
Journal of
Mathematical

Inequalities

Volume 18, Number 1 (2024), 79–101 doi:10.7153/jmi-2024-18-06

ANALYTIC INEQUALITIES INVOLVING WEIGHTED

EXPONENTIAL  –BETA FUNCTIONS AND APPLICATIONS

YU-MING CHU, MUHAMMAD UZAIR AWAN ∗ , MUHAMMAD ZAKRIA JAVED,
KAMEL BRAHIM, MUHAMMAD ASLAM NOOR, MUSTAPHA RAÏSSOULI
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Abstract. Integral inequalities are the proficient aspect of mathematical analysis. Various tech-
niques have been deployed to acquire to fresh inequalities which are beneficial in various area
problems. The aim of this paper is to derive some new analytic inequalities involving gener-
alized weighted exponential beta functions. To attain our primary objectives, we introduce the
generalized exponential function X,�, () and weighted form of exponential beta functions
F (,�, ) . Furthermore, we briefly discuss their properties. we derive several inequalities in
association with X,�, () and F (,�, ) . As the applications of these new developments ,we
conclude some error estimates of Ostrwoski’s type inequalities, which show the significance of
the obtained results.

1. Introduction and preliminaries

Special functions are particular mathematical functions that have significant role
in different fields of pure and applied sciences. Particularly they play vital role in dif-
ferential equations. The history of special functions is as old as the history of calculus.
Today we are familiar with variety of special functions. Gamma and beta functions
are one of the most studied basic special functions which were introduced and stud-
ied by Euler. Euler also investigated zeta functions, but it was studied extensively by
Riemann. Bernoulli defined another special function that is called Bessel functions.
Legendre functions were found in late 1700. Gauss unified several special functions
with the introduction of Gauss hypergeometric functions. For more details regarding
special functions, their properties and applications, see [2].

Now we recall the notions of convex functions.
Let f : [a,b] → R is said to be a convex mapping if

X((1− )a1 + a2) � (1− )X(a1)+ X(a2), ∀a1,a2 ∈ [a,b] (1)

where  ∈ [0,1] . Next, we present the notion of logarithmic convex functions and which
is demonstrated as: Let f : [a,b] → R is said to be a logarithmic convex mapping if

X((1− )a1 + a2) � [X(a1)](1−)[X(a2)] , ∀a1,a2 ∈ [a,b] (2)
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where  ∈ [0,1] .
The main motivation of this paper is to introduce and discuss the properties of a

four parameter family of functions. Using this function, we define weighted exponential
 -beta function and discussed its properties. We also present applications of the main
results.

We now recall the three parameter family of functions which was introduced and
studied by Dragomir and Khosrowshahi in [11].

X ,�, () := exp[ (1−)�],  ∈ [0,1],  , �, � 0,

and they then defined the weighted exponential beta functions by the integral

F ( , �, ) :=
1∫

0

exp[ (1−)�]d ,  , �, � 0.

We have the following representation for the generating function X ,�, :

X ,�, () = 1+



n=1

1
n!
 nn(1−)n�,

with uniform convergence on [0,1] .
As usual, the standard beta function is defined by

B(x,y) :=
1∫

0

x−1(1− )y−1d, x > 0, y > 0,

and the k -beta function is defined by [21]

Bk(x,y) =
1
k

∫ 1

0


x
k−1(1− )

y
k−1, k > 0, x > 0, y > 0. (3)

The following auxiliary results will play significant role in the development of
some of our main results.

LEMMA 1. ([14]) Let X : [a1,a2]→R be a continuous and differentiablemapping
on (a1,a2) , whose derivative is bounded on (a1,a2) and

‖X ′‖,(a1,a2) := sup
∈(a1,a2)

|X ′()| < ,

then ∣∣∣∣X()− 1
a2−a1

∫ a2

a1

X()d
∣∣∣∣�
[

1
4

+

(
 − a1+a2

2

)2
(a2−a1)2

]
(a2−a1)‖X ′‖,(a1,a2)

for all  ∈ [a1,a2] . Further, the constant 1
4 is sharp.
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LEMMA 2. ([9, 6]) Let X : [a1,a2] → R be an absolutely continuous mapping on
[a1,a2] , then

∣∣∣∣X()− 1
a2−a1

∫ a2

a1

X()d
∣∣∣∣�
[

1
2

+

∣∣− a1+a2
2

∣∣
a2−a1

]
‖X ′‖[a1,a2],1

for all  ∈ [a1,a2] , where ‖.‖1 is the Lebesgue norm on Ł1[a1,a2] defined as ‖X ′‖[a1,a2],1
:=
∫ a2
a1

|X()|d .

LEMMA 3. ([7]) Let X : [a1,a2] → R be an absolutely continuous mapping on
[a1,a2] . If |X ′|q ∈ Łp[a1,a2] , then∣∣∣∣X()− 1

a2−a1

∫ a2

a1

X()d
∣∣∣∣

� 1

(1+q)
1
q

[(
 −a1

a2−a1

)q+1

+
(

a2−
a2−a1

)q+1
] 1

q

(a2−a1)
1
q ‖X ′‖[a1,a2],p

for all  ∈ [a1,a2] , where p,q > 1 are such that 1
p + 1

q = 1 and ‖.‖[a1,a2],p is the

p-Lebesgue norm on Łp[a1,a2] defined by ‖X ′‖[a1,a2],p :=
(∫ a2

a1
|X()|pd

) 1
p
.

