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Abstract. Let A be an expansive dilation on Rn and let (·) ∈ L(Rn) . Also let p(·)
: Rn → (0, ) be a variable exponent function satisfying the globally log-Hölder continuous
condition. In this paper, the authors first introduce the variable anisotropic Herz-Morrey-Hardy

spaces HMK̇(·),q
p(·), (A; Rn) and HMK(·),q

p(·), (A; Rn) , via the non-tangential grand maximal func-
tion, and then establish their atomic decompositions. As applications, the authors obtain the

boundedness of some sublinear operators from HMK̇(·),q
p(·), (A; R

n) to MK̇(·),q
p(·), (A; R

n) and from

HMK(·),q
p(·), (A; Rn) to MK(·),q

p(·), (A; Rn) .

1. Introduction

The theory of Hardy spaces on the Euclidean space Rn plays an important role
in various fields of analysis and partial differential equations; see [5, 10, 16]. It is
well known that the Hardy space is a good substitution of Lp(Rn) when p ∈ (0,1] .
Since some of the singular integrals (for example, the Riesz transform) are bounded on
Hp(Rn) , but not on Lp(Rn) when p ∈ (0,1] . The real-variable theory of Hardy spaces
on the n -dimensional Euclidean space Rn was originally studied by Stein and Weiss
[17] and systematically developed by Fefferman and Stein in a seminal paper [10].

In recent years, the theory of function spaces with variable exponents has been
developed in the papers [6, 14, 15, 18], and applied in fluid dynamics [2], image pro-
cessing [4], partial differential equations and variational calculus and harmonic anal-
ysis. In 2012, Almeida and Drihem [1] introduced the Herz spaces with two variable
exponents and obtained the boundedness of some sublinear operators on those spaces.
In the same year, Wang et al. [19] introduced the Herz-type Hardy spaces with vari-
able exponents HK̇ ,q

p(·)(R
n) and HK ,q

p(·) (R
n) , which are the generalization of classical

Herz-type Hardy spaces. In 2015, Dong et al. [9] introduced the Herz-type Hardy

spaces with two variable exponents HK̇(·),q
p(·) (Rn) and HK(·),q

p(·) (Rn) . In the same year,
Xu et al. [21] also introduced the Herz-Morrey-Hardy spaces with variable exponents

HMK̇(·),q
p(·), (Rn) and HMK(·),q

p(·), (Rn) , and obtained their atomic characterizations.
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On the other hand, extending classic function spaces arising in harmonic analysis
of Euclidean spaces to other domains and non-isotropic settings is an important topic.
For example, in 2003, Bownik [3] introduced the anisotropic Hardy space Hp

A(Rn) . In
2008, Ding et al. [8] introduced the anisotropic Herz-type Hardy space HK̇ ,q

p (A; Rn)
and HK ,q

p (A; Rn) .
Inspired by previous papers, we would like to declare that the goal of this paper

is to introduce new Herz-Morrey-Hardy spaces with variable exponents and give their
applications.

Precisely, this article is organized as follows.
In Section 2, we first recall some notations and definitions concerning expan-

sive dilations, variable exponent, variable Lebesgue space Lp(·)(Rn) and the variable

anisotropic Herz-Morrey spaces MK̇(·),q
p(·), (A; R

n) and MK(·),q
p(·), (A; R

n) . Then, moti-
vated by Xu et al. [21] and Ding et al. [8], we introduce anisotropic Herz-Morrey-
Hardy spaces with variable exponents via non-tangential grand maximal function. The

aim of Section 3 is to establish the atomic characterization of HMK̇(·),q
p(·), (A; R

n) and

HMK(·),q
p(·), (A; Rn) (see Theorem 3.2 below). As applications of the atomic charac-

terization of HMK̇(·),q
p(·), (A; R

n) and HMK(·),q
p(·), (A; R

n) , in Section 4, we obtain the

boundedness of some sublinear operators from HMK̇(·),q
p(·), (A; Rn) to MK̇(·),q

p(·), (A; Rn)

and from HMK(·),q
p(·), (A; Rn) to MK(·),q

p(·), (A; Rn) (see Theorem 4.3 below).

Finally, we make some conventions on notation. Let N := {1, 2, . . .} and Z+ :=
{0}∪N . Denote by S (Rn) the space of all Schwartz functions and S ′(Rn) its dual
space (namely, the space of all tempered distributions). For any  := (1, . . . ,n) ∈
Zn

+ := (Z+)n , let || := 1 + · · · +n and  := ( 
x1

)1 · · · ( 
xn

)n . Throughout the
whole paper, we denote by C a positive constant which is independent of the main
parameters, but it may vary from line to line. The symbol D � F means that D � CF .
If D � F and F � D , we then write D ∼ F . For any q ∈ [1, ] , we denote by q′ its
conjugate index, namely, 1/q + 1/q′ = 1. We also use C( , , ...) to denote a positive
constant depending on the indicated parameters ,  , . . . . If E is a subset of Rn , we
denote by E its characteristic function. If there are no special instructions, any space
X (Rn) is denoted simply by X . For instance, L2(Rn) is simply denoted by L2 . For
any a ∈ R , �a� denotes the maximal integer not larger than a .

2. Preliminaries

In this section, we introduce the definitions of the homogeneous anisotropic Herz-

Morrey-Hardy space with variable exponents HMK̇(·),q
p(·), (A; Rn) and the non-homoge-

neous anisotropic Herz-Morrey-Hardy space with variable exponents HMK(·),q
p(·), (A; Rn) ,

via the non-tangential grand maximal function MN( f ) .
We begin with recalling the notion of an expansive dilation on Rn ; see [3, p. 5]. A

real n×n matrix A is called an expansive dilation, shortly a dilation, if min∈(A) | |>
1, where (A) denotes the set of all eigenvalues of A . Let − and + be two positive
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numbers such that

1 < − < min{| | :  ∈ (A)} � max{| | :  ∈ (A)} < +. (2.1)

In the case when A is diagonalizable over C , we can even take − := min{| | :  ∈
(A)} and + := max{| | :  ∈ (A)} . Otherwise, we need to choose them suffi-
ciently close to these equalities according to what we need in our arguments.

