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LOWER BOUNDS FOR THE BLOW–UP TIME IN A

HIGHER–ORDER NONLINEAR KIRCHHOFF–TYPE EQUATION

YAOJUN YE

(Communicated by M. Krnić)

Abstract. This paper is concerned with a nonlinear higher-order Kirchhoff-type equation with
dissipation in a bounded domain. By establishing a first order differential inequality technique,
a lower bound for the blow-up time is obtained when the blow-up of solution occurs.

1. Introduction

In this paper, we consider the following initial-boundary value problem

utt +
(∫


|Dmu|2dx

)q

(−u)m +aut|ut |p = bu|u|r, x ∈, t > 0, (1.1)

u =
 iu
 i = 0, i = 1,2, · · · ,m−1, x ∈ , t � 0, (1.2)

u(x,0) = u0(x), ut(x,0) = u1(x), x ∈, (1.3)

where m � 1 is a positive integer, a,b,r > 0 and p,q � 0 are positive constants.
 ⊂ Rn is a bounded domain with a smooth boundary  ,  is the unit outward
normal vector on  , and  iu

 i denotes the i-order normal derivation of u . Du =u =
( u
x1

, u
x2

, · · · , u
xn

) , Dmu =  ju for m = 2 j and Dmu = D ju for m = 2 j +1.

In the case of m = 1, the equation (1.1) becomes a nonlinear Kirchhoff-type equa-
tion

utt −
(∫


|u|2dx

)q

u+aut|ut |p = bu|u|r (1.4)

for x ∈ , t > 0. Many authors studied the global existence and asymptotic stabil-
ity, and the local existence and blow-up of the solution to equation (1.4) with initial-
boundary value conditions (see [12, 15, 16, 17, 22, 26]). Ono [17] obtained that the
solution to this problem blows up if r > max{p,2q} and the initial energy is negative.
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By using the concavity argument, Zeng et al. [26] proved that the solution for this
problem occurs blow-up in finite time with arbitrarily high energy.

When m > 1, equation (1.1) described vibrating beams of the Woinowsky-Krieger
type with nonlinear dissipation effective in  , but without internal material dissipative
term of the Kelvin-Voigt type [4, 8, 18]. Gao et al. [7] proved the local existence of so-
lution to the problem (1.1)–(1.3), and gave the upper bounds for the blow-up time (see
also [24]). Autuori et al. [2, 4] studied the asymptotic stability of solutions for equa-
tion (1.1) with homogeneous Dirichlet boundary condition (1.2). While, for the dual
problem of non-continuation of local solutions, they present the global nonexistence
of solutions and a priori estimates for the lifespan of maximal solutions ([3, 5]). In
the absence of dissipation (i.e., a = 0), Galaktionov and Pohozave [6] obtained global
existence and nonexistence of solutions for equation (1.1) with initial condition (1.3)
in Rn . Under the assumptions of negative initial energy and r � p , Li [11] presented
the global existence of solution for the problem (1.1)–(1.3). Meanwhile, he proved the
solution blows up at finite time in Lr+2 norms as r > max{p,2q} . Later, as the initial
energy is positive, Messaoudi [13] gave the same result as the one in [11]. Moreover,
the lifespan estimates on blow-up time were also established in [11, 13].

In [23], the author proves the global existence and nonexistence of the problem
(1.1)–(1.3) and gives the decay of energy by applying the lemma of Komornik [10].
Later, under the condition of the positive initial energy, the blow-up solution in the finite
time is studied and the lifespan estimate of solution is established (see [24]). Piskin
[19] considers a class of system of nonlinear higher-order Kirchhoff-type equations,
he proves the blow-up of solution with positive initial energy by using the technique of
[21] with a modification in the energy functional due to the different nature of problems.

Yuksekkaya et al [25] deal with the higher-order Kirchhoff-type equation with
delay term. They prove the global existence result of solution and discuss the decay of
solution by using Nakao’s technique [14]. Furthermore, the blow-up result is obtained
for negative initial energy under appropriate conditions. Hesameddini [9] considers the
higher-order Kirchhoff-type equation with a memory term. Under suitable conditions
on relaxation function and the initial data, he proved that the solution blows up in the
finite time and the lifespan estimates of solutions are also given.

The lower bound of blow-up time for nonlinear Kirchhoff equations is more diffi-
cult to find because the approach for dealing with parabolic equations can not be applied
to the problem (1.1)–(1.3). As far as we know, there is no research on the lower bounds
for the blow-up time of the problem (1.1)–(1.3). Motivated by the above researches,
in this paper, we will focus on studying this question by combining the interpolation
inequality with nonlinear estimates.