For more details about the previous lemmas, see [6, 7, 11, 13, 14, 16].
Dragomir and Khosroshahi [12] introduced the concepts of exponential form of

beta functions and investigated its key properties. In [3] authors studied the applica-
tions of beta functions in probability theory. De sole and Kac [5] derived the integral
representations of q analogs of gamma and beta functions and provided the proof of
Jacobi’s identities for triple product and Ramanujan formula for bilateral hypergeomet-
ric series. In [17] Miller formulated the integral representations of generalized beta
functions in terms of Whittaker functions. Mohammed [20] utilized the generalized
beta functions and preinvex mappings to establish some crucial integral inequalities.
Abubakar and Patel [1] introduced the new generalized beta functions based on Wright
functions and demonstrated its applications as well. In [4] authors provided a new
version of probability density functions involving new generalized beta functions.

2. Results and discussions

In this section, we will discuss our main results. We preserve the same notations
as in the previous section. We divide this section into two subsections.

2.1. Some preliminary notions and results

We first introduce some new notions and their related results. We begin by stating
the following central definition.
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DEFINITION 1. Let  ∈ [0,1] ,  , �, � 0 and  � 1. We define:
(i) The four parameters family of functions by

X ,�, ,() = exp
[ 




 (1−)

�

]
.

(ii) The weighted exponential  -beta function F : (0,)2 × (0,)→ (0,) as

F ( , �; ) =
∫ 1

0
X ,�, ,()d =

∫ 1

0
exp
[ 




 (1−)



]
d . (4)

With the above, the following lemma may be stated.

LEMMA 4. The function  �−→ X ,�, ,() is monotonically increasing on[
0, 

+�

]
and decreasing on

[


+� ,1
]
, and

max
∈[0,1]

X ,�, ,() = X ,�, ,

(


 + �

)
= exp

[



(


 + �

) 

(

�

 + �

) �

]

. (5)

Proof. From X ,�, ,() = exp[r ,�()] , with r ,�() = 
 [


 (1−)

�
 ], ∀ ∈

[0,1] , we have

X ′
 ,�, ,() = r′ ,�()X ,�, ,(), ∀ ∈ [0,1]. (6)

Thus r′ ,�() and X ′
 ,�, ,() have the same sign on [0,1] . Moreover we have

r′ ,�() =



[





−1(1−)

�
 − �





 (1−)

�
−1
]
,

or, equivalently,

r′ ,�() =

2


−1(1−)

�
 −1 [− ( + �) ] , ∀ ∈ [0,1], (7)

This implies that r′ ,�() � 0 for  ∈
[
0, 

+�

]
and r′ ,�() � 0 for  ∈

[


+� ,1
]
,

which proves our result. �

LEMMA 5. Let  , � > 1 ,  � 0 and  � 1 . Assume that  < min{ , �} , then we
have

sup
∈(0,1)

|r′ ,�()| � 
2 max{ , �}

(

 −1

) 
−1(

�
 −1

) �
−1

(
+�
 −2

) +�
 −2

. (8)
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Proof. Following (7) we can write

∣∣∣r′ ,�()
∣∣∣� 

2 sup
∈(0,1)

(



−1(1−)

�
−1
)

max
∈[0,1]

|− (+ �) | ,

and hence ∣∣∣r′ ,�()
∣∣∣� 

2 max{ , �} sup
∈(0,1)

(



−1(1−)

�
−1
)
. (9)

If for a,b � 0 we set f () = a(1−)b,  ∈ (0,1) , and we study the variations of
f , it is easy to check that

sup
∈(0,1)

f () = f
( a

a+b

)
=

aabb

(a+b)a+b .

This, when combined with (9), gives (8) after simple algebraic operations, so completes
the proof. �

We now give Taylor’s type representation for X ,�, ,() .

PROPOSITION 1. Let  , �, � 0,  � 1 then, for all  ∈ [0,1] and n � 1 , we
have

X ,�, ,() = 1+
n


m=1

1
m!

(



)m


m
 (1−)

�m


+
1
n!

[(





 (1−)

�


)]n+1∫ 1

0
exp

[
s





 (1−)

�


]
(1− s)nds.

(10)

Proof. Let I ⊂ R be a nonempty closed interval, c ∈ I and let n be a positive
integer. If X : I → C is such that the n -th derivative X (n) is absolutely continuous on
I , then for each y ∈ [0,1] , X(y) = Tn(X ;c,y)+Rn(X ;c,y), where

Tn(X ;c,y) =
n


m=0

(y− c)m

m!
X (m)(c),

is the Taylor’s polynomial in y , with the remainder given by:

Rn(X ;c,y) =
1
n!

∫ y

c
(y− )nX (n+1)()d.

Now

X(y) =
n


m=0

(y− c)m

m!
X (m)(c)+

1
n!

∫ y

c
(y− )nX (n+1)()d.
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Making the change of variable  = (1− s)c+ sy,s ∈ [0,1] , we get

X(y) =
n


m=0

(y− c)m

m!
X (m)(c)+

(y− c)n+1

n!

∫ 1

0
(1− s)nX (n+1)((1− s)c+ sy

)
ds.

Applying this to X(y) = expy at c = 0, with y = 
 


 (1−)

�
 , we obtain

exp

[





 (1−)

�


]

=
n


m=0

1
m!