By [3, Lemma 2.2], we have that, for a given dilation A , there exist a number
r ∈ (1, ) and a set  := {x ∈ Rn : |Px| < 1} , where P is some non-degenerate n×n
matrix, such that

⊂ r⊂ A,

and one can and do additionally assume that || = 1, where || denotes the n -dimen-
sional Lebesgue measure of the set  . Let Bk := Ak for k ∈ Z. Then Bk is open,
Bk ⊂ rBk ⊂ Bk+1 and |Bk| = bk , here and hereafter, b := |detA| . An ellipsoid x+Bk

for some x ∈ Rn and k ∈ Z is called a dilated ball. Denote by B the set of all such
dilated balls, namely,

B := {x+Bk : x ∈ R
n, k ∈ Z}. (2.2)

Throughout the whole paper, let  be the smallest integer such that 2B0 ⊂ AB0 and,
for any subset E of Rn , let E� := Rn \E . Then, for all k, j ∈ Z with k � j , it holds
true that

Bk +Bj ⊂ Bj+ , (2.3)

Bk +(Bk+ )� ⊂ (Bk)�, (2.4)

where E +F denotes the algebraic sum {x+ y : x ∈ E, y ∈ F} of sets E, F ⊂ Rn .

DEFINITION 2.1. A quasi-norm, associated with a dilation A , is a Borel measur-
able mapping A : Rn → [0,) , for simplicity, denoted by  , satisfying

(i) (x) > 0 for all x ∈ Rn \ {�0n} , here and hereafter, �0n denotes the origin of Rn ;

(ii) (Ax) = b(x) for all x ∈ Rn , where, as above, b := |detA| ;
(iii) (x+ y) � CA [(x)+(y)] for all x, y ∈ Rn , where CA ∈ [1, ) is a constant

independent of x and y .

In the standard dyadic case A := 2In×n , (x) := |x|n for all x ∈ Rn is an example
of a homogeneous quasi-norm associated with A , here and hereafter, In×n denotes the
n×n unit matrix, | · | always denotes the Euclidean norm in Rn .

It was proved, in [3, p. 6, Lemma 2.4], that all homogeneous quasi-norms associ-
ated with a given dilation A are equivalent. Therefore, for a given dilation A , in what
follows, for simplicity, we always use the step homogeneous quasi-norm  defined by
setting, for all x ∈ Rn ,

(x) := 
k∈Z

bkBk+1\Bk
(x) if x 
=�0n, or else (�0n) := 0.



4 A. WANG

By (2.3), we know that, for all x, y ∈ Rn ,

(x+ y) � b (max{(x), (y)}) � b [(x)+(y)];

see [3, p. 8]. If we let + and − be any numbers satisfying (2.1), then there exists a
constant C2 > 0 such that, for all x ∈ Rn ,

C−1
2 (x)ln+/ lnb � |x| � C2(x)ln−/ lnb for (x) � 1, (2.5)

C−1
2 (x)ln−/ lnb � |x| � C2(x)ln+/ lnb for (x) � 1. (2.6)

Now we recall that a measurable function p(·) : Rn → (0, ) is called a variable
exponent. For any variable exponent p(·) , let

p− := ess inf
x∈Rn

p(x) and p+ := esssup
x∈Rn

p(x). (2.7)

Denote by P the set of all variable exponents p(·) satisfying p− > 1 and p+ <  .
Let f be a measurable function on Rn and p(·) ∈ P . Then the modular function

(or, for simplicity, the modular) p(·) , associated with p(·) , is defined by setting

p(·)( f ) :=
∫

Rn
| f (x)|p(x) dx

and the Luxemburg (also called Luxemburg-Nakano) quasi-norm ‖ f‖Lp(·) by

‖ f‖Lp(·) := inf
{
 ∈ (0, ) : p(·)( f/ ) � 1

}
.

Moreover, the variable Lebesgue space Lp(·) is defined to the set of all measurable
functions f satisfying that p(·)( f ) <  , equipped with the quasi-norm ‖ f‖Lp(·) .

We recall the definition of Hardy-Littlewood maximal function MHL( f ) . For any
f ∈ L1

loc and x ∈ Rn ,

MHL( f )(x) := sup
k∈Z

sup
y∈x+Bk

1
|Bk|

∫
y+Bk

| f (z)|dz = sup
x∈B∈B

1
|B|
∫

B
| f (z)|dz, (2.8)

where B is as in (2.2).
Let B is the set of p(·) ∈ P satisfying the condition that MHL is bounded on

Lp(·) . It is well known that if p(·) ∈ P and satisfies the following global log-Hölder
continuous then p(·) ∈ B .

DEFINITION 2.2. Let g(·) be a real function on Rn .

(1) g(·) is locally log-Hölder continuous, if there exists a constant C > 0 such that

|g(x)−g(y)|� C
log(e+1/|x− y|)

for any x, y ∈ R
n and |x− y|< 1/2.
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(2) g(·) is locally log-Hölder continuous at the origin (or has a log decay at the
origin), if there exists a constant C > 0 such that

|g(x)−g(0)|� C
log(e+1/|x|)

for any x ∈ Rn .

(3) g(·) is locally log-Hölder continuous at infinity (or has a log decay at infinity), if
there exist g ∈ R and a constant C > 0 such that

|g(x)−g| � C
log(e+ |x|)

for any x ∈ Rn .

If g(·) is both local log-Hölder continuous and log-Hölder continuous at infinity,
then g(·) is said to be global log-Hölder continuous.

We denote by P log
0 and P log

 the class of all variable exponents p(·)∈P , which
are log-Hölder continuous at the origin and at infinity respectively. We call p

′
(·) the

conjugate exponent to p(·) , that is p
′
(·) = p(·)

p(·)−1 . We know that p(·)∈B is equivalent

to p
′
(·) ∈ B .
A C function  is said to belong to the Schwartz class S if, for every integer

� ∈ Z+ and multi-index  , ‖‖ ,� := sup
x∈Rn

[(x)]�|(x)| <  . The dual space of

S , namely, the space of all tempered distributions on Rn equipped with the weak-∗
topology, is denoted by S ′ . For any N ∈ Z+ , let

SN :=
{
 ∈ S : ‖‖ ,� � 1, || � N, � � N

}
;

equivalently,

 ∈ SN ⇐⇒ ‖‖SN := sup
| |�N

sup
x∈Rn

[|(x)|max
{
1, [(x)]N

}]
� 1.

In what follows, for  ∈ S , k ∈ Z and x ∈ Rn , let

k(x) := b−k
(
A−kx

)
. (2.9)

Let f ∈ S
′
. The non-tangential maximal function M ( f ) with respect to  is defined

by setting, for any x ∈ Rn ,

M ( f )(x) := sup
y∈x+Bk,k∈Z

{| f ∗k(y)| : x− y ∈ Bk,k ∈ Z}.

