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Abstract. In this paper we provide new refinements of Aczél-type inequality and give some
applications. Furthermore, we show that two of three theorems in the work by J. Tian and M.-H.
Ha (J. Math. Inequal. 12 (1) (2018), 175-189) are incorrect whereas the proof of the other is
technically wrong. We establish an improvement of the correctly stated theorem with a simple
proof and give counterexamples to the wrong ones.

1. Introduction

The famous Aczél’s inequality states as follows.

THEOREM. Let n € N, n>2, andlet a;,b; (i=1,...,n) be real numbers such
that a2 — 3" ,a? >0 and b} — Y ,b? > 0. Then
2
n n n
a%—Za? b%—Zbiz < albl—Zaibi . (1)
i=2 i=2 i=2
Inequality (1) was introduced by J. Aczél [1] in 1956. Since then it has had sev-
eral applications in the theory of functional equations in non-Euclidean geometry and
motivated a large number of research papers with various generalizations, refinements
and applications (see [2, 4, 5, 6, 9, 10]). Among them, the work by Tian and Ha [6]

provided some interesting properties and refinements of Aczél-type inequalities. Let us
recall the first main result in [6].

THEOREM A. ([6, Theorem 2.2]) Letn, me€NT, n>2,let Ay > - > A, >0

m

. . A
with Y, %>l,andleta,j>0 (r=1,...,n; j=1,....m besuchthatalj-— Ea”’->
i=1""7 r=2

~

0 (j=1,...,m). Denote

i noo m nom 2
_ J J _
) =[1{dj-2aj| » @m=|[la;-X]lay]
j 2 j=1 r=2j=1
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and

Then
V(n+1)<V(n) <O0.

This theorem is correctly stated, but its proof in [6] is too long (7 pages) and
technically wrong. Thus, in that proof, the authors showed that ®(n+ 1) — ®(n) <
Q(n), where Q(n) is the quantity in the right hand side of (13) in [6, p. 179]. It then
follows that ®(n+ 1) — ®(n) —¥(n) > Q(n) —¥(n), which is mathematically wrong.
In this paper we will provide a similar result with a weaker assumption and prove it by
a very short and simple proof.

Back to 1979, Vasi¢ and Pecari¢ [7] presented an extension of Popoviciu’s inequal-
ity [3], which is a generalization of Aczél’s inequality:

THEOREM B. ([7]) Let n,m € N*, n>2 and let A; >0 (j:2 ) with
2% 1, andlet arj >0 (r=1,....n;j=1,... )besuchthatalj Yo za”>0

] l,...,m). Then

1
m A, n A, A_ m n m
[ (al.’f -2 ad) <Ilay=2 ITar @)

J=1

In 2012, Tian [4] provided a reversed version of (2) stated as follows.

THEOREM C. ([4 Corollary 2.6]) Let nym € Nt, n>2 andlet Ay #0, A; <0
(j=2,...,m) with Z —_\l,andleta,j>0 (r=1,...,n; j=1,...,m) be such that
Jj=1
all Y 2a” >0 (j=1,...,m). Then

m A n A i m n m
[T{a@;=Zai) >ITa-3 e 3)
J= r=2j=

Jj=1

However, we will see in Proposition 1 below that the right hand side of inequality
(3) is negative in the case of A; < 0 and this inequality becomes trivial. In the present
paper we will give refinements of Theorems B and C and their applications.

In addition, back to the work by Tian and M.-H. Ha [6], Theorems 2.3 and 2.4 are
incorrect. As a consequence, all the corollaries of those theorems are also not true. Let
us recall those theorems.

0, and let a,j >0 (r=1,....,n; j=1,...,m) be such that aitj— Zaf} >

r=2

THEOREM D. ([6, Theorem 2.3]) Let nym € N*, n > 2 let A <+ < Ay <
0 (
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1,...,m). If we denote

Aj m n m 2
v 1 (- $.) "+ o= (flon - £ 1aa)
j=

r=2j=1

and

then
V(n+1)=V(n)>20. (4)

THEOREM E. ([6, Theorem 2.4]) Let nym € NT, n>2,let A{ >0, A, <--- <
Am <0 with gli <1, andlet a;j >0 (r=1,....,n; j=1,....m) be such that
/
aitj > 2a” >0 (j=1,...,m). If we denote
2 2
m A n A Aj n o m
W(n) = H (alj_r=22arj> = (Halj rzzfl_[la”) ) %)

and

then
V(n+1)=V(n) = 0. (6)

It is worth mentioning that because the proof of Theorem A in [0] is wrong, it is
impossible to prove Theorems D and E by the same argument as said in [6]. We will
give counterexamples to these theorems in Section 3.