(



)m


m
 (1−)

�m


+
1
n!

(





 (1−)

�


)n+1∫ 1

0
exp
[
s(


 (1−)

�
 )
]
(1− s)nds,

which is the desired result, so completing the proof. �

COROLLARY 1. Let  , �, � 0 and  � 1 . For all  ∈ [0,1] we have

X ,�, ,() = 1+



m=1

1
m!

(



)m


m
 (1−)

�m
 , (11)

with uniform convergence on [0,1] .

Proof. It follows from (10) with some elementary techniques of Real Analysis.
The details are simple and therefore omitted here. �

The following result concerns a Taylor’s type expansion for F ( , �; ) .

PROPOSITION 2. For n � 1 and for any  , �, � 0 ,  � 1 , we have

F ( , �; )

= 1+
n


m=1

1
m!

m

m−1 B
(
m + ,m�+

)

+
1
n!

∫ 1

0

(∫ 1

0

(





 (1−)

�


)n+1

exp[s





 (1−)

�
 ]d

)
(1− s)nds.

Proof. Integrating (10) with respect to  ∈ [0,1] , we get the announced result.
The proof is straightforward. �

As for Corollary 1, the following result is immediate from Proposition 2.

COROLLARY 2. For all  , �, � 0 , we have the  -beta Taylor series expansion

F ( , �; ) = 1+



m=1

1
m!

m

m−1 B
(
m + ,m�+

)
, (12)

with uniform convergence on [0,1] .
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2.2. The main results

In this section we will derive some analytic inequalities for X ,�, , . Some in-
equalities about F ( , �; ) will be stated in a parallel manner.

Our first main result reads as follows.

THEOREM 1. Let  , �, � 0 and  � 1 . For any p,q > 1 with 1
p + 1

q , we have

0 � X ,�, ,()−1 �
(

exp

(




 p


)
−1

) 1
p
(

exp

(



(1−)
q�
 −1

)) 1
q

(13)

for all  ∈ [0,1] . Particularly, we have

0 �
(
X ,�, ,()−1

)2
�
(

exp

(




2p


)
−1

)(
exp

(



(1−)
2q
 −1

))
(14)

for all  ∈ [0,1] .

Proof. The Hölder’s discrete inequality tells us that we have

0 �
n


m=1

rma1ma2m �
(

n


m=1

rmap
1m

) 1
p
(

n


m=1

rmaq
2m

) 1
q

, (15)

whenever rm,a1m,a2m > 0, m � 1 and p,q > 1 with 1
p + 1

q = 1. Taking rm = 1
m!

(



)m
,

a1m = 
m
 and a2m = (1−)

�m
 , we have

0 �
n


m=1

1
m!

(



)m


m
 (1−)

�m


�
(

n


m=1

1
m!

(



)m


mp


) 1
p
(

n


m=1

1
m!

(



)m

(1−)
�mq


) 1
q

, (16)

for all m � 1 and  ∈ [0,1] . The series




m=1

1
m!

(



)m


m
 (1−)

�m
 ,




m=1

1
m!

(



)m


 pm
 ,

and




m=1

1
m!

(



)m

(1−)
�qm


are convergent, with




m=1

1
m!

(



)m


m
 (1−)

�m
 = exp

[





 (1−)

�


]
−1 = X ,�, ,()−1, (17)
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


m=1

1
m!

(



)m


 pm
 = exp

[




 p


]
−1, (18)

and




m=1

1
m!

(



)m

(1−)
�qm
 = exp

[



(1−)
�q


]
−1. (19)

Now letting n →  in (16) and substituting (17), (18) and (19) therein we get (13), so
completing the proof. �

COROLLARY 3. Let  , �, � 0 with  � 1 . For any p,q > 1 with 1
p + 1

q = 1 ,
we have

0 � [F ( , �; )−1] � [F (p ,0; )−1]
1
p [F(0,q�; )−1]

1
q .

Particularly, we have

(
F ( , �; ,)−1

)2
� [F(2 ,0; )−1][F(0,2�; )−1].

Proof. Integrating (13) with respect to  ∈ [0,1] we get

0 � F( , �; )()−1

�
∫ 1

0

(
exp

(




 p


)
−1

) 1
p
(

exp

(



(1−)
q�
 −1

)) 1
q

d ,

which, with the standard Hölder’s integral inequality, implies that

F( , �; )−1 �
[∫ 1

0

(
exp

(




 p


)
−1

)
d
] 1

p

×
[∫ 1

0
exp

(



(1−)
q�
 −1

)
d
] 1

q

,

hence the desired result. �
Our second main result is recited in the following.

THEOREM 2. Let  , �, � 0 and  � 1 . Then for all  ∈ [0,1] , we have

1

exp(  )−1

[
exp

(







)
−1

][
exp

(



(1−)
�


)
−1

]

� X ,�, , −1

� 1

exp(  )−1

[
exp

(







)
−1

][
exp

(



(1−)
�


)
−1

]

+
1
4

[
exp

(



)
−1

]



 (1−)

�
 . (20)
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Proof. Let rm,a1m,a2m be as in the proof of the previous theorem.
• It is obvious that the sequences (a1m)m and (a2m)m are both monotonic decreas-

ing. According to the Chebychev discrete inequality with the weight rm � 0 [15] we
have

n


m=1

rma1m

n


m=1

rma2m �
n


m=1

rm

n


m=1

rma1ma2m,

which, when replacing rm,a1m and a2m by their expressions, yields

n


m=1

1
m!