The radial maximal function M0
( f ) with respect to  is defined by setting, for any

x ∈ Rn ,

M0
 ( f )(x) := sup

k∈Z

| f ∗k(x)|.
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Moreover, for any given N ∈ N , the non-tangential grand maximal function MN( f ) of
f ∈ S ′ is defined by setting, for any x ∈ Rn ,

MN( f )(x) := sup
∈SN

M( f )(x).

The radial grand maximal function M0
N( f ) of f ∈ S ′ is defined by setting, for any

x ∈ Rn ,

M0
N( f )(x) := sup

∈SN

M0
( f )(x).

In this paper, we denote Ck = Bk \Bk−1 and denote briefly the characteristic func-
tion (Bk\Bk−1) by k . The following definition is from [20].

DEFINITION 2.3. Let 0 < q �  , 0 <  �  , p(·) ∈ P and (·) ∈ L . The

homogeneous variable anisotropic Herz-Morrey space MK̇(·),q
p(·), (A; Rn) and the non-

homogeneous variable anisotropic Herz-Morrey space MK(·),q
p(·), (A; Rn) are defined re-

spectively by setting,

MK̇(·),q
p(·), (A; R

n) :=
{

f ∈ Lp(·)
loc : ‖ f‖

MK̇
(·),q
p(·), (A;Rn)

< 
}

and

MK(·),q
p(·), (A; R

n) :=
{

f ∈ Lp(·)
loc : ‖ f‖

MK(·),q
p(·), (A;Rn)

< 
}

,

where

‖ f‖
MK̇

(·),q
p(·), (A;Rn)

:= sup
L∈Z

2−L

{
L


k=−

‖b(·)k f k‖q
Lp(·)

}1/q

and

‖ f‖
MK(·),q

p(·), (A;Rn)
:= sup

L∈Z

2−L

{
L


k=0

‖b(·)k f k‖q
Lp(·)

}1/q

.

Here, there is the usual modification when q =  .

For 0 < q <  , we denote

Nq :=
{

[(1/q−1) lnb/ ln−]+2, 0 < q � 1,
2, q > 1,

where − is as in Page 2.
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DEFINITION 2.4. Let (·) ∈ L , 0 <  �  , 0 < q �  , p(·) ∈ P and
N > Nq . The homogeneous variable anisotropic Herz-Morrey-Hardy space

HMK̇(·),q
p(·), (A; R

n) and the non-homogeneous variable anisotropic Herz-Morrey-Hardy

space HMK(·),q
p(·), (A; Rn) are defined respectively by setting,

HMK̇(·),q
p(·), (A; R

n) :=
{

f ∈ S
′
: MN( f ) ∈ MK̇(·),q

p(·), (A; R
n)
}

and

HMK(·),q
p(·), (A; R

n) :=
{

f ∈ S
′
: MN( f ) ∈ MK(·),q

p(·), (A; R
n)
}

,

where
‖ f‖

HMK̇(·),q
p(·), (A;Rn)

= ‖MN( f )‖
MK̇(·),q

p(·), (A;Rn)

and
‖ f‖

HMK
(·),q
p(·), (A;Rn)

= ‖MN( f )‖
MK

(·),q
p(·), (A;Rn)

.

REMARK 2.5.

(i) When the exponent functions p(·) and (·) are constant exponents p and  ,
these spaces are still new.

(ii) When the exponent functions (·) :=  ,  := 0 and A := 2In×n , these spaces
are the Herz-type Hardy spaces with variable exponents HK̇ ,q

p(·) and HK ,q
p(·) (see

[19]).

(iii) When A := 2In×n , these spaces are the Herz-Morrey-Hardy spaces with variable

exponents HMK̇(·),q
p(·), and HMK(·),q

p(·), (see [21]).

LEMMA 2.6. [11] Let p(·) ∈B . Then there exist 0 < 1, 2 < 1 depending only
on p(·) and n such that for all B, S ∈ B and S ⊂ B,

‖S‖Lp(·)
‖B‖Lp(·)

� C

( |S|
|B|
)1

and
‖S‖

Lp
′ (·)

‖B‖
Lp

′ (·)
� C

( |S|
|B|
)2

.

LEMMA 2.7. [13] Let q∈ (0, ) , p(·)∈P ,  ∈ [0, ) and (·) ∈ L∩P log
0 ∩

P log
 . If (·) is log-Hölder continuous both at origin and at infinity, then for any

measurable function f ,

‖ f‖q

MK̇(·),q
p(·),

� Cmax

{
sup

L<0,L∈Z

2−Lq
L


k=−

2kq(0)‖ f k‖q
Lp(·) ,

sup
L�0,L∈Z

[
2−Lq

−1


k=−

2kq(0)‖ f k‖q
Lp(·) +2−Lq

L


k=0

2kq ‖ f k‖q
Lp(·)

]}
.
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LEMMA 2.8. [12] Let p(·)∈P . If f ∈ Lp(·) and g∈ Lp′(·) , then f g is integrable
on Rn and ∫

Rn
| f (x)g(x)|dx � Cp‖ f‖Lp(·)‖g‖Lp′(·) ,

where Cp = 1+1/p−−1/p+ .

LEMMA 2.9. [11] Let p(·) ∈ B . Then there exists a positive constant C > 0
such that for all B ∈ B ,

1
|B|‖B‖Lp(·)‖B‖Lp′(·) � C.

3. Atomic decomposition of HMK̇(·),q
p(·), (A; Rn)

In this section, we establish atomic decompositions of the variable anisotropic

Herz-Morrey-Hardy spaces HMK̇(·),q
p(·), (A; Rn) and HMK(·),q

p(·), (A; Rn) . We first begin

with the following notions of anisotropic ((·), p(·), s)-atoms.

DEFINITION 3.1. Let p(·) ∈ P , (·) ∈ L ∩P log
0 ∩P log

 and a non-negative
integer s satisfy s ∈ [(r − 2)lnb/ ln−, ) with 2 as in Lemma 2.6. Here r =
(0) , if r < 0 and r =  , if r > 0.

(1) An anisotropic central ((·), p(·), s)-atom is a measurable function a on Rn

satisfying

(i) (support) suppa ⊂ Br , where Br ∈ B and B is as in (2.2);

(ii) (size) ‖a‖Lp(·) � |Br|−r ;

(iii) (vanishing moment)
∫
Rn a(x)xdx = 0 for any  ∈ Z

n
+ with | | � s .

