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NEW REFINEMENTS OF ACZÉL–TYPE

INEQUALITIES AND THEIR APPLICATIONS

LAM T. T. TAM AND HUYNH M. HIEN ∗

(Communicated by M. Krnić)

Abstract. In this paper we provide new refinements of Aczél-type inequality and give some
applications. Furthermore, we show that two of three theorems in the work by J. Tian and M.-H.
Ha (J. Math. Inequal. 12 (1) (2018), 175–189) are incorrect whereas the proof of the other is
technically wrong. We establish an improvement of the correctly stated theorem with a simple
proof and give counterexamples to the wrong ones.

1. Introduction

The famous Aczél’s inequality states as follows.

THEOREM. Let n ∈ N
+, n � 2 , and let ai,bi (i = 1, . . . ,n) be real numbers such

that a2
1−n

i=2 a2
i > 0 and b2

1−n
i=2 b2

i > 0 . Then

(
a2

1−
n


i=2

a2
i

)(
b2

1−
n


i=2

b2
i

)
�
(

a1b1−
n


i=2

aibi

)2

. (1)

Inequality (1) was introduced by J. Aczél [1] in 1956. Since then it has had sev-
eral applications in the theory of functional equations in non-Euclidean geometry and
motivated a large number of research papers with various generalizations, refinements
and applications (see [2, 4, 5, 6, 9, 10]). Among them, the work by Tian and Ha [6]
provided some interesting properties and refinements of Aczél-type inequalities. Let us
recall the first main result in [6].

THEOREM A. ([6, Theorem 2.2]) Let n, m ∈ N
+, n � 2 , let 1 � · · · � m > 0

with
m

j=1

1
 j

� 1 , and let ar j > 0 (r = 1, . . . ,n; j = 1, . . . ,m) be such that a
 j
1 j−

n


r=2
a
 j
r j >

0 ( j = 1, . . . ,m). Denote

(n) =
m


j=1

(
a
 j
1 j −

n


r=2

a
 j
r j

) 2
 j

, (n) =

(
m


j=1

a1 j −
n


r=2

m


j=1

ar j

)2

,
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and
V (n) = (n)−(n).

Then

V (n+1) � V (n) � 0.

This theorem is correctly stated, but its proof in [6] is too long (7 pages) and
technically wrong. Thus, in that proof, the authors showed that (n + 1)−(n) �
(n) , where (n) is the quantity in the right hand side of (13) in [6, p. 179]. It then
follows that (n+1)−(n)−(n) � (n)−(n) , which is mathematically wrong.
In this paper we will provide a similar result with a weaker assumption and prove it by
a very short and simple proof.

Back to 1979, Vasić and Pečarić [7] presented an extension of Popoviciu’s inequal-
ity [3], which is a generalization of Aczél’s inequality:

THEOREM B. ([7]) Let n,m ∈ N
+, n � 2 and let  j > 0 ( j = 2, . . . ,m) with

m

j=1

1
 j

� 1 , and let ar j > 0 (r = 1, . . . ,n; j = 1, . . . ,m) be such that a
 j
1 j −n

r=2 a
 j
r j > 0

( j = 1, . . . ,m) . Then

m


j=1

(
a
 j
1 j −

n


r=2

a
 j
r j

) 1
 j

�
m


j=1

a1 j −
n


r=2

m


j=1

ar j. (2)

In 2012, Tian [4] provided a reversed version of (2) stated as follows.

THEOREM C. ([4, Corollary 2.6]) Let n,m ∈ N
+, n � 2 and let 1 �= 0,  j < 0

( j = 2, . . . ,m) with
m

j=1

1
 j

� 1 , and let ar j > 0 (r = 1, . . . ,n; j = 1, . . . ,m) be such that

a
 j
1 j −n

r=2 a
 j
r j > 0 ( j = 1, . . . ,m) . Then

m


j=1

(
a
 j
1 j −

n


r=2

a
 j
r j

) 1
 j

�
m


j=1

a1 j −
n


r=2

m


j=1

ar j. (3)

However, we will see in Proposition 1 below that the right hand side of inequality
(3) is negative in the case of 1 < 0 and this inequality becomes trivial. In the present
paper we will give refinements of Theorems B and C and their applications.

In addition, back to the work by Tian and M.-H. Ha [6], Theorems 2.3 and 2.4 are
incorrect. As a consequence, all the corollaries of those theorems are also not true. Let
us recall those theorems.