The paper is organized as follows. In Section 2 we first present a similar result to
Theorem A with a weaker assumption and a simple proof. We then establish a reversed
version of Theorem A. The corollaries following are refinements of Theorem B and C.
Section 3 provides counterexamples to Theorems D and E.

2. New results

The first main result of this paper is the following theorem.
THEOREM 1. Let n, m € N*, n>2, let A; >0 (j=1,...,m) with z %
j=1
1, and let a,j >0 (r=1,...,n; j=1,...,m) be such that all Za” 0 (j=
1,...,m). Denote

2
n) = (Hl‘”f_ > H%’) »
=

r=2j=1
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and

Then
V(n+1)<V(n) <O0. (7)

Proof. First we show the second inequality of (7). For, using (2), we have

Hence

which implies V(n) < 0.
Next, we prove the first inequality in (7). We write

Pn+1)—d(n)—¥n+1)

m n+l m 2 m n o m 2 m i n+1 A %
(o3 flos) - (Flov- 3, o0) 11 (- 34)
j:

j=1 r=2j

[l [l
VRN
s
S
~
|
\okd
s
8
~
(3]
|
7~
s
8
~.
|
M:
s
2
~
L
|
s
N
2
’:\>—'
| ~
+
S
N——
\}-’

Il
1

j=1 r=2j j=1 r=2j=1
142
n
m A n+1 A\
- 11 ay;— Zarj
j=1 r=2

o (fon S 1) (oo £

r=2 j=1 r=2j=

S-S0 (1511

m n+1 m 2
- [(Hlau— 2 H%’) 8)
j=

r=2 j=1
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where we have used inequality (2) in (8). Set

m m n+l m
H n+1 and BZHalj—ZHa”’.
Jj=1 Jj=1 r=2 j=1

Then the right hand side of (8) is rewritten as

—A(2B+A)—B?>= —(A>+2AB+B?)
—(A+B)?

2
- ( 1“(n+1>.f— Hf’(nﬂ)i)
J=

I

|

iy

3 T=

As a consequence,
®n+1)—d(n)—¥n+1)< -¥(n)

or
Dn+1)—0(n) <¥n+1)—¥(n)

and hence
V(n+1)<V(n),

which completes the proof. [

REMARK 1. In the preceding theorem, we do not need the order Ay >4, > --- >
Ay as in Theorem A.

For the next main result, let us recall a well-known inequality of Vasi¢ and Pecarié.

LEMMA 1. ([7]) Let n>2, m > 2 be integers and let a,; >0 (r=1,2,...,n;
j=1,....m). If A; <0 (J—l,..., ), then

n m %
Z 1 H Z all . ©)
This result will be used to prove the following proposition.

PROPOSITION 1. Let n>2, m>2 be mtegersandlet a,j>0 (r=1,...,n; j=
1,...,m). Ifthereare A; <0 (j=1,.. )suchthata1 Ea >0 (j=1,...,m),

then

n m

[Ta =X [Tay <o (10)
j=1

r=2j=1
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. Aj oA
Proof. Since A; <0 and a;; > Zza”’-, j=1,...,m, we have
r=

1
i
0<arj< (261”) , j=1,....m

1
m m n i
Ai 7
flo,<1(£47) "
j=1 j=1 \r=2
Together with Lemma 1 we obtain

Hau< ZHam

r=2j=

Hence

which is (10). O

REMARK 2. According to the previous lemma, Theorem C is trivial in the case of
A1 < 0 since the right hand side of (3) is positive, and we do not need the assumption

m 1
/IA<1

LEMMA 2. If a, b, ¢, d are positive numbers satisfying a > b > ¢ > d, then

ac > bd. (1)

Proof. Since a > b >c¢>d >0, we have
ac>bc and bc > bd,
which implies (11). [

The next main result of this paper is the following theorem, which can be seen as
a reserved version of Theorem 1.