(2) An anisotropic central ((·), p(·), s)-atom of restricted type is a measurable
function a on Rn satisfying

(i) suppa ⊂ Br , r � 0, where Br ∈ B and B is as in (2.2);

(ii) ‖a‖Lp(·) � |Br|− ;

(iii)
∫
Rn a(x)xdx = 0 for any  ∈ Zn

+ with | | � s .

THEOREM 3.2. Let p(·)∈B , 0 < q < , 0 �  < , (·) ∈ L∩P log
0 ∩P log

 ,
(·) � 2 and 2 � (0),  <  , where 2 is as in Lemma 2.6.

(i) f ∈ HMK̇(·),q
p(·), (A; Rn) if and only if

f = 
j∈Z

 ja j in S
′
,
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where each a j is a central ((·), p(·), s)-atom with support contained in Bj and

sup
L∈Z

b−L

(
L


j=−

| j|q
)1/q

< .

Moreover,

‖ f‖
HK̇(·),q

p(·), (A;Rn)
∼ inf sup

L∈Z

b−L

(
L


j=−

| j|q
)1/q

,

where the infimum is taken over all above decompositions of f .

(ii) f ∈ HMK(·),q
p(·), (A; R

n) if and only if

f = 
j∈Z+

 ja j in S
′
,

where each a j is a central ((·), p(·), s)-atom of restricted type with support
contained in Bj and

sup
L∈Z+

b−L

(
L


j=0

| j|q
)1/q

< .

Moreover,

‖ f‖
HMK

(·),q
p(·), (A;Rn)

∼ inf sup
L∈Z+

b−L

(
L


j=0

| j|q
)1/q

,

where the infimum is taken over all above decompositions of f .

To prove Theorem 3.2, we need the following technical lemmas.

LEMMA 3.3. Let p(·) , (·) , s be as in Definition 3.1, j ∈ N and a j be a central
((·), p(·), s)-atom with support contained in B j . Then we have, for any x ∈Ck with
k � j + +1 , k ∈ Z , and  ∈ SN ,

MN(a j)(x) � b− j j− j‖Bj‖Lp′(·)
(
b s+1

−
)−m

, (3.1)

where m = k− j−−1 .

Proof. For any x ∈ Ck,  ∈ SN , j,r ∈ Z and a polynomial Ps of degree � s , by
the vanishing moment of a j , we have

|a j ∗r(x)| = b−r

∣∣∣∣∫
Rn

a j(y)
(
A−r(x− y)

)
dy

∣∣∣∣
= b−r

∣∣∣∣∫
Bj

a j(y)
[

(
A−r(x− y)

)−Ps
(
A−r(x− y)

)]
dy

∣∣∣∣
� b−r

∫
Bj

|a j(y)|dy sup
y∈A−rx+Bj−r

|(y)−Ps(y)|.
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Since x ∈Ck with k � j+ +1, then x ∈ Bj++m+1/Bj++m , where m = k− j−−
1 � 0. Therefore,

A−rx+Bj−r ⊆ A−r (Bj++m+1/Bj++m
)
+Bj−r

= Aj−r [(B+m+1/B+m)+B0]

⊆ Aj−r (Bm)� = (Bm+ j−r)� .

If j � r , then we choose Ps ≡ 0, and

sup
y∈A−rx+Bj−r

|(y)−Ps(y)| � sup
y∈(Bm+ j−r)�

min
(
1, (y)−N)� b−N(m+ j−r).

If j < r , then we choose Ps to be the Taylor expansion of  at the point A−rx of order
s . Therefore, by (2.5), we obtain

sup
y∈A−rx+Bj−r

|(y)−Ps(y)| � sup
z∈Bj−r

sup
∈(0,1)

sup
| |=s+1

∣∣ (A−rx+ z
)∣∣ |z|s+1

�  (s+1)( j−r)
− sup

y∈A−rx+Bj−r

min
(
1, (y)−N)

�  (s+1)( j−r)
− min

(
1, b−N(m+ j−r)

)
.

Combining the above two estimates and [3, Proposition 3.10], for any x ∈ Bj++m+1 \
Bj++m , we have

MN(a j)(x) = sup
∈SN

sup
r∈Z

|(a j ∗r)(x)|

� b− j j− j‖Bj‖Lp′(·) max

[
sup

r∈Z,r� j
b( j−r)b−N(m+ j−r),

C sup
r∈Z,r> j

b( j−r) (s+1)( j−r)
− min

(
1, b−N(m+ j−r)

)]
.

We find that, when r = j , the supremum over r � j is attained, when j−r+m = 0, the
supremum over r > j is attained. Since b s+1

− � bN with N � s+2, it suffices to check
the maximum value for j < r � j+m and j � r+m . For any x ∈ Bj++m+1/Bj++m

with m � 0, we have

MN(a j) � b− j j− j‖Bj‖Lp′(·) max
[
b−Nm, C

(
b s+1

−
)−m

]
� b− j j− j‖Bj‖Lp′(·)

(
b s+1

−
)−m

. �

Proof of Theorem 3.2. We only need to prove (i). (ii) can be proved in the similar
way. The proof is divided into 2 steps.

Step 1. In this step, we show the sufficiency of Theorem 3.2. We assume that
f =  j∈Z ja j in S

′
, where each a j is a central ((·), p(·), s)-atom with support
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contained in Bj and

sup
L∈Z

b−L

(
L


j=−

| j|q
)1/q

< .

By Lemma 2.7, we have

‖MN( f )‖q

MK̇
(·),q
p(·),

� Cmax

{
sup

L<0,L∈Z

b−Lq
L


k=−

bkq(0) ‖MN( f )k‖q
Lp(·) ,

sup
L∈Z+

[
b−Lq

−1


k=−

bkq(0)‖MN( f )k‖q
Lp(·) +b−Lq

L


k=0

bkq ‖MN( f )k‖q
Lp(·)

]}
=: Cmax{I, J+K}.