THEOREM D. ([6, Theorem 2.3]) Let n,m ∈ N
+ , n � 2, let 1 � · · · � m <

0 , and let ar j > 0 (r = 1, . . . ,n; j = 1, . . . ,m) be such that a
 j
1 j −

n


r=2
a
 j
r j > 0 ( j =
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1, . . . ,m). If we denote

(n) =
m


j=1

(
a
 j
1 j −

n


r=2

a
 j
r j

) 2
 j

, (n) =

(
m


j=1

a1 j −
n


r=2

m


j=1

ar j

)2

,

and
V (n) = (n)−(n),

then

V (n+1) � V (n) � 0. (4)

THEOREM E. ([6, Theorem 2.4]) Let n,m ∈ N
+, n � 2 , let 1 > 0, 2 � · · · �

m � 0 with
m

j=1

1
 j

� 1 , and let ar j > 0 (r = 1, . . . ,n; j = 1, . . . ,m) be such that

a
 j
1 j −n

r=2 a
 j
r j > 0 ( j = 1, . . . ,m) . If we denote

(n) =
m


j=1

(
a
 j
1 j −

n


r=2

a
 j
r j

) 2
 j

, (n) =

(
m


j=1

a1 j −
n


r=2

m


j=1

ar j

)2

, (5)

and
V (n) = (n)−(n),

then

V (n+1) � V (n) � 0. (6)

It is worth mentioning that because the proof of Theorem A in [6] is wrong, it is
impossible to prove Theorems D and E by the same argument as said in [6]. We will
give counterexamples to these theorems in Section 3.

The paper is organized as follows. In Section 2 we first present a similar result to
Theorem A with a weaker assumption and a simple proof. We then establish a reversed
version of Theorem A. The corollaries following are refinements of Theorem B and C.
Section 3 provides counterexamples to Theorems D and E.

2. New results

The first main result of this paper is the following theorem.

THEOREM 1. Let n, m ∈ N
+, n � 2 , let  j > 0 ( j = 1, . . . ,m) with

m

j=1

1
 j

�

1 , and let ar j > 0 (r = 1, . . . ,n; j = 1, . . . ,m) be such that a
 j
1 j −

n


r=2
a
 j
r j > 0 ( j =

1, . . . ,m). Denote

(n) =
m


j=1

(
a
 j
1 j −

n


r=2

a
 j
r j

) 2
 j

, (n) =

(
m


j=1

a1 j −
n


r=2

m


j=1

ar j

)2

,
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and
V (n) = (n)−(n).

Then

V (n+1) � V (n) � 0. (7)

Proof. First we show the second inequality of (7). For, using (2), we have

0 �
m


j=1

(
a
 j
1 j −

n


r=2

a
 j
r j

) 1
 j

�
m


j=1

a1 j −
n


r=2

m


j=1

ar j.

Hence
m


j=1

(
a
 j
1 j −

n


r=2

a
 j
r j

) 2
 j

�
(

m


j=1

a1 j −
n


r=2

m


j=1

ar j

)2

,

which implies V (n) � 0.
Next, we prove the first inequality in (7). We write

(n+1)−(n)−(n+1)

=

(
m


j=1

a1 j −
n+1


r=2

m


j=1

ar j

)2

−
(

m


j=1

a1 j −
n


r=2

m


j=1

ar j

)2

−
m


j=1

(
a
 j
1 j −

n+1


r=2

a
 j
r j

) 2
 j

=

⎡
⎣( m


j=1

a1 j −
n+1


r=2

m


j=1

ar j

)2

−
(

m


j=1

a1 j −
n


r=2

m


j=1

ar j

)2
⎤
⎦−

⎡
⎣ m


j=1

(
a
 j
1 j −

n+1


r=2

a
 j
r j

) 1
 j

⎤
⎦

2

=

[(
m


j=1

a1 j −
n


r=2

m


j=1

ar j −
m


j=1

a(n+1) j

)
−
(

m


j=1

a1 j −
n


r=2

m


j=1

ar j

)]

×
[(

m


j=1

a1 j −
n+1


r=2

m


j=1

ar j

)
+

(
m


j=1

a1 j −
n


r=2

m


j=1

ar j

)]
−
⎡
⎣ m


j=1

(
a
 j
1 j −

n+1


r=2

a
 j
r j

) 1
 j

⎤
⎦

2

= −
m


j=1

a(n+1) j

[(
m


j=1

a1 j −
n+1


r=2

m


j=1

ar j

)
+

(
m


j=1

a1 j −
n


r=2

m


j=1

ar j

)]