THEOREM2 Let n>2, m > 2 be integers and Ay >0, A; <0 (j=2,...,m)

such that Z /l_ . Let a;j; >0 (r=1,...,n; j=1,...,m) be such that aj; >
Jj= 1

n m n A, .
Y 11 a, Halj> Za,l andalj Y a,;>0 (j=1,...,m). Denote
r=2j=2 Jj= r=2 r=2

and

Then
Vin+1)>V(n) >0. (12)



NEW REFINEMENTS OF ACZEL-TYPE INEQUALITIES AND THEIR APPLICATIONS 31

We will use Theorem C to prove this theorem. First, we will see as below that the

n m
right hand side of (3) is positive, provided in addition that A; >0, a;; > ¥ [I a,; and

r=2j=2

m n

[lTa;> ¥ an.

j=2 r=2

LEMMA 3. In the setting of Theorem 2, we have
m n m

[Tai—X I1a>0. (13)
j=1 r=2j=1

Aj noA . .
Proof. Dueto A; <0 and al-j’. >y ar;, j=2,...,m, it follows that
r=2

1
%
0<arj< <Za> , J=2,...,m.

Thus

L
Aj

0< e, <I1( 2
j=2 j=2 \r=2
implies that

0<Hau< 3 [Ta (14)

r=2j=2

using (9). Due to hypothesis a;; > Z H aj and H ayj > Y a, it follows that
r=2j=2 r=2

a11>2Har,>Ha1,>2a“>O (15)

r=2j=2

Applying Lemma 2 for a = ay, b = E Ha,j, c= Halj, d= Z a,;, we obtain
r=2j=2 r=2

m nom n nom
Halj > <Z Harj> (261,1) > ZHa’"j'

j=1 r=2j=2 r=2 r=2j=1
This yields (13). O

We are in a position to prove Theorem 2.
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Proof of Theorem 2. We first show V(n) > 0. Apply Theorem C and Lemma 3 to
get

2
m n n A m n o m
A’. A’ J A’ A’ J
{1 (- $) " = [ 2) 7| > (fo- £ o)
2 =1 r=2j=1
which yields V(n) > 0.
Next, we prove the first inequality in (12), that is V(n+ 1) > V(n). For, analo-

gously to the proof of Theorem 1, we write

DPn+1)—d(n)—¥n+1)

m n+1 m 2 m n m 2 m Y n+1 Y ?L_,
~(Fo-5 fos) - (Fo- £ fTos) 11 (o~ )
J= J=

r=2j=1 r=2j=1 j=1 r=2
m n+1 m m nom
= ey | (o= 5 o)+ (- £ 1)
j=1 r=2j=1 J j

<—ﬁan+1 [(Hau glllm_[an>+<l_[au Zﬁ%)]

r=2j r=2j=1

r=2 j=1

B

H(z) - (1 zn)

r=2j

obtained from (2) and (13) in inequality (16). Hence
Y(n+1)—dn+1)>¥(n) —o(n),
or equivalently,
V(in+1)>V(n), 17)

completing the proof. [J
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REMARK 3. In Theorem 2, we have added the assumptions
n m n
ap > ZH“W Ha1j> Zarl
r=2j=2 j=2 r=2
in comparison to Theorem E which will be shown to be wrong in the next section.

An application of Theorem 1 gives us the following corollary which is a better
result in comparison to [6, Corollary 11]. This is a refinement of Theorem B.

COROLLARY 1. Let n,m e NT, n>2,let A; >0 (j=1,...,m) with Z %
j=1
1, and let a,j >0 (r=1,...,n; j=1,...,m) be such that all Za” 0 (j=
1,...,m). Then

1+

V(2)
(H;'":l ajj— X 2H Lyar)?

where

(1o o) =

\
I
iR

Proof. From Theorem 1, it follows that

Then
£ 2
m A,J n A,J j m n m
H alj_zarj - Halj_zna"/ gV(Z)
j=1 r=2 j=1 r=2j=1
implies that
L 2 3
m Py n A j m nom
f1 (-3 " < | (- £ f1os) +ve
Jj=1 r=2 j=1 r=2j=1

1

V(2) ’
(I a1 = X I arj)?

1+
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owing to V(2) < 0, as was to be shown. [

The same argument applies to yield Corollary 2, which is a refinement of Theorem
C.

COROLLARY 2. Let n>2, m > 2 beintegersand Ay >0, A; <0 (j=2,...,m)

m 1 n o m
with E —gl.lfa,j>0 (r=1,...,n; j=1,...,m) are such that a;, > ¥, II ar;,
; J r=2j=2

]_[alj> Zarl,andalj—Za >0 (j=1,...,m), then
=2 - -

r= r=

V(2)
(I a1y — o I arg)?

1+

j=1 r=2j=1
where
m A, % m m )
— J
V(2)=]](a;;—ay;)" —([Tarj—[1az)" >0
j=1 j=1 j=1
Setting m = 2, a,1 = ar, a;p = b, (r=1,...,n) in Theorem 2, we have the

following corollary.