For I, J and K, by the boundedness of MN on Lp(·) and f =  j∈Z ja j in S
′
,

we obtain

I � C sup
L<0,L∈Z

b−Lq
L


k=−

bkq(0)

(



j=k−

| j|
∥∥a j
∥∥

Lp(·)

)q

+C sup
L<0,L∈Z

b−Lq
L


k=−

bkq(0)

(
k−−1


j=−

| j|
∥∥MN(a j)k

∥∥
Lp(·)

)q

=: I1 + I2,

J � C sup
L�0,L∈Z

b−Lq
−1


k=−

bkq(0)

(



j=k−

| j|
∥∥a j
∥∥

Lp(·)

)q

+C sup
L�0,L∈Z

b−Lq
−1


k=−

bkq(0)

(
k−−1


j=−

| j|
∥∥MN(a j)k

∥∥
Lp(·)

)q

=: J1 + J2

and

K � C sup
L�0,L∈Z

b−Lq
L


k=0

bkq

(
+


j=k−

| j|
∥∥a j
∥∥

Lp(·)

)q

+C sup
L�0,L∈Z

b−Lq
L


k=0

bkq

(
k−−1


j=−

| j|
∥∥MN(a j)k

∥∥
Lp(·)

)q

=: K1 +K2.

To deal with I, J and K, we consider two cases: 0 < q � 1 and 1 < q <  .
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Case 1. When 0 < q � 1, by the size condition of a j and the fact that  j = (0) ,
if j < 0 and  j =  , if j > 0, we have

I1 � sup
L<0,L∈Z

b−Lq
L


k=−

bkq(0)

(



j=k−

| j|b− j j

)q

� sup
L<0,L∈Z

b−Lq
L


k=−

bkq(0)

( −1


j=k−

| j|qb− jq(0) +



j=0

| j|qb− jq

)

� sup
L<0,L∈Z

b−Lq
L


k=−

−1


j=k−

| j|qb(k− j)q(0)

+ sup
L<0,L∈Z

b−Lq
L


k=−




j=0

| j|qbkq(0)b− jq

� sup
L<0,L∈Z

b−Lq
−1


j=−

| j|q
j+


k=−

b(k− j)q(0)

+ sup
L<0,L∈Z

b−Lq



j=0

| j|q
L


k=−

bkq(0)b− jq .

From
j+


k=−

b(k− j)q(0) ∼ 1,

we further deduce that

I1 � sup
L<0,L∈Z

b−Lq
L


j=−

| j|q + sup
L<0,L∈Z

b−Lq
−1


j=L

| j|q
j+


k=−

b(k− j)q(0)

+ sup
L<0,L∈Z

b−Lq



j=0

| j|q
L


k=−

bkq(0)b− jq

� sup
L<0,L∈Z

b−Lq
L


j=−

| j|q + sup
L<0,L∈Z

b−Lq
−1


j=L

| j|q
j+


k=−

b(k− j)q(0)

+ sup
L<0,L∈Z

b−Lq
L


j=−

| j|q sup
L<0,L∈Z




j=0

b(−) jq
L


k=−

bkq(0)−Lq

� sup
L∈Z

b−Lq
L


j=−

| j|q.

For any j < 0, using the same estimate of (3.1), we have

‖MN(a j)k‖q
Lp(·) � b− jq(0)− jq(b s+1

− )( j++1−k)q‖Bj‖q

Lp′(·)‖Bk‖q
Lp(·) . (3.2)
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From this, Lemmas 2.9 and 2.6 and the fact that −(s+1)
− b(0)−2 < 1, we conclude that

I2 � sup
L<0,L∈Z

b−Lq
L


k=−

bkq(0)
k−−1


j=−

| j|qb− jq(0)− jq(b s+1
−
)( j++1−k)q

×‖Bj‖q

Lp′(·)‖Bk‖q
Lp(·)

� sup
L<0,L∈Z

b−Lq
L


k=−

k−−1


j=−

| j|q
(
−(s+1)
− b(0)−2

)(k− j)q

� sup
L<0,L∈Z

b−Lq
L−−1


j=−

L


k= j++1

| j|q
(
−(s+1)
− b(0)−2

)(k− j)q

� sup
L∈Z

b−Lq
L


j=−

| j|q.

By the size condition of a j and the fact that  j =(0) , if j < 0 and  j = , if j > 0,
we obtain that

J1 ∼ sup
L�0,L∈Z

b−Lq
−1


k=−

bkq(0)

(



j=k−

| j|‖a j‖Lp(·)

)q

� sup
L�0,L∈Z

b−Lq
−1


k=−

bkq(0)

( −1


j=k−

| j|qb− jq(0) +



j=0

| j|qb− jq

)

∼ sup
L�0,L∈Z

b−Lq

[ −1


k=−

−1


j=k−

b(k− j)q(0)| j|q +
−1


k=−




j=0

bkq(0)b− jq| j|q
]

� sup
L�0,L∈Z

b−Lq
−1


j=−

| j|q
j+


k=−

b(k− j)q(0) + sup
L�0,L∈Z

b−Lq



j=0

| j|q
−1


k=−

bkq(0)

� sup
L∈Z

b−Lq
L


j=−

| j|q.

From (3.2), Lemmas 2.9 and 2.6, we obtain

J2 � sup
L�0,L∈Z

b−Lq
−1


k=−

bkq(0)
k−−1


j=−

| j|qb− jq(0)− jq(b s+1
−
)( j++1−k)q

×‖Bj‖q

Lp′(·)‖Bk‖q
Lp(·)

� sup
L�0,L∈Z

b−Lq
−1


k=−

k−−1


j=−

| j|q
(
−(s+1)
− b(0)−2

)(k− j)q

� sup
L�0,L∈Z

b−Lq
−−2


j=−

| j|q
−1


k= j++1

(
−(s+1)
− b(0)−2

)(k− j)q

� sup
L∈Z

b−Lq
L


j=−

| j|q.
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By a similar method of J1 and J2 , respectively, we can obtain

K1 � sup
L∈Z

b−Lq
L


j=−

| j|q and K2 � sup
L∈Z

b−Lq
L


j=−

| j|q.

Case 2. When 1 < q � , by the size condition of a j and the fact that  j = (0) ,
if j < 0 and  j =  , if j > 0, the Hölder inequality, we have

I1 ∼ sup
L<0,L∈Z

b−Lq
L


k=−

bkq(0)

(



j=k−

| j|‖a j‖Lp(·)

)q

∼ sup
L<0,L∈Z

b−Lq
L


k=−

bkq(0)

( −1


j=k−

| j|b− j(0) +



j=0

| j|b− j

)q

� sup
L<0,L∈Z

b−Lq
L


k=−

( −1


j=k−

| j|q b(k− j)(0)q/2

)
×
( −1


j=k−

b(k− j)(0)q′/2

)q/q′

+ sup
L<0,L∈Z

b−Lq
L


k=−

bkq(0)

(



j=0

| j|q b− jq/2

)
×
(




j=0

b− jq′/2

)q/q′

� sup
L<0,L∈Z

b−Lq
L


k=−

−1


j=k−

| j|q b(k− j)(0)q/2

+ sup
L<0,L∈Z

b−Lq
L


k=−




j=0

| j|q b− jq/2 bkq(0)

� sup
L<0,L∈Z

b−Lq
−1


j=−

| j|q
j+


k=−

b(k− j)(0)q/2

+ sup
L<0,L∈Z

b−Lq



j=0

b− jq | j|q b(−/2) jq
L


k=−

bkq(0)

� sup
L∈Z

b−Lq
L


j=−

| j|q.