We denote the space Ls() norm by ‖ · ‖s and ‖ · ‖ denotes L2() norm, the
Sobolev space Hm

0 () norm ‖ · ‖Hm
0 () is replaced by the equivalent norm ‖Dm · ‖ .

Moreover, Ci > 0 (i = 1,2,3, · · ·) denote some constants.

This work is organized as follows: In Section 2, some important Lemmas and
known conclusions are given. Section 3 is devoted to the proof of the main results.
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2. Preliminaries

Firstly, we define the energy function associated with the problem (1.1)–(1.3) by

E(t) =
1
2
‖ut‖2 +

1
2(q+1)

‖Dmu‖2(q+1)− b
r+2

‖u‖r+2
r+2 (2.1)

for u ∈ Hm
0 (), t � 0, and

E(0) =
1
2
‖u1‖2 +

1
2(q+1)

‖Dmu0‖2(q+1)− b
r+2

‖u0‖r+2
r+2

is the initial energy.
Secondly, we list up two useful lemmas as follows.

LEMMA 2.1. (Sobolev-Poincare inequality (see [1, 20])) Let s be a number
with 2 � s < +, n � 2m and 2 � s � 2n

n−2m , n > 2m. Then one has the inequality
‖u‖s � B‖Dmu‖ for ∀u ∈ Hm

0 (), where B is the best constant of Sobolev embedding
Hm

0 () ↪→ Ls() , which depends on n,s and  .

Finally, we present a local existence and blow-up result of solution to the problem
(1.1)–(1.3) (see [7, 11, 13, 24]).

THEOREM 2.1. (Local existence) Suppose that

0 < p < r < +, n � 2m; 0 < p < r � 4m
n−2m

, n > 2m. (2.2)

If (u0,u1) ∈ (Hm
0 ()∩H2m())×Hm

0 () and u0 �= 0 , then the problem (1.1)–(1.3)
has a unique local solution u(t) such that

u ∈C([0,T );Hm
0 ()∩H2m()), ut ∈C([0,T );L2())∩Lp+2(× [0,T)),

for T > 0 .

THEOREM 2.2. (Blow-up) Assume that r > 2q and (2.2) are valid, if u0 ∈Hm
0 ()

and u1 ∈ L2() satisfy (i) E(0) < 0 or (ii) 0 < E(0) < E1 and ‖Dmu0‖ > B− r+2
r−2q ,

then the solution u(t) in Theorem 2.1 blows up in finite time T∗ in the sense of Lr+2

norm. In other words, that is lim
t→T−∗

‖u(t)‖r+2 = .

3. Main results and their proof

This section will study the lower bounds estimates for the blow-up time of the
problem (1.1)–(1.3).

THEOREM 3.1. Under the assumptions of Theorem 2.1 and Theorem 2.2, if u(t)
is a solution of problem (1.1)–(1.3), which blows up in a finite time T∗ , then

(i) T∗ >
∫ 

F(0)

dy
C2y +by+(r+2)|E(0)| for 0 < r � 2m

n−m
,
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(ii) T∗ >

∫ 

F(0)

dy

C3y +C4y


q+1 +by+C5

for
2m

n−m
< r � 2m

n−2m
,

where F(0) = ‖u0‖r+2
r+2 , the positive constants Ci (i = 2,3,4,5) and the exponents , 

will be determined in (3.8), (3.11), (3.13) and (3.14).

Proof. Multiplying equation (1.1) by ut and integrating over  , one has

d
dt

E(u(t)) = −a‖ut(t)‖p+2
p+2 � 0, (3.1)

then E(t) is a nonincreasing function on t > 0.
By (3.1) and (2.1), we get that

1
2
‖ut‖2 +

1
2(q+1)

‖Dmu‖2(q+1)− b
r+2

‖u‖r+2
r+2 = E(t) � E(0),

which implies that

‖ut‖2 +
1

q+1
‖Dmu‖2(q+1) � 2

(
|E(0)|+ b

r+2
‖u‖r+2

r+2

)
. (3.2)

Let F(t) =
∫

|u|r+2dx , then

F ′(t) = (r+2)
∫

|u|ruutdx � r+2

2

(∫

|u|2(r+1)dx+

∫

|ut |2dx

)
. (3.3)

(i) For 0 < r � 2m
n−m , we see that nr

m < 2(r+1) < 2n
n−2m . By applying interpolation

inequality, one has
‖u‖2(r+1) � ‖u‖nr

m
‖u‖1−

2n
n−2m

, (3.4)

where 1
2(r+1) = 

nr
m

+ 1−
2n

n−2m
. A direct calculation yields

 =
1

2(r+1) − n−2m
2n

m
nr − n−2m

2n

=
r

r+1
. (3.5)

