

where C, =1+1/p_—1/p.

LEMMA 2.9. [11] Let p(-) € B. Then there exists a positive constant C > 0

such that for all B € B,

1

H”%BHLP(‘)HXBHLP/(‘) <C.

3. Atomic decomposition of HMKI?((_'))’/{I(A; R™)

In this section, we establish atomic decompositions of the variable anisotropic

Herz-Morrey-Hardy spaces HMK;‘((,')).’)? (A; R") and HMK;‘((,')).’)? (A; R™). We first begin

with the following notions of anisotropic (c¢(-), p(-), s)-atoms.

DEFINITION 3.1. Let p(-) € 2, a(-) € L” N 2 8N 22 and a non-negative
integer s satisfy s € [(ar — 82)Inb/InA_, e0) with &, as in Lemma 2.6. Here o, =
(0),if r <0 and @ = O, if r > 0.

(1) An anisotropic central (o(-), p(+), s)-atom is a measurable function a on R”
satisfying
(1) (support) suppa C B, where B, € B and ‘B is as in (2.2);
(ii) (size) [lall o) < [Br|~%;

(iii) (vanishing moment) [p. a(x)xPdx =0 forany B € Z" with |B| <.

(2) An anisotropic central (a(-), p(+), s)-atom of restricted type is a measurable
function @ on R" satisfying

(1) suppa C B, r >0, where B, € *B and ‘B is as in (2.2);
(ii) HaHLp(,) < B %;
(iii) fgoa(x)xPdx =0 forany B € Z" with |B| <s.

THEOREM 3.2. Let p(-) € A, 0<g<eo, 0K A <o, af-) € L“m(@(l)”gmgzi:)g’
o) =24 and 8 < a(0), Oo < oo, where &, is as in Lemma 2.6.

() fe HMKIS‘((_'));{f (A;R") if and only if

f: 2/1]'61]' in y/7

JEL
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where each a; is a central (o.(-), p(-), s) -atom with support contained in B; and
L 1/q
supb~+* ( D |/1,-|q> < oo,
LeZ Jj=—co

Moreover,

L 1/q
1t infsupb—“<2 W) ,

LeZ j=—oo
where the infimum is taken over all above decompositions of f.
(i) fe HMKI?((_'))’f(A; R") if and only if
f: 2 /ljaj in 5/,
JELy

where each aj is a central (a(-), p(-), s)-atom of restricted type with support
contained in Bj and

L 1/q
sup bt Y |20 < oo,
LeZy Jj=0
Moreover,
1/q
A
11|y g oy ~ i0f sUP D7 2 Al

HMK () (AR) LeZ. = '

where the infimum is taken over all above decompositions of f.

To prove Theorem 3.2, we need the following technical lemmas.

LEMMA 3.3. Let p(-), o(-), s be as in Definition 3.1, j € N and a; be a central
(a(:), p(-), s)-atom with support contained in Bj. Then we have, for any x € Cy with
kzj+o+1,keZ, and ¢ € Sy,

My (aj)(x) S b9 ll iy (AT (3.1

where m=k—j—o—1.

Proof. For any x € Cy, ¢ € SN, J,r € Z and a polynomial P of degree < s, by
the vanishing moment of a;, we have

a0 )| =57 | [ 4o (4 x=y)dy

<lf’/ laj(y)ldy — sup  |@(y) —P(y)].
Bj YEAT ' X+B
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Since x € G with k> j+o0+1,then x€Bj 51 my1/Bjrotm, Where m=k— j— o0 —
1 > 0. Therefore,

A”x+B; ,CA" (Bj+0'+m+l/Bj+0'+m) +Bj_,
= Ajir [(Bc+zn+1/BO'+m) +BO]

j—r C C
CA/ (Bm) :(Berjfr) .