From (3.2) and the Hölder inequality, we conclude that

I2 ∼ sup
L<0,L∈Z

b−Lq
L


k=−

bkq(0)

(
k−−1


j=−

| j|‖MNajBk‖Lp(·)

)q

� sup
L<0,L∈Z

b−Lq
L


k=−

[
k−−1


j=−

| j|
(
−(s+1)
− b(0)−2

)(k− j)
]q
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� sup
L<0,L∈Z

b−Lq
L


k=−

[
k−−1


j=−

| j|q
(
−(s+1)
− b(0)−2

)(k− j)q/2
]

×
(

k−−1


j=−

(
−(s+1)
− b(0)−2

)(k− j)q′/2
)q/q′

� sup
L<0,L∈Z

b−Lq
L−−1


j=−

| j|q
L


k= j++1

(
−(s+1)
− b(0)−2

)(k− j)q/2

� sup
L∈Z

b−Lq
L


j=−

| j|q.

From (3.1) and a similar proof of I1 and I2 , we deduce that

J1 � sup
L∈Z

b−Lq
L


j=−

| j|q J2 � sup
L∈Z

b−Lq
L


j=−

| j|q

and

K1 � sup
L∈Z

b−Lq
L


j=−

| j|q K2 � sup
L∈Z

b−Lq
L


j=−

| j|q.

This establishes the estimate we wanted.

Step 2. In this step, we prove the necessity of Theorem 3.2. Choosing  ∈ S

such that
∫
Rn (x)dx = 1. For any f ∈ HMK(·),q

p(·), (A; Rn) , set f (k) := f ∗ k , where

k(·) := b−k
(
A−k·) . From [3, Lemma 3.8], we obtain that f (k) → f in S ′ . Now we

divide Step 2 into two substeps.

Substep 1. We show that, for any x ∈ Rn ,

f (i)(x) = 
j∈Z

 ja
(i)
j (x),

where a(i)
j is a ((·), p(·), s)-atom with suppa(i)

j ⊂ Bk+2 ,  j is independent of i and

sup
L∈Z

b−L

(
L


j=−

| j|q
)1/q

� ‖MN f‖
MK̇(·),q

p(·), (A;Rn)
.

Let  ∈ C
0 such that 0 �  � 1, supp ⊂ C

′
0 := C−1 ∪C0 ∪C1 and (x) = 1 if

x ∈C0 . Let (k)(·) = (A−k·) for k ∈ Z . Then we observe that

supp(k) ⊂C
′
k := Ck−1∪Ck ∪Ck+1.

Let

k(x) :=

{ (k)(x)
 j∈Z( j)(x)

, if x 
= 0,

0, if x = 0.
(3.3)
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Then we obtain, for any x 
= 0

k ∈C
0 , suppk ⊂C

′
k, 0 � k(x) � 1 and 

k∈Z

k(x) = 1.

Let k(x) = |C′
k|−1

C
′
k
(x) . Then we have

f (i)(x) = f (i)(x)
k∈Z

k(x)

= 
k∈Z

[
f (i)(x)k(x)−

(∫
Rn

f (i)(y)k(y)dy

)
k(x)

]
+ 

k∈Z

(∫
Rn

f (i)(y)k(y)dy

)
k(x)

=: I(i)
1 +I

(i)
2 .

Let us deal with I
(i)
1 . Let

g(i)
k (x) := f (i)(x)k(x)−

(∫
Rn

f (i)(y)k(y)dy

)
k(x)

and

a(i)
1,k(x) =

g(i)
k (x)
1,k

, 1,k = C1b
k+1(k+1)

k+1


j=k−1

‖MN f  j‖Lp(·) ,

where C1 is a constant which will be chosen later. Then we know that

suppa(i)
1,k ⊂ Bk+1,

∫
Rn

a(i)
1,k(x)dx = 0.

Moreover,
I

(i)
1 = 

k∈Z

1,ka
(i)
1,k(x).

From the Hölder inequality, we conclude that

‖g(i)
k ‖Lp(·) � ‖ f (i)k‖Lp(·) � C2

j=k+1


j=k−1

‖MN f‖Lp(·) .

Choose C1 = C2 ; then we obtain that

‖a(i)
1,k‖Lp(·) � |Bk+1|−k+1

and a(i)
1,k is a ((·), p(·), s)-atom with suppa(i)

1,k ⊂ Bk+1 . Therefore,

sup
L∈Z

b−Lq
L


k=−

|k|q � sup
L∈Z

b−Lq
L


k=−

|Bk+1|qk+1

(
j=k+1


j=k−1

‖MN f  j‖Lp(·)

)q

� sup
L∈Z

b−Lq
L


k=−

|Bk+1|qk+1‖MN f  j‖q
Lp(·) .



VARIABLE ANISOTROPIC HERZ-MORREY-HARDY SPACES 17

If L � 0, then

sup
L∈Z

b−Lq
L


k=−

|k|q � sup
L∈Z

b−Lq
L


k=−

bkq(0)‖MN f  j‖q
Lp(·)

� ‖MN f‖q

MK̇(·),q
p(·),

.

If L > 0, then

sup
L∈Z

b−Lq
L


k=−

|k|q � sup
L∈Z

b−Lq
−2


k=−

b(k+1)q(0)‖MN f  j‖q
Lp(·)

+ sup
L∈Z

b−Lq
L


k=−1

b(k+1)q‖MN f  j‖q
Lp(·)

� ‖MN f‖q

MK̇
(·),q
p(·),

.

Next we deal with I
(i)
2 ,

I
(i)
2 = 

k∈Z

(
k


j=−

∫
Rn

f (i)(y) j(y)dy

)
(k(x)−k+1(x))

=: 
k∈Z

h(i)
k (x).

Let a(i)
2,k = h(i)

k /2,k , where 2,k = C3b(k+2)k+2 k+2
j=k−1 ‖MN f  j‖Lp(·) , C3 is a constant

to be determined later. Then we have

suppa(i)
2,k ⊂ Bk+2,

∫
Rn

a(i)
2,k(x)dx = 0.