(



)m


m


n


m=1

1
m!

(



)m

(1−)
�m


�
n


m=1

1
m!

(



)m n


m=1

1
m!

(



)m


m
 (1−)

�m
 . (21)

Using (17), (18), (19) and




m=1

1
m!

(



)m

= exp
( 

)−1,

and then letting n →  in (21), we get the left inequality in (20).
• Now the Grüss discrete inequality [8] tells us that we have∣∣∣∣∣

n


m=1

rm

n


m=1

rma1ma2m−
n


m=1

rma1m

n


m=1

rma2m

∣∣∣∣∣
� 1

4

(
n


m=1

rm

)2

(A−a1)(B−a2), (22)

provided that the sequences (a1m)m and (a2m)m are bounded, with a1 � a1m � A and

a2 � a2m � B . It is easy to see that 0 � a1m � 

 and 0 � a2m � (1−)

�
 for all

m � 1, which when substituted in (22), imply that∣∣∣∣∣
n


m=1

1
m!

(



)m n


m=1

1
m!

(



)m


m
 (1−)

�m


−
n


m=1

1
m!

(



)m


m


n


m=1

1
m!

(



)m

(1−)
�m


∣∣∣∣∣
� 1

4

(
n


m=1

(



)m
)2



 (1−)

�
 . (23)

As previous, letting n →  in (23) we get the right inequality of (20), so completing
the proof. �

We have the following main result as well.
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THEOREM 3. Let  , �, � 0 and  � 1 . Then for all  ∈ (0,1) we have

(
exp

[



]
−1

)[



 (1−)

�

] exp[  ]

[exp(  )−1] � X ,�, ,()−1. (24)

Proof. The Jensen’s discrete inequality [19], applied to the concave function t �−→
ln t, t ∈ (0,) , gives

ln

(
n

m=1 rmum

n
m=1 rm

)
� n

m=1 rm ln(um)
n

m=1 rm
,

where um := 
m
 (1−)

�m
 and rm = 1

m!

(



)m
, m � 1. Therefore we have

ln

⎛
⎜⎝n

m=1
1
m!

(



)m


m
 (1−)

�m


n
m=1

1
m!

(



)m

⎞
⎟⎠�

n
m=1

1
m!

(



)m
ln[

n
 (1−)

�m
 ]

n
m=1

1
m!

(



)m

=
n

m=1
1

(m−1)!

(



)m
ln[


 (1−)

�
 ]

n
m=1

1
m!

(



)m , (25)

for all  ∈ (0,1) and n � 1. It is easy to see that




m=1

1
(m−1)!

(



)m

=



exp

(



)

and



m=1

1
m!

(



)m

= exp

(



)
−1.

Taking n →  in (23) and using the representation (11), we get

ln

(
X ,�, ,()−1

exp(  )−1

)
�

exp(  )

 [exp(  )−1]
ln[


 (1−)

�
 ]

= ln

⎡
⎣( 

 (1−)
�

) exp(  )

[exp(  )−1]

⎤
⎦ , (26)

hence (24), then completes the proof. �
We may also state the following result.

THEOREM 4. Let  , �, � 0 and  � 1 . Then for all  ∈ (0,1) , we have

0 � X ,�, ,()−1

�
(

exp

(



)
−1

) [exp(  
2
 )−1][exp(  (1−)

2�
 )−1]

[exp(  

 )−1][exp(  (1−)

�
 )−1]

. (27)
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Proof. The Cauchy-Bunyakovsky-Schwarz weighted inequality, namely

( n


m=1

rma2
1m

)( n


m=1

rma2
2m

)
�

(
n

m=1 rma1m

)(
n

m=1 rma2m

)(
n

m=1 rma1ma2m

)
n

m=1 rm
,

with a1m = 
m
 , a2m = (1−)

�m
 and rm = 1

m!

(



)m
, yields

n


m=1

1
m!

(



)m


2m


n


m=1

1
m!

(



)m

(1−)
2�m


�
n

m=1
1
m!

(



)m


m
 n

m=1
1
m!

(



)m
(1−)

�m
 n

m=1
1
m!

(



)m


m
 (1−)

�m


n
m=1

1
m!

(



)m .

(28)

As previously, since all the series involved in (28) are convergent, then taking limit
n →  and using (11), we get the required result. �

THEOREM 5. For any (1, �2,1),(2, �2,2)∈ [0,)× [0,)× [0,) ,  � 1 and
 ∈ [0,1] , the inequality

X(1−)1+2,(1−)�1+�2,(1−)1+2, ()

� (1− )2X1,�1,1,()+ (1− )X2,�2,1, ()

+ (1− )X1,�1,2, ()+ 2X2,�2,2,(), (29)

holds true for all  ∈ (0,1) .

Proof. Fix  ∈ (0,1) . We have

(1− )(1, �1,1)+ (2, �2,2)
= ((1− )1 + 2,(1− )�1 + �2,(1− )1 + 2) ∈ (0,)× (0,)× (0,)

and so

X(1−)1+2,(1−)�1+�2,(1−)1+2,()−1

=



m=1

1
m!

(
(1− )1 + 2



)m


[(1−)1+2]m

 (1−)
[(1−)�1+�2]m



=



m=1

1
m!

(
(1− )1 + 2



)m


(1−)1m

 (1−)
(1−)�1m

 
2m
 (1−)

�2m


=



m=1

1
m!