If j > r, then we choose P; =0, and

sup @) PO S sup min(1, p(y) ) o NI,
YEATx+Bj yE(Bm+j—r)B

If j < r, then we choose P to be the Taylor expansion of ¢ at the point A~"x of order
s. Therefore, by (2.5), we obtain

sup @) —P()| < sup sup  sup [0%@ (A x+6z)] |zt
YEAT'X+B;j_, Z2€Bj 0€(0,1) |ot|=s+1

5/1&94‘1)(]'_”) Sup mln(l7p(y)_N)
YEAT x+Bj_,

< )L(SJFI)(J'*”) min (1 b*N(er,ffr)) )
Combining the above two estimates and [3, Proposition 3.10], for any x € B om+1 \
Bji61m,» we have

My(a;j)(x) = sup sup|(a;*@)(x)|
oSN rel

b | x|y max | sup BUTIHTNETHIN,
’ reZ,r<j

C sup b(jr)AEH_l)(j_r)min(LbN(erjr>>] .

reZ,r>j

We find that, when r = j, the supremum over r < j is attained, when j—r+m =0, the
supremum over r > j is attained. Since AT < BN with N > s+2, it suffices to check
the maximum value for j <r < j+m and j > r+m. Forany x € Bj s4m+1/Bjiotm
with m > 0, we have

M(ag) b7y max [p7, € (51) ]

—m

< bfjar.f”%BjHLp,O (b,liﬂ) 0

Proof of Theorem 3.2. We only need to prove (i). (ii) can be proved in the similar
way. The proof is divided into 2 steps.

Step 1. In this step, we show the sufficiency of Theorem 3.2. We assume that
f=2YjezAjaj in ", where each a; is a central (c(-), p(-), s)-atom with support
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contained in B; and
L 1/q
supb ( D |/1,-|q> < oo,
LEZ Jj=—oo
By Lemma 2.7, we have

HMN(f)HZ/[Ka()

q
p(),A

L
<Cmax{ sup b7 B0 Iy ()4,
L<0,LeZ k= —o0

—1 L
sup lbLAq 2 pkac(0) HMN(f)%kHZ,,(.) +bfL7Lq2bkqam 1My (f )kaLP 1 }
LEZ+ k= —oo k=0

=: Cmax{[, J+K}.

For 1,J and K, by the boundedness of My on L) and f = YjezAja; in 5”
we obtain

. . q
1<C sup b1 2 bkqa(0)< 2 )Lj|||ajHU,(.)>
j

L<0,LeZ k=—oo j=k—0o

L k—o—1 K
Cosup b Y bkqa(0)< 1AM (ag) 2| o )

L<0,L€Z k=—co Jj=—oo
= Il + 127

- q
<€ sup b Y g (z il el )
J

L>0,L€Z k=—o0 k—o

—1 k—o—1
+C sup bHR Y pra©) ( > A1y (a) |
L>0,LeZ i =

q
LI’('))

=11+

and

L>0,L€Z k=0

L oo !
K<C sup bLMzbkqam< > 1illla] )
j=k—0o

L k—o—1 q
+C sup bLMzbkqa‘”< 2 )thMN(aj)%kHLp(-)>

L>0,LeZ k=0 Jj=—o0
=: K; +Ks.

To deal with I, J and K, we consider two cases: 0 <g <1 and 1 < g < oo.
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Case 1. When 0 < g < 1, by the size condition of a; and the fact that o¢; = «(0),
if j <0 and ¢fj = 0, if j >0, we have

L oo 4
LS sup bHY b’“f“(o)< D |/lj|b~’°‘f’>
Jj o

L<0,LeZ k=—o0 j=k—

L -1 o
< sup pLra 2 bkqa(O)( 2 |lj|qb—jq(%(0)+2/‘{j|qb—jq(x&>
J

L<0,LE€Z k=—oo j=k—0 Jj=0

L -l
< sup b MM > ¥ |,1J.|qb(k*j)f1a(0)