Moreover,
I

(i)
2 = 

k∈Z

2,ka
(i)
2,k(x).

Denote (x) := −2
j=− j(x) , where  j is as in (3.3). From supp j ⊂ C

′
j and

{C′
j}−2

j=− has bounded overlapping, i.e., −2
j=− C

′
j
� C , we know that  ∈ C

0 and

 ∈ S . Notice that

k


j=−

 j(x) = (A−k−2x) = bk+2k+2(x),

where k+2 is as in (2.9). By [3, Lemma 6.6], we conclude that, for any x ∈ Bk+2 ,∣∣∣∣∣ k


j=−

∫
Rn

f (i)(y) j(y)dy

∣∣∣∣∣= bk+2

∣∣∣∣∫
Bk+2

f (i)(y) j(y)dy

∣∣∣∣
� bk+2‖̃‖SN+2MN+2( f (i))(x)

� Cbk+2MN f (x),
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where ̃(y) = (−y) and C is a constant dependent of N .
It is obvious that, for any x ∈ Rn

|k(x)−k+1(x)| � b−k−2
k+2


j=k−1

 j(x).

Thus we obtain

‖h(i)
k ‖Lp(·) � C4

k+2


j=k−1

‖MN f  j‖Lp(·) .

Choose C3 = C4 ; we know that a(i)
2,k is a ((·), p(·), s)-atom with suppa(i)

2,k ⊂ Bk+2 .
Moreover,

sup
L∈Z

b−Lq
L


k=−

|2,k|q � sup
L∈Z

b−Lq
L


k=−

|Bk+2|qk+1

(
j=k+1


j=k−1

‖MN f  j‖Lp(·)

)q

� ‖MN f‖q

MK̇(·),q
p(·), (A;Rn)

.

From this, we further conclude that, for any x ∈ R
n

f (i)(x) = 
j∈Z

 ja
(i)
j (x),

where a(i)
j is a ((·), p(·), s)-atom with suppa(i)

j ⊂ Bk+2 ,  j is independent of i and

sup
L∈Z

b−L

(
L


j=−

| j|q
)1/q

� ‖MN f‖
MK̇

(·),q
p(·), (A;Rn)

.

Notice that
sup
i∈N

‖a(i)
0 ‖Lp(·) � |B2|−2 .

Combining the Banach-Alaoglu theorem, we obtain a subsequence {a(in0)
0 } of {a(i)

0 }
converging in the w∗ topology of Lp(·) to some a0 ∈ Lp(·) . It is obvious that a0 is a
central ((·), p(·), s)-atom with suppa0 ⊂ B2 . Next, since

sup
in0∈N

‖a(in0)
0 ‖Lp(·) � |B3|−3 ,

applying Banach-Alaoglu theorem, we obtain that there exists a subsequent {a(in1 )
1 }

of {a(in0)
1 } converging in the w∗ topology of Lp(·) to a central ((·), p(·), s)-atom

a1 with suppa1 ⊂ B3 . Repeating the above procedure for any j ∈ Z , we can find a

subsequence {a(in j )
j } of {a(i)

j } converging in the w∗ topology of Lp(·) to a central
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((·), p(·), s)-atom a j with suppa j ⊂ Bj+2 . By usual diagonal method we get a sub-

sequence {i} of N such that for any j ∈ N , lim→ a(i )
j = a j in the w∗ topology of

Lp(·) and therefore in S
′
.

Substep 2. In this substep, we prove

f = 
j∈Z

 ja j in S
′
. (3.4)

For any  ∈ S , observe that

suppa(i )
j ⊂Cj−1 ∪Cj ∪Cj+1∪Cj+2.

From this, we have

〈 f , 〉 = lim
→ 

j∈Z

 j

∫
Rn

a(i )
j (x)(x)dx.

If j +1 � 0, then, by Lemma 2.8, the size condition of a(i)
j , Lemmas 2.9 and 2.6, we

obtain∣∣∣∣∫
Rn

a(i)
j (x)(x)dx

∣∣∣∣ = ∣∣∣∣∫
Rn

a(i )
j (x)((x)−(0))dx

∣∣∣∣
� sup

y∈Bj+2

sup
| |=1

| (y)|
∫

Bj+2

∣∣∣a(i)
j (x)

∣∣∣ |x|dx

� b( j+1) ln−/ lnb
∫

Bj+2

∣∣∣a(i )
j (x)

∣∣∣ dx

� b( j+1) ln−/ lnb
∥∥∥a(i )

j

∥∥∥
Lp(·) ‖Bj+2‖Lp

′ (·)

� b( j+1)(ln−/ lnb− j+2)
( |Bj+2|

|B2|
)2

‖B2‖Lp
′ (·)

� b( j+1)(ln−/ lnb+2− j+2) |B2|
|B0| ‖B0‖Lp

′ (·)

� b( j+1)(ln−/ lnb+2− j+2) inf

{
 > 0 :

∫
B0

−p
′
(x) � 1

}
� b( j+1)(ln−/ lnb+2− j+2) inf

{
0 <  � 1 :

∫
B0

−p
′
+ � 1

}
� b( j+1)(ln−/ lnb+2− j+2).

If j +1 > 0, choose k0 ∈ Z+ such that min{k0 +0 −1, k0 +−1} > 0, then by a
similar proof of the above, we get∣∣∣∣∫

Rn
a(i)

j (x)(x)dx

∣∣∣∣ � ∫
Rn

∣∣∣a(i )
j (x)

∣∣∣((x))−k0 dx

� b− jk0

∥∥∥a(i )
j

∥∥∥
Lp(·) ‖Bj+2‖Lp

′ (·)
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� b− j(k0+ j+2)
∥∥∥Bj+2

∥∥∥
Lp

′ (·)

� b− j(k0+ j+2−1).

Let

 j :=
{∣∣ j

∣∣b( j+1)(ln−/ lnb+2− j+2), j +1 � 0,

| j|b− j(k0+ j+2−1), j +1 > 0.

By the Hölder inequality, we obtain

sup
L∈Z

b−L
L


j=−

| j| �
(

sup
L∈Z

b−Lq
L


j=−

| j|q
)1/q

� ‖MN f‖
MK̇(·),q

p(·), (A;Rn)

and

| j|
∣∣∣∣∫

Rn
a(i )

j (x)(x)dx

∣∣∣∣ � | j|.