(
(1− )1 + 2



)m

[
1m
 (1−)

�1m
 ](1−)[

2m
 (1−)

�2m
 ] := A.
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Using the convexity of the power function t �−→ tm, m � 1, we have

(
(1− )1 + 2



)m

� (1− )
(
1



)m

+ 
(
2



)m

,

for all 1,2 > 0,  � 1 and  ∈ [0,1] . It follows that

A �



m=1

1
m!

[
(1− )

(
1



)m

+ 
(
2



)m]
[

1m
 (1−)

�1m
 ](1−)[

2m
 (1−)

�2m
 ]

=



m=1

1
m!

[
(1− )

(
1



)m]
[

1m
 (1−)

�1m
 ](1−)[

2m
 (1−)

�2m
 ]

+



m=1

1
m!

[

(
2



)m]
[

1m
 (1−)

�1m
 ](1−)[

2m
 (1−)

�2m
 ] .

By Young’s inequality we have

[
1m
 (1−)

�1m
 ](1−)[

2m
 (1−)

�2m
 ]

� [(1− )
1m
 (1−)

�1m
 ]+ [x

2m
 (1−)

�2m
 ].

Therefore we have

A �



m=1

1
m!

[
(1− )

(
1



)m]
(1− )[

1
 (1−)

�1
 ]m + [

2
 (1−)

�2
 ]m

+



m=1

1
m!

[

(
2



)m]
(1− )[

1
 (1−)

�1
 ]m + [

2
 (1−)

�2
 ]m.

= (1− )2



m=1

1
m!

[(
1



)m]
[

1
 (1−)

�1
 ]m

+(1− )



m=1

1
m!

[(
1



)m]
[

2
 (1−)

�2
 ]m

+ (1− )



m=1

1
m!

[(
2



)m]
[

1
 (1−)

�1
 ]m

+ 2



m=1

1
m!

[(
2



)m]
[

2
 (1−)

�2
 ]m.

= (1− )2[X1,�1,1,()−1]+ (1− )[X2,�2,1,()−1]

+ (1− )[X1,�1,2,()−1]+ 2X2,�2,2, ()

= (1− )2X1,�1,1,()+ (1− )X2,�2,1,()

+ (1− )X1,�1,2,()+ 2X2,�2,2, ()−1.

This completes the proof. �
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COROLLARY 4. (i) For fixed  ∈ (0,1), � 1 and  � 0 , the function ( , �) �−→
X ,�, ,() is globally convex on [0,)× [0,) .

(ii) For fixed  , � � 0 ,  � 1 and  ∈ (0,1) , the function  �−→ X ,�, ,() is
convex on [0,) .

Proof. (i) Let (1, �1),(2, �2) ∈ [0,)× [0,) and  ∈ [0,1] . Then by using
Theorem 5 for 1 = 2 =  , we get

X(1−)1+2,(1−)�1+�2, , ()

� (1− )2X1,�1, ,()+ (1− )X2,�2, ,()

+ (1− ) f1,�1, , ()+ 2X2,�2, ,()

= [(1− )2 + (1− )]X1,�1, ,()+ [(1− )+ 2]X2,�2, , ()

= (1− )X1,�1, ,()+ X2,�2, , ().

Whence the desired result.
(ii) Fix  ∈ (0,1) and  , � � 0. Theorem 5 with 1 = 2 =  and �1 = �2 = �

implies that

X ,�,(1−)1+2,()

� (1− )2X ,�,1, ()+ (1− )X ,�,2,()

+ (1− )X ,�,1,()+ 2X ,�,2,()

= [(1− )2 +(1− )]X ,�,1,()+ [(1− )+ 2]X ,�,2, ().

= (1− )X ,�,1, ()+ X ,�,2
().

This completes the proof. �

COROLLARY 5. For any (1, �1,1) ,(2, �2,2) ∈ [0,)× [0,)× [0,) ,  � 1
and  ∈ [0,1] , we have

F

(
(1− )(1, �1,1)+ (2, �2,2)

)
� (1− )2F(1, �1,1)+ (1− )F(1, �1,2)

+ (1− )F(2, �2,1)+ 2F (2, �2,2). (30)

Proof. Integrating (29) with respect to  ∈ [0,1] and using (4), we get the desired
result. The details are simple and therefore omitted here. �

COROLLARY 6. For fixed  � 0 and  � 1 , the function ( , �) �−→ F ( , �; )
is globally convex on [0,)× [0,) . Also  �−→ F( , �; ) is convex on [0,) for
any  , � � 0 and  � 1 .
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THEOREM 6. Let  , �, � 0 and  � 1 . Then we have

0 � F ( , �; )−1 � 1

exp(  )−1
[F( ,0; )−1][F(0, �; )−1]

+
1
4

[
exp

(



)
−1

]
B( + , �+). (31)

Proof. Integrating the right inequality of (20) with respect to  ∈ [0,1] , we get

0 � F ( , �; )−1

� 1

exp(  )−1

∫ 1

0

[
exp

(







)
−1

][
exp

(



(1−)
�


)
−1

]
d

+
1
4

[
exp

(



)
−1

]∫ 1

0



 (1−)

�
 d

=
1

exp(  )−1

∫ 1

0

[
exp

(







)
−1

][
exp

(



(1−)
�


)
−1

]
d

+
1
4

[
exp

(



)
−1

]
B ( ++ �+). (32)

Now, let

X() := exp
( 





)
−1, Y () = exp

( 


(1−)
�

)
−1,  ∈ [0,1].