L<0,LeZ k=—c j=k—0

L
+ sup bHMY Y | lapkar O iaoe

L<0,LeZ k=—c0 j=0
jt+o
< sup bLMZ\)L\qu q(0)
L<0,LeZ Jj=—o0 k=—c0
LA c kqo(0) 7,— i
+ sup by |4 b0 p 9%
L<0,LeZ E) k_z—oo
From
jt+o
> b
k=—co0

we further deduce that

I} < sup bLMZ \)L|‘1+ sup bLMZMWZb q(0)
L<0,LEZ Jj=—oo LEZ j=L k=—o0

L
+ sup HHAY |2 pka0) p=jace
L<0,LeZ Z‘B k_E_:oo

< sup b MM 2 \)L|‘1+ sup bLMZM\‘f 2 plk=1)ae(0)

~

L<0,LEZ Jj=—oo ,LeZ j=L k=—c0
+ sup b~ Liq 2 |A;|9 sup Eb’l 0=2) /4 2 pra(0)—LAq
L<0,LEZ j=—o0 L<0,LEZ j=0 k= —o0

< supbh~tHa 2 A1
LeZ Jj=—oo

For any j < 0, using the same estimate of (3.1), we have

HMN(aj)%kHZ,,(.) 5bijq“(o)qu(b/li“)(”"“’k)qH)cB,»||Z,,r(,) H%BkHZp(-)' (3.2)
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From this, Lemmas 2.9 and 2.6 and the fact that /1 (s+1) bo‘( =% <1 , we conclude that

L k—o—1 . X
L< sup bHA Y plae0) N |p apiaed0)-ia (b/li“)(ﬁaﬂi &
L<0,LeZ k=—o0 j=—oo
< [lxs, 117, IIXBkIIL,,
kg1 (s (k=J)q
5 sup b Lig 2 2 |)L |q< (s+1) boc 0)— 52>
L<0,LeZ k=—oc0 j=—oo
L-o-1 L ke
< sup b MM D Y 1A |q< (s+1) per(0) - 52>( e
L<0,LeZ j=—o0 k=j+0+1

< supbh~tHa 2 A9,
LeZ Jj=—oo

By the size condition of @; and the fact that o; = 0(0), if j <0 and ¢fj = 0., if j >0,
we obtain that

-1 oo 9
Ji~ sup ptra 2 prao0) ( 2 Mj|||ajy’(-)>
j=k—0

2 |,1J.|qb—jq06(0) +3y |)Lj|qb—jq06w>
Jj=k—

o j=0

L>0.LeZ [

—1
< sup b—L)Lq 2 bquC

~

L>0.LeZ [

1 —1 o
~ sup b”qlz ¥ ptkiarO)3)a 4 2 3 plarOp-iace| ) |‘1]

L>0.LeZ k=—oo j=k—0 k=—e0 j=0
1
< sup b MM 2 |49 Z pk=1ax0) 4 gup b~ LMZM 1) prae(0)

~

L>0,LeZ j=—o0 k=—co L>0,LeZ j=0 k=—co

< supb 14 2 |A;]9.
LeZ e

From (3.2), Lemmas 2.9 and 2.6, we obtain

—1 k—o—1 .
1L, < sup bfL)Lq 2 bkqa(O) i |/1j|qb7jqa(0)qu (b/’{,i+1) (jHo+1-k)q
L>0,L€Z k= —o0 j=—oo
< s
—1 k—o-1 k—
S sup b~ Lig 2 2 |/1 |q< —(s+1) ba 0)— 52>( Na
L>0LeZ oo oo
—o;2 - (s (k—j)q
,S sup b Lig 2 |A Iq 2 ()L, (‘+1)ba(0)—52>
L>0,L€Z Jj=—o0 k=j+0+1

<supb 4 Z |A;]9.
LeZ jo—eo
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By a similar method of J; and J;, respectively, we can obtain

K, <supb~ Laq 2 |A;|4 and Kzgsupb_LAq Z |A;19.
LeZ Jj=—oo j=—o0

Case 2. When 1 < g < oo, by the size condition of a; and the fact that o;; = ¢¢(0),
if j <0 and ofj = 0, if j > 0, the Holder inequality, we have