Therefore, it follows from (3.4), (3.5), Lemma 2.1 and Hölder inequality that
∫

|u|2(r+1)dx = ‖u‖2(r+1)

2(r+1) � ‖u‖2r
nr
m
‖u‖2

2n
n−2m

� B2||
2(m−n)(r+2)+4n

n(r+2) ‖u‖2r
r+2 · ‖Dmu‖2

� C1‖u‖
2(q+1)r

q
r+2 +

1
q+1

‖Dmu‖2(q+1),

(3.6)
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where C1 = qB
2(q+1)

q

q+1 ||
2(q+1)[(m−n)(r+2)+2n]

nq(r+2) , and we have used Young’s inequality XY �
1
X + 1

Y  with  = q+1
q ,  = q+1.

We conclude from (3.2), (3.3) and (3.6) that

F ′(t) � r+2
2

[
C1‖u‖

2(q+1)r
q

r+2 +
1

q+1
‖Dmu‖2(q+1) +‖ut‖2

]

� r+2
2

[
C1F

(t)+
2b

r+2
F(t)+2|E(0)|

]

= C2F
(t)+bF(t)+ (r+2)|E(0)|,

(3.7)

where

C2 =
(r+2)C1

2
,  =

2(q+1)r
q(r+2)

. (3.8)

(3.7) implies that
F ′(t)

C1F(t)+bF(t)+ (r+2)|E(0)| � 1. (3.9)

Integrating both sides of (3.9) over [0,T∗] on t , we yield that

T∗ �
∫ T∗

0

1
C1F(t)+bF(t)+ (r+2)|E(0)|d(F(t)). (3.10)

By (3.10) and lim
t→T−∗

‖u(t)‖r+2
r+2 =  in Theorem 2.2, we obtain that

T∗ >

∫ 

F(0)

dy
C2y +by+(r+2)|E(0)|.

(ii) When 2m
n−m < r � 2m

n−2m , we have r+2 < 2(r+1) < 2n
n−2m . From interpolation

inequality, we derive that

‖u‖2(r+1) � ‖u‖1−
r+2 ‖u‖2n

n−2m
, (3.11)

where 1
2(r+1) = 1−

r+2 + 
2n

n−2m
. Thus, we gain that

 =
1

r+2 − 1
2(r+1)

1
r+2 − n−2m

2n

=
nr

(r+1)[2n− (n−2m)(r+2)]
.

By (3.11), we have
∫

|u|2(r+1)dx � B2 (r+1)‖u‖2(r+1)(1− )

r+2 ‖Dmu‖2 (r+1)

� B2 (r+1)(‖u‖r+2
r+2 +‖Dmu‖2) ,

(3.12)
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where

 =
(r+1)(2+r)

r+2
. (3.13)

From (3.2), (3.3) and (3.12), We conclude that

F ′(t) � r+2
2

[
B2 (r+1)(F(t)+‖Dmu‖2) +‖ut‖2

]

� r+2
2

[
2−1B2 (r+1)F (t)+2−1B2 (r+1)‖Dmu‖2 +‖ut‖2

]

� r+2
2

[
2−1B2 (r+1)F (t)+2−1B2 (r+1)

(
2(q+1)|E(0)|+2b(q+1)

r+2
F(t)

) 
q+1

+2|E(0)|+ 2b
r+2

F(t)
]

� r+2
2

[
2−1B2 (r+1)F (t)+ (q+1)


q+1 2

(q+1)(−2)+2
q+1 B2 (r+1)|E(0)| 

q+1

+(q+1)


q+1 2
(q+1)(−2)+2

q+1 b


q+1 (r+2)−


q+1 B2 (r+1)F


q+1 (t)+2|E(0)|+ 2b
r+2

F(t)
]

= C3F
 (t)+C4F


q+1 (t)+bF(t)+C5,

(3.14)
where

C3 = (r+2)2−2B2 (r+1),

C4 = (q+1)


q+1 2
(q+1)(−2)+2−(q+1)

q+1 b


q+1 (r+2)1− 
q+1 B2 (r+1), (3.15)

and

C5 = (r+2)(q+1)


q+1 2
(q+1)(−2)+2−(q+1)

q+1 B2 (r+1)|E(0)| 
q+1 +(r+2)|E(0)|. (3.16)

By lim
t→T−∗

‖u(t)‖r+2
r+2 =  in Theorem 2.2, one has

T∗ >

∫ 

F(0)

dy

C3y +C4y


q+1 +by+C5

.