−
⎡
⎣ m


j=1

(
a
 j
1 j −

n+1


r=2

a
 j
r j

) 1
 j

⎤
⎦

2

� −
m


j=1

a(n+1) j

[(
m


j=1

a1 j −
n+1


r=2

m


j=1

ar j

)
+

(
m


j=1

a1 j −
n


r=2

m


j=1

ar j

)]

−
[(

m


j=1

a1 j −
n+1


r=2

m


j=1

ar j

)]2

(8)



NEW REFINEMENTS OF ACZÉL-TYPE INEQUALITIES AND THEIR APPLICATIONS 29

where we have used inequality (2) in (8). Set

A =
m


j=1

a(n+1) j and B =
m


j=1

a1 j −
n+1


r=2

m


j=1

ar j.

Then the right hand side of (8) is rewritten as

−A(2B+A)−B2 = −(A2 +2AB+B2)

= −(A+B)2

= −
(

m


j=1

a(n+1) j−
m


j=1

a(n+1) j

)2

= −(n).

As a consequence,
(n+1)−(n)−(n+1)� −(n)

or
(n+1)−(n) � (n+1)−(n)

and hence

V (n+1) � V (n),

which completes the proof. �

REMARK 1. In the preceding theorem, we do not need the order 1 � 2 � · · · �
m as in Theorem A.

For the next main result, let us recall a well-known inequality of Vasić and Pečarić.

LEMMA 1. ([7]) Let n � 2, m � 2 be integers and let ar j > 0 (r = 1,2, . . . ,n;
j = 1, . . . ,m) . If  j < 0 ( j = 1, . . . ,m) , then

n


i=1

m


j=1

ar j �
m


j=1

(
n


i=1

a
 j
r j

) 1
 j

. (9)

This result will be used to prove the following proposition.

PROPOSITION 1. Let n � 2, m � 2 be integers and let ar j > 0 (r = 1, . . . ,n; j =

1, . . . ,m) . If there are  j < 0 ( j = 1, . . . ,m) such that a
 j
1 j −

n


r=2
a
 j
r j > 0 ( j = 1, . . . ,m) ,

then

m


j=1

a1 j −
n


r=2

m


j=1

ar j < 0. (10)
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Proof. Since  j < 0 and a
 j
1 j >

n


r=2
a
 j
r j , j = 1, . . . ,m , we have

0 < a1 j <

(
n


r=2

a
 j
r j

) 1
 j

, j = 1, . . . ,m.

Hence
m


j=1

a1 j <
m


j=1

(
n


r=2

a
 j
r j

) 1
 j

.

Together with Lemma 1 we obtain

m


j=1

a1 j <
n


r=2

m


j=1

ar j,

which is (10). �

REMARK 2. According to the previous lemma, Theorem C is trivial in the case of
1 < 0 since the right hand side of (3) is positive, and we do not need the assumption
m

j=1
1
 j

� 1.

LEMMA 2. If a , b , c , d are positive numbers satisfying a > b � c > d , then

ac > bd. (11)

Proof. Since a > b � c > d > 0, we have

ac > bc and bc > bd,

which implies (11). �
The next main result of this paper is the following theorem, which can be seen as

a reserved version of Theorem 1.

THEOREM 2. Let n � 2, m � 2 be integers and 1 > 0 ,  j < 0 ( j = 2, . . . ,m)

such that
m

j=1

1
 j

� 1 . Let ar j > 0 (r = 1, . . . ,n; j = 1, . . . ,m) be such that a11 >

n


r=2

m

j=2

ar j ,
m

j=2

a1 j >
n


r=2
ar1 , and a

 j
1 j −

n


r=2
a
 j
r j > 0 ( j = 1, . . . ,m) . Denote

(n) =
m


j=1

(
a
 j
1 j −

n


r=2

a
 j
r j

) 2
 j

, (n) =

(
m


j=1

a1 j −
n


r=2

m


j=1

ar j

)2

,

and
V (n) = (n)−(n).

Then

V (n+1) � V (n) � 0. (12)
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We will use Theorem C to prove this theorem. First, we will see as below that the

right hand side of (3) is positive, provided in addition that 1 > 0, a11 >
n


r=2

m

j=2

ar j and

m

j=2

a1 j >
n


r=2
ar1 .