. ~ q
L~ sup b4 Y b’“f“(o)< D Ajllaijm)
J (o2

L<0,LEZ k= —o0 j—=k—

L —1 oo q
~ suwp by bkqa(o)( ) ij~f“<°>+2|x,fb‘fam>
j=0

L<0,LEZ k= —oo j=k—0o

L —1 —1 a/d

< sup p—Lra 2 2 |/1/\qb(k (0)q/2 2 plk=i)a(0)q'/2
L<0,LEZ k=—oo \jmk—0 j=k—c

/

L oo - a/q
+ sup b M D prac(0) <2|,1j|quamq/2> % zbj(xmq//2>

L<0,LeZ k=—o0 j=0 j=0
< sup b LM 2 2 A |4 plk=)(0)/2
L<0,LeZ k=—oc0 j=k—0

L o0
+ sup b LA D 2|,1f‘qbfjamq/2bkqa(0)

L<0,LEZ k=—s0 j=0
jto
< sup b MM 2 > ple=7)a(0)g/2
L<0,LEZ Jj=—oo k= —o0

+ sup bTHAY prira || plhmenl2ia N pha(0)
L<0,LeZ E,: k_z—oo

< supb 1t 2 A;19.
LeZ j=—oo

From (3.2) and the Holder inequality, we conclude that

L k—o—1 q
L~ sup b Py b’“f“(o)( > leIIMNanBkLm-))
L<0,LeZ k=—o0

j=—o0

L<0,LEZ, [

Jj=—o0

L [k-o-1 _n]
,S sup b—L)Lq 2 l i |A | (A S+1)b06( )—52>(k J)]
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S sup b i lk_i_lu |q( (1) pa(0)- sz)“ﬂq/ﬂ

L<0.LEZ koo | jm—oo
k—o-1 N q/q
X ( i <X:(S+1)ba(0)—5z>(k Ja /2>
Jj=—
L-o-1 L PPN
< sup b™ Liq 2 A9 2 (A:(.er)ba(()),&)( Nal
L<0,LeZ j=—oo k=/1o+1

<supb 14 2 |A;]9.
LeZ jo=—eo

From (3.1) and a similar proof of I; and I, we deduce that

Iy < supb e 2 A7 Tn <supb LAq 2 |27
LEZ J=—o j=—o

and

Ki S supb™ LA 2 A4l Ko S supb™ Lig 2 2417
Le

j_—OO j_—oo
This establishes the estimate we wanted.

Step 2. In this step, we prove the necessity of Theorem 3.2. Choosing ¢ € .
such that [p. ¢(x)dx = 1. For any f € HMKZ(("))’/{{(A; R"), set f) := fx ¢, where
¢(+) :=b7%¢ (A=*.) . From [3, Lemma 3.8], we obtain that ) — f in .7’. Now we
divide Step 2 into two substeps.

Substep 1. We show that, for any x € R”,
! x) = 2 Ajay) (X)
JEZL

)

where ay) isa (a(:), p(+), s)-atom with suppa;’ C Bys2, 4; is independent of i and

L 1/q
—LA |q
i‘élz)b <j=2_°°/1]| ) < ||MNfHMK )q(A R")

Let w € Cy such that 0 < w < 1, suppy C Cg =C_1UCyUC; and y(x) =1 if
x € Co. Let yy(-) = w(A™F) for k € Z. Then we observe that

suppy(x) C C,; =Cr 1 UC UGk

Let

) () .
Dy(x) = { 72’626””)@’ fﬁx 7 8 (3.3)
, it x =
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Then we obtain, for any x # 0

Dy € C, supp®y C Cp, 0 < D (x) < Land Y, Dy (x) =

keZ

Let vi(x) = |Cp| ! X (x). Then we have
k

) =0 Y, o)

keZ

-3 [ wen - ( [ Oy ) vt

+k€%</ £ )Vk(x)