From the dominated convergence theorem, we further conclude that

〈 f , 〉 = 
j∈Z

lim
→

 j

∫
Rn

a(i )
j (x)(x)dx = 

j∈Z

 j

∫
Rn

a j(x)(x)dx,

which implies that (3.4) holds true. This finishes the proof of Theorem 3.2. �

4. Applications

In this section, as an application of the atomic characterization of HMK̇(·),q
p(·), (A; Rn)

in Theorem 3.2, we obtain the boundedness of some sublinear operators from

HMK̇(·),q
p(·), (A; Rn) to MK̇(·),q

p(·), (A; Rn) and from HMK(·),q
p(·), (A; Rn) to MK(·),q

p(·), (A; Rn) .

DEFINITION 4.1. For s ∈ Z+ , let D(Rn) be the space of infinitely differentiable
complex-valued functions with compact supported in R

n .

Ds(Rn) =
{

f ∈ D(Rn) :
∫

Rn
f (x)x dx = 0, for all | | � s

}
and

Ḋs(Rn) = { f ∈ Ds(Rn),0 /∈ supp f} .

The following lemma is very important in this section. Its proof is similar to [22,
Lemma 3.2]. The concrete details are omitted.

LEMMA 4.2. Let p(·) ∈ B , 0 < q <  , (·) ∈ L ∩P log
0 ∩P log

 such that
max{n1,n2} � (0),  <  , where 1 and 2 are as in Lemma 2.6. 0 �  �
1/2min{(0), } . Let s be a non-negative integer such that s � [max{(0), }−
min{n1,n2}] . Then
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(i) Ḋs(Rn) is dense in HK̇(·),q
p(·), (A; Rn);

(ii) Ds(Rn) is dense in HK(·),q
p(·), (A; Rn) .

THEOREM 4.3. Let p(·)∈P , 0 < q < , 0 �  < , (·)∈ L∩P log
0 ∩P log

 ,
(·) � 2 and 2 � (0),  < 2 + ln−/ lnb, where 2 is as in Lemma 2.6. If a
sublinear operator T satisfies that

(i) T is bounded on Lp(·) ;

(ii) For any f ∈ Lp(·) with supp f ⊂ Bj and∫
Bj

f (x)dx = 0,

T ( f ) satisfies the size condition

|T ( f )(x)| � bk‖ f‖L1

((x))2 , if inf
y∈Bj

(x− y) � b−
(

1− 1
b

)
(x).

Then there exists a positive constant C independent of f such that, for any f ∈
HMK̇(·),q

p(·), (A; Rn) and f ∈ HMK(·),q
p(·), (A; Rn) , respectively,

‖T ( f )‖
MK̇

(·),q
p(·), (A;Rn)

� C‖ f‖
HMK̇

(·),q
p(·), (A;Rn)

and

‖T ( f )‖
MK(·),q

p(·), (A;Rn)
� C‖ f‖

HMK(·),q
p(·), (A;Rn)

.

Proof of Theorem 4.3. We only need to prove the homogeneous case. The non-

homogeneous case can be proved in the similar way. Let f ∈ HMK̇(·),q
p(·), (A; Rn) .

From Theorem 3.2, we know that there exist { j} j∈N ⊂ C and a sequence of central
((·), p(·), s)-atoms, {a j} j∈Z , supported, respectively, on {Bj} j∈Z ⊂ B such that

f = 
j∈Z

 ja j in S ′

and

‖ f‖
HMK̇

(·),q
p(·), (A;Rn)

∼ inf sup
L∈Z

b−L

(
L


j=−

| j|q
)1/q

, (4.1)

where the infimum is taken over all the decompositions of f as above.
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By Lemma 2.7, we obtain

‖T ( f )‖q

MK̇
(·),
q, p(·)

� Cmax

{
sup

L<0,L∈Z

b−Lq
L


k=−

bkq(0)‖T ( f )k‖q
Lp(·) ,

sup
L�0,L∈Z

[
b−Lq

−1


k=−

bkq(0) ‖T ( f )k‖q
Lp(·) +b−Lq

L


k=0

bkq ‖T ( f )k‖q
Lp(·)

]}
=: Cmax{I′, J′ +K′}.

For I′, J′ and K′ , by the boundedness of T on Lp(·) , we have

I′ � C sup
L<0,L∈Z

b−Lq
L


k=−

bkq(0)

(



j=k−

| j|
∥∥a j
∥∥

Lp(·)

)q

+C sup
L<0,L∈Z

b−Lq
L


k=−

bkq(0)

(
k−−1


j=−

| j|
∥∥T (a j)k

∥∥
Lp(·)

)q

=: I′1 + I′2,

J′ � C
−1


k=−

bkq(0)

(



j=k−

| j|
∥∥a j
∥∥

Lp(·)

)q

+C
−1


k=−

bkq(0)

(
k−−1


j=−

| j|
∥∥T (a j)k

∥∥
Lp(·)

)q

=: J′1 + J′2

and

K′ � C sup
L�0,L∈Z

b−Lq
L


k=0

bkq(0)

(
L


j=k−

| j|
∥∥a j
∥∥

Lp(·)

)q

+C sup
L�0,L∈Z

b−Lq
L


k=0

bkq(0)

(
k−−1


j=−

| j|
∥∥T (a j)k

∥∥
Lp(·)

)q

=: K′
1 +K′

2.

When j � k− −1, x ∈Ck and y ∈ Bj , we have

(x− y) � b−(x)−(y) � b−(x)−b−−1(x) = b− (1−1/b)(x).

From this, Lemma 2.8 and the size condition of a j , we conclude that

|Ta j| � b j‖a j‖L1

((x))2 � b j+2−2k‖a j‖Lp(·)‖Bj‖Lp
′ (·) � b j+2−2k− j j‖Bj‖Lp

′ (·) .
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Combining the above estimate, Lemma 2.9 and Lemma 2.6, we have

‖Ta jk‖Lp(·) � b j+2−2k− j j‖Bj‖Lp
′ (·)‖Bk‖Lp(·) (4.2)

� b j+2−2k− j j |Bk|‖Bk‖−1

Lp
′ (·)‖Bj‖Lp

′ (·)

� b j+2−k− j j
‖Bj‖Lp

′ (·)

‖Bk‖Lp
′ (·)

� b j+2−k− j jb( j−k)2 .

By this, the density of Ḋs(Rn) in HK̇(·),q
p(·), (A; R

n) and a similar method of Theorem
3.2, we can easily complete the proof of Theorem 4.3. We omit its details. �
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