LEMMA 3. In the setting of Theorem 2, we have

m


j=1

a1 j −
n


r=2

m


j=1

ar j > 0. (13)

Proof. Due to  j < 0 and a
 j
1 j >

n


r=2
a
 j
r j , j = 2, . . . ,m , it follows that

0 < a1 j <

(
n


r=2

a
 j
r j

) 1
 j

, j = 2, . . . ,m.

Thus

0 <
m


j=2

a1 j <
m


j=2

(
n


r=2

a
 j
r j

) 1
 j

implies that

0 <
m


j=2

a1 j <
n


r=2

m


j=2

ar j, (14)

using (9). Due to hypothesis a11 >
n


r=2

m

j=2

ar j and
m

j=2

a1 j >
n


r=2
ar1 , it follows that

a11 >
n


r=2

m


j=2

ar j >
m


j=2

a1 j >
n


r=2

ar1 > 0. (15)

Applying Lemma 2 for a = a11 , b =
n


r=2

m

j=2

ar j , c =
m

j=2

a1 j , d =
n


r=2
ar1 , we obtain

m


j=1

a1 j >

(
n


r=2

m


j=2

ar j

)(
n


r=2

ar1

)
>

n


r=2

m


j=1

ar j.

This yields (13). �

We are in a position to prove Theorem 2.
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Proof of Theorem 2. We first show V (n) � 0. Apply Theorem C and Lemma 3 to
get

m


j=1

(
a
 j
1 j −

n


r=2

a
 j
r j

) 2
 j

=

⎡
⎣ m


j=1

(
a
 j
1 j −

n


r=2

a
 j
r j

) 1
 j

⎤
⎦

2

�
(

m


j=1

a1 j −
n


r=2

m


j=1

ar j

)2

,

which yields V (n) � 0.
Next, we prove the first inequality in (12), that is V (n + 1) � V (n) . For, analo-

gously to the proof of Theorem 1, we write

(n+1)−(n)−(n+1)

=

(
m


j=1

a1 j −
n+1


r=2

m


j=1

ar j

)2

−
(

m


j=1

a1 j −
n


r=2

m


j=1

ar j

)2

−
m


j=1

(
a
 j
1 j −

n+1


r=2

a
 j
r j

) 2
 j

= −
m


j=1

a(n+1) j

[(
m


j=1

a1 j −
n+1


r=2

m


j=1

ar j

)
+

(
m


j=1

a1 j −
n


r=2

m


j=1

ar j

)]

−
⎡
⎣ m


j=1

(
a
 j
1 j −

n+1


r=2

a
 j
r j

) 1
 j

⎤
⎦

2

� −
m


j=1

a(n+1) j

[(
m


j=1

a1 j −
n+1


r=2

m


j=1

ar j

)
+

(
m


j=1

a1 j −
n


r=2

m


j=1

ar j

)]

−
[(

m


j=1

a1 j −
n+1


r=2

m


j=1

ar j

)]2

(16)

= −(n),

where we have used

m


j=1

(
a
 j
1 j −

n


r=2

a
 j
r j

) 2
 j

�
(

m


j=1

a1 j −
n


r=2

m


j=1

ar j

)2

obtained from (2) and (13) in inequality (16). Hence

(n+1)−(n+1)� (n)−(n),

or equivalently,

V (n+1) � V (n), (17)

completing the proof. �
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REMARK 3. In Theorem 2, we have added the assumptions

a11 >
n


r=2

m


j=2

ar j,
m


j=2

a1 j >
n


r=2

ar1

in comparison to Theorem E which will be shown to be wrong in the next section.

An application of Theorem 1 gives us the following corollary which is a better
result in comparison to [6, Corollary 11]. This is a refinement of Theorem B.

COROLLARY 1. Let n, m ∈ N
+, n � 2 , let  j > 0 ( j = 1, . . . ,m) with

m

j=1

1
 j

�

1 , and let ar j > 0 (r = 1, . . . ,n; j = 1, . . . ,m) be such that a
 j
1 j −

n


r=2
a
 j
r j > 0 ( j =

1, . . . ,m). Then

m


j=1

(
a
 j
1 j −

n


r=2

a
 j
r j

) 1
 j

�
(

m


j=1

a1 j −
n


r=2

m


j=1

ar j

)[
1+

V (2)
(m

j=1 a1 j −n
r=2

m
j=1 ar j)2

]

�
m


j=1

a1 j −
n


r=2

m


j=1

ar j,

where

V (2) =
m


j=1

(a j
1 j −a

 j
2 j)

2
 j −

(
m


j=1

a1 j −
m


j=1

a2 j

)2

� 0.