1 1
COROLLARY 3. Let n>2 be aninteger and A > 0> Ay such that — = /l_ <.
1 2

Let a,b, (r = 1,...,n) be positive numbers such that a; > Y'_, by, by > 3" >ay,
- 2ar >0, and b/12 >, b} > 0. Denote
2 n 2 n 2
V(n) = (aiLl 2 a;h) M (b/llz -y bf2> 2 _ (albl -y arbr> .
r=2 r=2 r=2
Then
Vin+1)>V(n) >0.

Due to the right hand side of inequality (3) in Theorem C is negative in the case of
A1 <0 (see Proposition 1), the right hand side of (22) in [4, Theorem 3.1] is nonpositive,
and hence [4, Theorem 3.1] is trivial for A; < 0. The next result is an improvement of
that theorem.

COROLLARY 4. Let m > 2 be an integer and Ay >0 and A; <0 (j=2,...,m)
with 3 % =1. Let a; >0 and f;: [a,b] — (0,%0) be Riemann integrable functions

such that a; > ff]_[ffzzf/(x)dx, [Ma; > 17 fi(x)dx, a — f;L Ydx >0 (
L,...,m). Then

11 (ﬁf - / ’ s (x)dx) g

j=1 ;

b m

aj— HfJ

1 a j=1

:§

-
I
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Proof. The proof is similar to that of [4, Theorem 3.1] by using Corollary 2. [

3. Counterexamples to Theorem D and Theorem E

COUNTEREXAMPLE 1. Consider n=3, m=2, A, =4, =—1,and

ay ap 1
ar) Ay | = 23
as] dzp 45
We have
Al Al Al -1 —1 -1
aj|—dy—ay=1"7"-27"-4"7">0,

ay—d3—d3=1"-3"-5"1>0.

Therefore, A; and a;; (i=1,2;j=1,2,3) satisfy the assumption of Theorem D. How-
ever,

2 2
V() =¥(2) - 02) = (aff ~a}}) " (i —aB3) ™ ~ (anan - anan)?

=(1 =2 )T (1 =3 T (1. 1-2-3)?

2 2
A M A AR 2
= (ali —day —dz a3 —ay —dz —(ana2 — az1az; — azaz)

_ (171_271_471)% (171_371_571)%1_(1,1_2.3_4.5)2

Hence
V(3)<V(2)<O.
This means that Theorem D is incorrect.
COUNTEREXAMPLE 2. Consider n=3, m=2, A, =1, A, =—1,and
aj] aiz 41

ar) Ay | = 24
as] dzp 12



36 L. T. T. TAM AND H. M. HIEN

Then

aﬁ aéi—a3l—4 2—1>0,

Az )Lz 1 —1 —
alz—azz—a32—1 —47 127> 0.

This implies that A; and a;; (i =1,2;j=1,2,3) satisfy the assumption of Theorem E.
However,

2
V(Z) = ‘P(Z) — Q)(Z) = (a%l — aé}) (a’}% — aé%) 2 — (a11a12 - a21a22)2

:(4—2)2(1—1—4—1)’ —(4-1-2-4)?
_80

= <0
9

2 2
= (“ﬁ a3 —a%i)ll <a/ll§ a; - a;%) 2 — (anan - anax —azazn)’
—(@4-2-1P1—-4"—2H2_(4.1-2.4-2)?
=-20

yield
V(3)<V(2) <0,

which contradicts Theorem E. This means that Theorem E is incorrect.

REMARK 4. (a) In order to prove Theorems D and E, it is necessary that

m n m
[Ta =X [Tay>o0 (18)
j=1

r=2j=1

The matter of fact is that the assumptions in Theorems D and E are not sufficient to
guarantee that (18). In fact, with the assumption in Theorem D, we have the reversed
inequality

m n m
[Ta =X [Tay <o,
=1

r=2j=1

according to Proposition 1. If we suppose, in addition, that A; >0 and a;; > Y, [] a/j,
r=2j=2
then (18) holds (see Lemma 3), and the conclusion in Theorem E is obtained; see
Theorem 2.
(b) From (a), Theorems D and E can not be proved by the same method as that of

Theorem A (or Theorem 1) because (18) does not hold.
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(c) Since Theorems D and E are incorrect, so are the results in [6] which follow

from them, including Corollaries 2.5, 2.7, 2.9, 2.10, 2.12, and 2.14.

(d) We can use Counterexample 1 to show directly that Corollaries 2.7, 2.9, 2.14

are incorrect, whereas Counterexample 2 also shows that Corollaries 2.5, 2.10, 2.12 are
not true.
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