It is obvious that  �−→ X() is an increasing function and  �−→ X() is a decreas-
ing one. The Chebysev’s integral inequality [18] tells us that for the opposite monotonic
functions X ,Y : [0,1] → R , we have

∫ 1

0
X()Y ()d �

∫ 1

0
X()d

∫ 1

0
Y ()d ,

or, equivalently,
∫ 1

0

[
exp
( 





)
−1
][

exp
( 


(1−)
�

)
−1
]
d

�
∫ 1

0

[
exp
( 





)
−1
]
d
∫ 1

0

[
exp
( 


(1−)
�

)
−1
]
d

= [F ( ,0; )−1][F(0, �; )−1].

Substituting this in (32) we get (31). �
Finally, we now discuss the logarithmic convexity property for F( , �; ) .

THEOREM 7. For each  � 0 and  � 1 , the function ( , �) �−→ F( , �; ) is
logarithmically convex on [0,)× [0,) .
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Proof. Fix  � 0,  � 1 and let (1, �1),(2, �2) ∈ [0,)× [0,) . By (12) we
have

F
(
(1− )1 + 2,(1− )�1 + �2;

)−1

=



m=1

m

m!m−1 B ([(1− )1 + 2]m+ , [(1− )�1 + �2]m+)

=



m=1

m

m!m−1 B ((1− )(1m+)+ (2m+),(1− )(�1m+)+ (�2m+))

=



m=1

m

m!m−1 B ((1− )(1m+ , �1m+)+  (2m+ , �2m+)) ,

which, with the fact that the  -beta function is logarithmically convex [21], implies
that

F
(
(1− )1 + 2,(1− )�1 + �2;

)−1

�



m=1

m

m!m−1 [B (1m+ , �1m+)]1− [B (2m+ , �2m+)] .

Now using the Holder’s weighted inequality with p = 1
1− > 1, q = 1

 > 1, we get

F
(
(1− )1 + 2,(1− )�1 + �2;

)−1

�
[




m=1

m

m!m−1

(
[B (1m+ , �1m+)]1−

) 1
1−
]1−

×
[




m=1

m

m!m−1

(
[B (2m+ , �2m+)]

) 1


]
.

=

[



m=1

m

m!m−1 B
(
1m+ , �1m+

)]1−

×
[




m=1

m

m!m−1 B
(
2m+ , �2m+

)]
,

which, with (12) again, yields

F
(
(1− )1 + 2,(1− )�1 + �2;

)−1

� [F (1, �1; )−1]1− [F (2, �2; )−1] . (33)

If we apply the Hölder’s discrete inequality to the right side of (33) we then obtain

F
(
(1− )1 + 2,(1− )�1 + �2;

)
� [F (1, �1; )−1]1− [F (2, �2; )−1] +1

= [F (1, �1; )−1]1− [F (2, �2; )−1] +11−1
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�
[(

[F (1, �1; )−1]1−
) 1

1− +1

]1−

×
[(

[F (2, �2; )−1]
) 1


+1

]
= [F (1, �1; )]1− [F (2, �2; )] .

The proof is finished. �

3. Applications

In this section, we will discuss some applications of our results. We give two types
of applications. The first concerns error bounds through Ostrowski type inequalities by
using the generalized exponential beta function whereas the second application is about
Ostrowski and trapezoid type of quadrature schemes.

3.1. Error bounds via Ostrowski type inequalities

Our first main result here is the following.

THEOREM 8. Let  , � > 1 ,  � 0 and 1 �  < min{ , �} . Then, for any  ∈
[0,1] , we have∣∣F

(
 , �;

)−X ,�; ,()
∣∣

�
∣∣∣∣∣14 +

(
 − 1

2

)2
∣∣∣∣∣ 2 max{ , �}

(

 −1

) 
−1(

�
 −1

) �
−1

(
+�
 −2

) +�
 −2

× exp

[

2

(


 + �

) 

(

�

 + �

) �

]

.

In particular, we have∣∣∣∣∣∣F
(
 , �;

)− exp

⎛
⎝ 

2
+�


⎞
⎠
∣∣∣∣∣∣

� 1
4

2 max{ , �}

(

 −1

) 
−1(

�
 −1

) �
−1

(
+�
 −2

) +�
 −2

× exp

[

2

(


 + �

) 

(

�

 + �

) �

]

.
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Proof. According to Lemma 1, the following inequality

∣∣∣∣X ,�; ,()−
∫ 1

0
X ,�; ,()d

∣∣∣∣�
[

1
4

+
(
− 1

2

)2
]
‖X ′

 ,�; ,‖,(0,1) (34)

holds for all  ∈ [0,1] . Writing again (6) as

X ′
 ,�; ,() = r′ ,�()X ,�; , (), ∀ ∈ [0,1], (35)

we then obtain

‖X ′
 ,�; ,‖,(0,1) := sup

∈(0,1)
|X ′

 ,�; ,()| � sup
∈(0,1)

|r′ ,�()| sup
∈(0,1)

X ,�; ,(),

which, with (5) and (8), implies the first part of Theorem 8. The second part follows by
taking  = 1

2 . �

THEOREM 9. For any  ∈ [0,1] , we have the following assertions:
(i) If  , � > 1 ,  � 0 and 1 �  < min{ , �} , then there holds

∣∣∣∣∣ X ,�; ,()
F
(
 , �;

) −1

∣∣∣∣∣�
[
1
2

+
∣∣∣− 1

2

∣∣∣] 
2 max{ , �}

(

 −1

) 
−1(

�
 −1

) �
−1

(
+�
 −2

) +�
 −2

.