Proof. From Theorem 1, it follows that

V (n) � V (2) � 0.

Then
m


j=1

(
a
 j
1 j −

n


r=2

a
 j
r j

) 2
 j

−
(

m


j=1

a1 j −
n


r=2

m


j=1

ar j

)2

� V (2)

implies that

m


j=1

(
a
 j
1 j −

n


r=2

a
 j
r j

) 1
 j

�

⎡
⎣
(

m


j=1

a1 j −
n


r=2

m


j=1

ar j

)2

+V(2)

⎤
⎦

1
2

�
(

m


j=1

a1 j −
n


r=2

m


j=1

ar j

)[
1+

V (2)
(m

j=1 a1 j −n
r=2

m
j=1 ar j)2

] 1
2

�
m


j=1

a1 j −
n


r=2

m


j=1

ar j,
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owing to V (2) � 0, as was to be shown. �
The same argument applies to yield Corollary 2, which is a refinement of Theorem

C.

COROLLARY 2. Let n � 2, m � 2 be integers and 1 > 0,  j < 0 ( j = 2, . . . ,m)

with
m

j=1

1
 j

� 1 . If ar j > 0 (r = 1, . . . ,n; j = 1, . . . ,m) are such that a11 >
n


r=2

m

j=2

ar j ,

m

j=2

a1 j >
n


r=2
ar1 , and a

 j
1 j −

n


r=2
a
 j
r j > 0 ( j = 1, . . . ,m) , then

m


j=1

(
a
 j
1 j −

n


r=2

a
 j
r j

) 1
 j

�
(

m


j=1

a1 j −
n


r=2

m


j=1

ar j

)[
1+

V (2)
(m

j=1 a1 j −n
r=2

m
j=1 ar j)2

] 1
2

�
m


j=1

a1 j −
n


r=2

m


j=1

ar j > 0,

where

V (2) =
m


j=1

(a j
1 j −a

 j
2 j)

2
 j − ( m


j=1

a1 j −
m


j=1

a2 j
)2 � 0.

Setting m = 2, ar1 = ar, ar2 = br (r = 1, . . . ,n) in Theorem 2, we have the
following corollary.

COROLLARY 3. Let n � 2 be an integer and 1 > 0 > 2 such that
1
1

+
1
2

� 1 .

Let ar,br (r = 1, . . . ,n) be positive numbers such that a1 > n
r=2 br, b1 > n

r=2 ar ,

a1
1 −n

r=2 a1
r > 0 , and b2

1 −n
r=2 b2

r > 0 . Denote

V (n) =
(
a1

1 −
n


r=2

a1
r

) 2
1
(
b2

1 −
n


r=2

b2
r

) 2
2 −

(
a1b1−

n


r=2

arbr

)2
.

Then

V (n+1) � V (n) � 0.

Due to the right hand side of inequality (3) in Theorem C is negative in the case of
1 < 0 (see Proposition 1), the right hand side of (22) in [4, Theorem3.1] is nonpositive,
and hence [4, Theorem 3.1] is trivial for 1 < 0. The next result is an improvement of
that theorem.

COROLLARY 4. Let m � 2 be an integer and 1 > 0 and  j < 0 ( j = 2, . . . ,m)
with m

j=1
1
 j

= 1 . Let a j > 0 and f j : [a,b] → (0,) be Riemann integrable functions

such that a1 >
∫ b
a 

m
j=2 f j(x)dx , m

j=2 a j >
∫ b
a f1(x)dx , a

 j
j − ∫ b

a f
 j
j (x)dx > 0 ( j =

1, . . . ,m) . Then

m


j=1

(
a
 j
j −

∫ b

a
f
 j
j (x)dx

) 1
 j �

m


j=1

a j −
∫ b

a

m


j=1

f j(x)dx � 0.
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Proof. The proof is similar to that of [4, Theorem 3.1] by using Corollary 2. �

3. Counterexamples to Theorem D and Theorem E

COUNTEREXAMPLE 1. Consider n = 3, m = 2, 1 = 2 = −1, and⎡
⎣a11 a12

a21 a22

a31 a32

⎤
⎦=

⎡
⎣1 1

2 3
4 5

⎤
⎦ .

We have

a1
11 −a1

21−a1
31 = 1−1−2−1−4−1 > 0,

a2
12 −a2

22−a2
32 = 1−1−3−1−5−1 > 0.