1) 13

Let us deal with Igi). Let

g](:_) ) 1= £ )0 (x) — ( /R n FO ()@ (y) dy) Vi(x)

and "
! k+1
i 8 X
6157);{()6) = —31( )» A= Cp% 1 ED S My i

k 2
? j—k—l
where C; is a constant which will be chosen later. Then we know that

suppa(li)k C Bi+1, /Rn a(li)k(x) dx=0

Moreover,

IY) = 2 /ll,ka(li,)k(x)

keZ
From the Holder inequality, we conclude that

Jj=k+1

Hgk HLI’ < ||f q)k”LI’ H <G 2 HMNf”LI’
J=k—1

Choose C| = C;; then we obtain that

lalll ey < Bigpa| %41

and agli)k isa (af(-), p(+), s)-atom with suppagli)k C By . Therefore,

=k+1
iugb Lrq 2 Ilk\"<SUPb La 2 |Bie+ 1|”a"“< N, My fill o0
€ [ — k=—oo i

k-1

< suph A Z | B |71 [Mn 2517 )
LeZ k=—oo

j
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If L <0, then

L
supb Lig 2 M’k‘q < Supb_L)Lq Z bquC ||MNfXJH
LeZ k=—oo k==

SIMNFIL ot
Ko

If L >0, then

supbh 14 2 Mk|q<supb L2 2 plkr a0 HMNfXJH
LEZ k= —oo k=—o0

+supb 14 2 D% | My 119
LeZ k=—1
SlMvfl?

a(-),q "
MK, ()2

L)

Next we deal with Ig),

Iz = ( > )dY>( Vi (%) = Vi1 (x))

k€EZ \ j=—0°
=: th X)
keZ

Let ag)k = h,(f) /A2, Where g j = C3bk+2) %2 E’;L%fl My fxll;»0)» C3 is a constant
to be determined later. Then we have '

suppag)k C Bj.o, /R ) ag)k (x)dx=0.

Moreover,

Ig) = 2 lz,kag,)k(x)

keZ

Denote ¢(x) := 2;24}(1) i(x), where @; is as in (3.3). From supp®; C CJ, and

{d 172 = has bounded overlapping, i.e., 21;2_00 X < C, we know that ¢ € Cj and
@ € .7 . Notice that '
: k-2 ke+2
Y Q) = (AT %) = b P gppa(x),
jzfoo

where @5 is asin (2.9). By [3, Lemma 6.6], we conclude that, for any x € By,

Z i) dy| =

]_°°

= b2 FO0)®@;(y)dy

Byt

<B20l5y s Mys2(F7) (x)
< CH* My f(x),
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where @(y) = ¢(—y) and C is a constant dependent of N.
It is obvious that, for any x € R"

kt2
Ve (xX) =it () S5 Y 2i(x).
j=k—1
Thus we obtain
0 k42
1 e S Ca Y, IMNF 2l o0 -
Rt

Choose C3 = Cy4; we know that ag)k isa (a(-), p(-), s)-atom with suppay)k C Bya.

Moreover,

=k+1 q
supbh 44 2 A2, k\q<5upb Lhq 2 Bea " Y (IMN Sl 00
LeZ oo [ 1

< My fl?
| H )

From this, we further conclude that, for any x € R"

= 2 )Ljay) ()C)

jez

(i

where a ;

0]

Jisa (a(-), p(+), s)-atom with suppa;” C Bi.2, A; is independent of i and

L 1/q
—LA
supb AT SIMNAN patna . om
Lez (,-;_:w ’ MK, ()2 (AR
Notice that '

sup |l [l o) < B2 =%

ieN

Combining the Banach-Alaoglu theorem, we obtain a subsequence {aéino)} of {a(()i)}

converging in the w* topology of LP1) to some ag € LPC) . It is obvious that aq is a
central (a(-), p(+), s)-atom with suppag C B>. Next, since