In particular one has∣∣∣∣∣∣∣∣∣∣

exp

[


2
+�


]

F
(
 , �;

) −1

∣∣∣∣∣∣∣∣∣∣
� 1

2

2 max{ , �}

(

 −1

) 
−1(

�
 −1

) �
 −1

(
+�
 −2

) +�
 −2

.

(ii) If  , � > 0 ,  � 0 and  � 1 , then we have∣∣F
(
 , �;

)−X ,�; ,()
∣∣

�
[
1
2

+
∣∣∣ − 1

2

∣∣∣]  max{ , �}B( , �)exp

[



(


 + �

) 

(

�

 + �

) �

]

,

and particularly,∣∣∣∣∣∣F
(
 , �;

)− exp

⎡
⎣ 

2
+�


⎤
⎦
∣∣∣∣∣∣

� 1
2



max{ , �}B( , �)exp

[



(


 + �

) 

(

�

 + �

) �

]

.
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Proof. (i) By Lemma 2, we have

∣∣F
(
 , �;

)−X ,�; ,()
∣∣� [1

2
+
∣∣∣ − 1

2

∣∣∣]‖X ′
 ,�; ,‖(0,1),1, ∀ ∈ [0,1]. (36)

Using (35) we can write

‖X ′
 ,�; ,‖(0,1),1 =

∫ 1

0
|r′ ,�()|X ,�; ,()d

� sup
∈(0,1)

|r′ ,�()|
∫ 1

0
X ,�; ,()d

=
(
F
(
 , �;

))
sup

∈(0,1)
|r′ ,�()|,

which, with (8) and (36), yields the first inequality. To obtain the second inequality we
take  = 1

2 .
(ii) Now, if we write

‖X ′
 ,�; ,‖(0,1),1 =

∫ 1

0
|r′ ,�()|X ,�; ,()d

� sup
∈(0,1)

X ,�; ,()
∫ 1

0
|r′ ,�()|d,

and we use (7) we get

‖X ′
 ,�; ,‖(0,1),1 � 

2 max{ , �} sup
∈(0,1)

X ,�; ,()
∫ 1

0



−1(1−)

�
−1d . (37)

Substituting (37) in (36), and using (3) and (5), we obtain the third inequality of the
theorem. The fourth inequality follows when taking  = 1

2 . �

We also have the following result.

THEOREM 10. Let  , �, � 0, � 1 . For any p,q > 1 such that 1
p + 1

q = 1 , the
following inequality∣∣F

(
 , �;

)−X ,�; ,()
∣∣

� 1

(q+1)
1
q

[
q+1 +(1−)q+1] 1

q

× 


max{ , �}[B
(
p +(1− p) , p�+(1− p)

)] 1
p

× exp

[



(


 + �

) 

(

�

 + �

) �

]
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holds for all  ∈ [0,1] and particularly, we have∣∣∣∣∣∣F
(
 , �;

)− exp

⎡
⎣ 

2
+�


⎤
⎦
∣∣∣∣∣∣

� 1

2(q+1)
1
q




max{ , �}[B
(
p +(1− p) , p�+(1− p)

)] 1
p

× exp

[



(


 + �

) 

(

�

 + �

) �

]

.

Proof. According to Lemma 3 we have, for all  ∈ [0,1] ,

∣∣F
(
 , �;

)−X ,�; ,()
∣∣� 1

(q+1)
1
q

[
q+1 +(1−)q+1] 1

q ‖X ′
 ,�; ,‖(0,1),p.

(38)

Now, using (6) and (7) we get

‖X ′
 ,�; ,‖p

(0,1),p =
( 
2

)p ∫ 1

0
( −1)p(1− 

)( �
−1)p∣∣− (+ �)

∣∣p(X ,�; ,()
)pd

�
( 
2

)p(
max( , �)

)p sup
∈(0,1)

(
X ,�; ,()

)p ∫ 1

0
( −1)p(1− 

)( �
−1)p

.

This, after simple manipulations and the use of (3) and (5), substituted in (38) yields
the first inequality. The second one follows by taking  = 1

2 . �

3.2. Ostrowski and trapezoid type of quadrature schemes

Let Js : a1 = 0 < 1 < .. .s−1 < s = a2 be a partition of the interval [a1,a2] ,
and a1i (i = 0,1, . . . ,s+ 1) be the (s+ 2)-points such that a10 = a1,a1i ∈ [s−1,s]
(i = 1,2, . . . ,s) and a1s+1 = a2 . We set hi := i+1 −i , ∀i ∈ {0,1,2, . . . ,s− 1} , the
sub-interval size, and w(h) := max{hi : i = 0,1,2, . . . ,s−1} .