This completes the proof of Theorem 3.1. �

THEOREM 3.2. Under the assumptions of Theorem 3.1, if r satisfies

2m
n−2m

< r <
4m(n−m)
n(n−2m)

f or n > 2m, (3.17)

then the blow-up time T∗ has the following estimate

T∗ >
∫ 

H(0)

dy

C9y +C10y +C11
,
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where H(0) =
∫
 |u0| 2n−2m

n−2m dx ,  = (r+2)(q+1)(1− )(n−2m)
[2(q+1)− (r+2)](n−m) and  = n

(q+1)(n−2m) . The

constants Ci > 0 (i = 9,10,11) are defined by (3.28) and (3.29).

Proof. According to (3.17), the interpolation inequality and Lemma 2.1, we re-
ceive that

‖u‖r+2
r+2 � ‖u‖(1− )(r+2)

2n−2m
n−2m

· ‖u‖ (r+2)
2n

n−2m
� B (r+2)‖u‖(1− )(r+2)

2n−2m
n−2m

· ‖Dmu‖ (r+2), (3.18)

where 1
r+2 = (n−2m)(1− )

2n−2m +  (n−2m)
2n . Thus, we get that 0 <  = n[(n−2m)(r+2)−(2n−2m)]

m(n−2m)(r+2) <

1. By r < 4m(n−m)
n(n−2m) in (3.18), we have 0 <  (r+2)

2 < 1.
From (3.18) and Young’s inequality, we obtain

b‖u‖r+2
r+2 � 2(q+1)− (r+2)

2(q+1) (bB (r+2))
2(q+1)

2(q+1)−(r+2) ‖u‖
2(r+2)(q+1)(1−)
2(q+1)−(r+2)

2n−2m
n−2m

+  (r+2)
2(q+1)‖Dmu‖2(q+1)

� 2(q+1)− (r+2)
2(q+1) (bB (r+2))

2(q+1)
2(q+1)−(r+2) ‖u‖

2(r+2)(q+1)(1−)
2(q+1)−(r+2)

2n−2m
n−2m

+ 1
q+1‖Dmu‖2(q+1).

(3.19)
Combining (3.2) with (3.19) yields

b‖u‖r+2
r+2 � 2(q+1)− (r+2)

2(q+1)
(bB (r+2))

2(q+1)
2(q+1)−(r+2)

(∫

|u| 2n−2m

n−2m dx

)

+
2b

r+2
‖u‖r+2

r+2 +2|E(0)|,
(3.20)

where  = (r+2)(q+1)(1− )(n−2m)
[2(q+1)− (r+2)](n−m) . According to (3.20), we can derive that

b
r+2

‖u‖r+2
r+2 � C6

(∫

|u| 2n−2m

n−2m dx

)
+

2
r
|E(0)| (3.21)

with C6 = 2(q+1)− (r+2)
2r(q+1) (bB (r+2))

2(q+1)
2(q+1)−(r+2) .

Let H(t) =
∫
 |u| 2n−2m

n−2m dx , then, from Young’s inequality and Lemma 2.1, we have

H ′(t) =
2n−2m
n−2m

∫

|u| 2m

n−2m uutdx � n−m
n−2m

(∫

|u| 2n

n−2m dx+‖ut‖2
)

� n−m
n−2m

(
B

2n
n−2m ‖Dmu‖ 2n

n−2m +‖ut‖2
)

.

(3.22)

By (3.2) and (3.21), one has

‖Dmu‖ 2n
n−2m �

(
2(q+1)C6H(t)+ 4(q+1)

r |E(0)|+4(q+1)|E(0)|
) n

(q+1)(n−2m)

� C7H
 (t)+C8

(3.23)
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and
‖ut‖2 � 2C6H

(t)+4r−1|E(0)|+2|E(0)|, (3.24)

where  = n
(q+1)(n−2m) ,

C7 = 2
2m(q+1)−n(q−1)

(q+1)(n−2m) [(q+1)C6]
n

(q+1)(n−2m)
, (3.25)

C8 = 2
3n−(q+1)(n−2m)

(q+1)(n−2m) [(q+1)r−1|E(0)|+(q+1)|E(0)|] n
(q+1)(n−2m) . (3.26)

We conclude from (3.22)–(3.24) that

H ′(t) � C9H
(t)+C10H

 (t)+C11, (3.27)

where

C9 =
2(n−m)
(n−2m)

C6, C10 =
n−m
n−2m

B
2n

n−2m (3.28)

and

C11 =
n−m
n−2m

[
B

2n
n−2mC8 +

4
r
|E(0)|+2|E(0)|

]
. (3.29)

Then, it follows from (3.21) and Theorem 2.2 that

lim
t→T∗

∫

|u| 2n−2m

n−2m dx = +. (3.30)

By (3.27) and (3.30), we obtain that

T∗ >

∫ 

H(0)

dy

C9y +C10y +C11
.

The proof of Theorem 3.2 is finished. �
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