(ing) -
sup Jlag™ || o) < B3|,

t,,OEN

applymg Banach-Alaoglu theorem, we obtain that there exists a subsequent {a h }

of {ai 0’1 converging in the w* topology of LP() to a central (c(-), p(-), s)-atom

a; with suppa; C 33 Repeatlng the above procedure for any j € Z, we can find a

subsequence {a( 7} of {a } converging in the w* topology of LP() to a central



VARIABLE ANISOTROPIC HERZ-MORREY-HARDY SPACES 19

(ce(+), p(-), s)-atom a; with suppa; C Bj,,. By usual diagonal method we get a sub-
sequence {iy} of N such that forany j € N, limy_ca'™)

J
LP1) and therefore in ..

Substep 2. In this substep, we prove

=a; in the w* topology of

=Y Ajajins". (3.4)

JEZ
For any ¢ € ., observe that
suppaﬁ-”) CCi1UCUCj 41 UC)a.

From this, we have

= hm 2/1 / (%)@ (x)dx.
IGZ n J
(iv)

If j+1 <0, then, by Lemma 2.8, the size condition of a;"’, Lemmas 2.9 and 2.6, we

obtain
Jo " @oeax| = | [ 40000~ 00
< sup sup [0Po(y) |/ lv ‘|x|dx
yeBﬁerB‘ 1 j+2
5 b(j+1)lnk,/lnb/ a(.lV)(x)‘ dx
Bj+2 /
1A
< pUHIA-/Inb ‘aE- 0 H?CB,HHL,, _
. 0 B 12|
5b(}+1)(ln)t,/lnb j+2) <|B§—+ HszHLp’(->

<b(j+l)(ln)t /Inb+8—aj,2) ‘ 2||| 1B ||
: ol 2l

< b(j+1)(1n7t/lnh+520€j+2)inf{y >0 :/ ),*pl(x) < 1}
By

< b(j+1)(1“”1“”+52O‘Hz)inf{o <y<l1: / s < 1}
By
< b(j+1)(1n7tf/lnb+§2_(xj+2).

If j+1 >0, choose kg € Z4 such that min{ko+ ot — 1, ko + 0. — 1} > 0, then by a
similar proof of the above, we get
<,

< p—rko

/R" aE-iV) ()¢ (x)dx

#%Mmu»“w
a(

) Mool

r() LI’ .
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< p—itko+ojy2)

~

‘XB”Z 1740,

< bfj(koJrOC_Hzfl) )

~

Let )
o |)LJ’ b(JJrl)(ln)L,/lthr(?zfaHz)’ i+ 1<0,
nuJ = |Aj|b7j(k0+aj+2*l), ]+ 1>0.

By the Holder inequality, we obtain

1/q
L L
—LA —LA
supb )| < | supb™ AT SIMNSIL eata 4. pn
LEZ jzm ! LeZ 2 ! MKIO"(')J[L](A’R )

J=—

and

|41 < ).

/R" a}iV) ()¢ (x)dx

From the dominated convergence theorem, we further conclude that

0.9)= 3 lim LdYmemar= 34 [ amoewds

JEZ !

which implies that (3.4) holds true. This finishes the proof of Theorem 3.2. [

4. Applications

In this section, as an application of the atomic characterization of HM K;‘((, ))f (A; R™)
in Theorem 3.2, we obtain the boundedness of some sublinear operators from

'OC('),q . 'O(('),q . OC('),q . OC('),q .
HMK " (A; R") to MK, (A; R") and from HMK, " (A; R") to MK, )5 (A; R™).

DEFINITION 4.1. For s € Z, let D(R") be the space of infinitely differentiable
complex-valued functions with compact supported in R”.

Dy(R") = {f eDR"): /R" f(x)xPdx =0, forall |B] < s}
and

Ds(Rn) = {f € Ds(Rn)70 ¢ suppf}.

The following lemma is very important in this section. Its proof is similar to [22,
Lemma 3.2]. The concrete details are omitted.