Our aim here is to approximate the following integral by demanding;∫ a2

a1

X()d = Ms(X ,Js,a1s+1)+Ns(X ,Js,a1s+1),

where

Ms(X ,Js,a1s+1) =
s


i=0

(a1i+1−a1i)X(i) (39)

is the Ostrowski quadrature rule and Ns(X ,Js,a1s+1) is its associated remainder.
If in (39) we take

a10 = a1, a11 =
a1 +1

2
, . . . , a1s−1 =

s−2 +s−1

2
, a1s =

s +s−1

2
, a1s+1 = a2,
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then we get

Ms(X ,Js,a1) =
1
2

[
(1 −a1)X(a1)

s−1


i=i

[(i+1−i)X(i)+ (a2−s−1)X(a2)]

]

:= T (X ,Js),

which is called the trapezoid quadrature rule.
If we choose an equidistance partition of [a1,a2] , i.e.

Js : i = a1 +(a2−a1)
i
s
, i = 0,1, . . . ,s

we then obtain the equidistance trapezoid quadrature rule given by:

T (X ,Js) :=
X(a1)+X(a2)

2s
(a2−a1)+

(a2 −a1)
s

s−1


i=1

X

(
a1 +(a2−a1)

i
s

)
.

• In [14] Dragomir and Rassias derived the error bounds for functions X such that
X ′ ∈ Ł[a1,a2] , as

|Ns(X ,Js,a1s+1)| �
[

1
4

s−1


i=0

h2
i +

s−1


i=0

(
a1i+1 − i +i+1

2

)2
]
‖X ′‖,(a1,a2). (40)

For trapezoid rule error bound we have

|Ns(X ,Js)| � 1
4

s−1


i=0

h2
i ‖X ′

 ,�‖,[a1,a2] � 1
4
(a2−a1)w(h)‖X ′‖,(a1,a2).

• In [6] Dragomir established error bounds for 1-norm functions, given by

|Ns(X ,Js,a1s+1)| �
[
1
2
w(h)+ max

i=1,2,...,n

∣∣∣∣a1i+1− i +i+1

2

∣∣∣∣
]
‖X ′

 ,�‖1,(a1,a2). (41)

• In [7] he established a generalized error bound for functions X such that X ′ ∈
Lp(a1,a2) as

|Ns(X ,Js,a1s+1)|

� 1

(q+1)
1
q

[
s−1


i=0

(a1i+1−i)q+1 +(i+1−a1i+1)q+1

] 1
q

‖X ′‖p,(a1,a2). (42)

We now state the following result.

THEOREM 11. With the previous notations, if we set

F
(
 , �;

)
:=
∫ 1

0
X ,�; ,()d = Ms

(
X ,�; , ,Js,a1s+1

)
+Ns(X ,�; , ,Js,a1s+1),
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then the remainder Ns(X ,�; , ,Js,a1s+1) satisfies the following assertions:

(i) Under the hypotheses of Theorem 8, we have

∣∣Ns(X ,�; , ,Js,a1s+1)
∣∣

�
[

1
4

s−1


i=0

h2
i +

s−1


i=0

(
a1i+1− i +i+1

2

)2
]

× 
2 max{ , �}

(

 −1

) 
−1(

�
 −1

) �
−1

(
+�
 −2

) +�
 −2

× exp

[

2

(


 + �

) 

(

�

 + �

) �

]

.

(ii) Under the assumptions of Theorem 9, we have

∣∣Ns(X ,�; , ,Js,a1s+1)
∣∣

�
[
1
2
w(h)+ max

i=1,2,...,n

∣∣∣∣a1i+1 − i +i+1

2

∣∣∣∣
]

× 


max{ , �}B( , �)exp

[



(


 + �

) 

(

�

 + �

) �

]

.

(iii) With the hypotheses of Theorem 10, there holds

∣∣Ns(X ,�; , ,Js,a1s+1)
∣∣

� 1

(q+1)
1
q

[
s−1


i=0

(a1i+1−i)q+1 +(i+1−a1i+1)q+1

] 1
q

× 


max{ , �}[B
(
p +(1− p) , p�+(1− p)

)] 1
p

× exp

[



(


 + �

) 

(

�

 + �

) �

]

.

Proof. The proof follows when using the inequalities (40), (41) and (42), respec-
tively, and the bounds for ‖X ′

 ,�‖1,(a1,a2) as in Theorem 8, Theorem 9 and Theorem 10,
respectively. The details are straightforward and therefore omitted here. �



100 CHU, AWAN, JAVED, BRAHIM, NOOR, RAÏSSOULI AND KHAN

4. Conclusion

In the current investigation, we have studied the new generalized family of expo-
nential functions involving four parameters and new generalized exponential beta func-
tions, which are based on generalized exponential functions. We have incorporatedwith
the properties of these newly proposed specials functions such as their taylor’s repre-
sentation, convexity property and some analytical inequalities are established. Also, we
have provided applications to Ostrowski’s inequalities and quadrature rules. In future,
we will try to investigate these functions in probability theory and their q -variants.
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[15] G. H. HARDY, J. E. LITTLEWOOD AND G. PÓLYA, Inequalities, 1st and 2nd edns, Cambridge Uni-
versity Press, Cambridge, England, 1952.



INEQUALITIES INVOLVING WEIGHTED EXPONENTIAL  -BETA FUNCTIONS 101

[16] F. KHOSROWSHAHI AND S. S. DRAGOMIR, Inequalities and convexity properties for the weighted
exponential-flat functions, J. Math. Inequal., 14 (4), 1285–1298, (2020).

[17] A. R. MILLER, Remarks on a generalized beta function, Journal of computational and applied math-
ematics, 100 (1), 23–32 (1998).
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