Therefore, i and ai j ( i = 1,2; j = 1,2,3) satisfy the assumption of Theorem D. How-
ever,

V (2) = (2)−(2) =
(
a1

11 −a1
21

) 2
1
(
a2

12 −a2
22

) 2
2 − (a11a12−a21a22)2

=
(
1−1−2−1) 2

−1
(
1−1−3−1) 2

−1 − (1 ·1−2 ·3)2

= 32−52 = −16 < 0,

and

V (3) = (3)−(3)

=
(
a1

11 −a1
21−a1

31

) 2
1
(
a2

12 −a2
22−a2

32

) 2
2 − (a11a12−a21a22−a31a32)2

=
(
1−1−2−1−4−1) 2

−1
(
1−1−3−1−5−1) 2

−1 − (1 ·1−2 ·3−4 ·5)2

=
(

1
4

)−2( 7
15

)−2

− (1−6−20)2

=
(

7
60

)−2

−252 = −27025
49

< −16 = V (2).

Hence
V (3) < V (2) < 0.

This means that Theorem D is incorrect.

COUNTEREXAMPLE 2. Consider n = 3, m = 2, 1 = 1, 2 = −1, and⎡
⎣a11 a12

a21 a22

a31 a32

⎤
⎦=

⎡
⎣4 1

2 4
1 2

⎤
⎦ .
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Then

a1
11 −a1

21−a1
31 = 4−2−1 > 0,

a2
12 −a2

22−a2
32 = 1−1−4−1−2−1 > 0.

This implies that i and ai j ( i = 1,2; j = 1,2,3) satisfy the assumption of Theorem E.
However,

V (2) = (2)−(2) =
(
a1

11 −a1
21

) 2
1
(
a2

12 −a2
22

) 2
2 − (a11a12−a21a22)2

= (4−2)2
(
1−1−4−1)−2− (4 ·1−2 ·4)2

= −80
9

< 0

and

V (3) = (3)−(3)

=
(
a1

11 −a1
21−a1

31

) 2
1
(
a2

12 −a2
22−a2

32

) 2
2 − (a11a12−a21a22−a31a32)2

= (4−2−1)2 (1−4−1−2−1)−2 − (4 ·1−2 ·4−2)2

= −20

yield
V (3) < V (2) < 0,

which contradicts Theorem E. This means that Theorem E is incorrect.

REMARK 4. (a) In order to prove Theorems D and E, it is necessary that

m


j=1

a1 j −
n


r=2

m


j=1

ar j � 0. (18)

The matter of fact is that the assumptions in Theorems D and E are not sufficient to
guarantee that (18). In fact, with the assumption in Theorem D, we have the reversed
inequality

m


j=1

a1 j −
n


r=2

m


j=1

ar j < 0,

according to Proposition 1. If we suppose, in addition, that 1 > 0 and a11 >
n


r=2

m

j=2

ar j ,

then (18) holds (see Lemma 3), and the conclusion in Theorem E is obtained; see
Theorem 2.

(b) From (a), Theorems D and E can not be proved by the same method as that of
Theorem A (or Theorem 1) because (18) does not hold.
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(c) Since Theorems D and E are incorrect, so are the results in [6] which follow
from them, including Corollaries 2.5, 2.7, 2.9, 2.10, 2.12, and 2.14.

(d) We can use Counterexample 1 to show directly that Corollaries 2.7, 2.9, 2.14
are incorrect, whereas Counterexample 2 also shows that Corollaries 2.5, 2.10, 2.12 are
not true.
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[8] P. M. VASIĆ, J. E. PEČARIĆ, On Hölder and some related inequalities, Mathematica Rev. D’Anal.

Num. Th. L’Approx. 25 (1982), 95–103.
[9] S. VONG, On a generalization of Aczél’s inequality, Appl. Math. Lett. 24 (8) (2011), 1301–1307.

[10] S. WU, A unified generalization of Aczél, Popoviciu and Bellman’s inequalities, Taiwanese J. Math.
14 (4) (2010), 1635–1646.

(Received September 29, 2021) Lam T. T. Tam
Department of Mathematics and Statistics

Quy Nhon University
170 An Duong Vuong, Quy Nhon, Vietnam

e-mail: lamthithanhtam@qnu.edu.vn

Huynh M. Hien
Department of Mathematics and Statistics

Quy Nhon University
170 An Duong Vuong, Quy Nhon, Vietnam

e-mail: huynhminhhien@qnu.edu.vn

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