LEMMA 4.2. Let p(-) € B, 0 < q < oo, a(-) € LN PYEN P such that
max{nd;,n&} < o(0), 0o < oo, where 8, and O, are as in Lemma 2.6. 0 < A <
1/2min{c(0), 0 }. Let s be a non-negative integer such that s > [max{o(0), 0w} —
min{nd;,nd}]. Then
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(i) Dy(R") is dense in H K;‘(())f (A; R");

(if) Dy(R") is dense in HK'\\ (A R").

THEOREM 4.3. Let p(-) € P, 0< g <o, 0< A <oo, at(-) € L*N P4 N PL%,
o) =224 and & < a(0), 0o < Oy +1InA_/Inb, where &, is as in Lemma 2.6. If a
sublinear operator T satisfies that

() T is bounded on LPV);

(ii) Forany f € LPY) with suppf C B;j and

Af@“:

T(f) satisfies the size condition

Al
(p(x))?

TOWIS I it inf pla—) > b“(l—z)pwm

Then there exists a positive constant C independent of f such that, for any f €

HMK;((.'){’)? (A;R") and f € HMK;C((_'){';(A; R™), respectively,

”T(f)HMK:(())f(A,R") Hf”HMK ()) (A R")
and
7t ey < I My

Proof of Theorem 4.3. We only need to prove the homogeneous case. The non-
homogeneous case can be proved in the similar way. Let f € HMK (()) (A; R™).

From Theorem 3.2, we know that there exist {4} jen C C and a sequence of central
(oe(-), p(-), s)-atoms, {a;} jcz, supported, respectively, on {B;} jcz C B such that

f=> Ajaj in

jez
and
L 1/‘1
1AL, ara, oy ~ infsupb ™" ) 4.1)
HME, (3 (4:R7) LeZ j:z_’w !

where the infimum is taken over all the decompositions of f as above.
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By Lemma 2.7, we obtain

1T s
q.p(-)

L
< Cmax{ sup b A Y phac0) 1T (F) el e »
L<0.LEZ k=—o0

L>0,L€Z oo k=0
=:Cmax{I',J +K'}.

—1 L
sup [bLAq 2 prac(0) HT(f)XkHZp(l) +p LA 2 pkaoe T(f)kaZp(,)] }

For I, J and K’, by the boundedness of 7 on L) we have

. . q
I'<C sup b1t 2 pao0) ( 2 A |||aj}|LP(‘)>

L<0,LEZ k= —oo j=k—o

L k—o—1 q
+C sup b M D pra(®) ( Y AjHT(aj)thp(-))
J—

L<0,LET, [

=1+ 15,

1 oo K
ry<c'y phaelo) ( 3 |||aj||LP(‘)>

k=—o0 j= —

k=—oo

1 k—o—1 gl
e 3 g ( S 7@ )

o
=J+1

and

L>0.L€Z

L
K C sup b~ LAqukqa (2 M’J‘Hal}
j=k—0
k

q
LI’('))
—o0—1

q
+C sup b quzbkqa 2 )LJHT(aj)XkHLp('))
1>0,L€Z ;

J==

When j<k—0o—1,x€C and y € Bj, we have
px—=y)=b%p(x)—p(y) = b px)—b " p(x)=b"(1-1/b)p(x).
From this, Lemma 2.8 and the size condition of a;, we conclude that

baj

T4l % o)

S bj+2_2kHaj||Ll’(-) HXB,’ HLP/(') S b/t H%B/’ H
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Combining the above estimate, Lemma 2.9 and Lemma 2.6, we have

1Taell ey S 672277 x| 12l ot (4.2)
22k~ joi; -
S AP e P
< pit2—k—jo; LCBj HU’/(')
~ H%BkHLp’(.)

< plit2—k=jajp(j—k)&

By this, the density of Ds(R") in HKg(')’f (A; R") and a similar method of Theorem

),

3.2, we can easily complete the proof of Theorem 4.3. We omit its details. [
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