GENERALIZED WEIGHTED HARDY'S INEQUALITIES WITH COMPACT PERTURBATIONS

Hiroshi Ando and Toshio Horiuchi

(Communicated by T. Burić)

Abstract. Let Ω be a bounded domain of $\mathbf{R}^{N}(N \geqslant 1)$ with boundary of class C^{2}. In the present paper we shall study a variational problem relating the weighted Hardy inequalities with sharp missing terms established in [8]. As weights we treat non-doubling functions of the distance $\delta(x)=\operatorname{dist}(x, \partial \Omega)$ to the boundary $\partial \Omega$.

1. Introduction

Let $W\left(\mathbf{R}_{+}\right)$be a class of functions

$$
\left\{w(t) \in C^{1}\left(\mathbf{R}_{+}\right): w(t)>0, \lim _{t \rightarrow+0} w(t)=a \text { for some } a \in[0, \infty]\right\}
$$

with $\mathbf{R}_{+}=(0, \infty)$. For $1<p<\infty$, as weights of Hardy's inequalities we adopt functions $W_{p}(t)=w(t)^{p-1}$ with $w(t) \in P\left(\mathbf{R}_{+}\right) \cup Q\left(\mathbf{R}_{+}\right)$, where

$$
\left\{\begin{array}{l}
P\left(\mathbf{R}_{+}\right)=\left\{w(t) \in W\left(\mathbf{R}_{+}\right): w(t)^{-1} \notin L^{1}((0, \eta)) \text { for some } \eta>0\right\} \tag{1.1}\\
Q\left(\mathbf{R}_{+}\right)=\left\{w(t) \in W\left(\mathbf{R}_{+}\right): w(t)^{-1} \in L^{1}((0, \eta)) \text { for any } \eta>0\right\}
\end{array}\right.
$$

Clearly $W\left(\mathbf{R}_{+}\right)=P\left(\mathbf{R}_{+}\right) \cup Q\left(\mathbf{R}_{+}\right)$and $P\left(\mathbf{R}_{+}\right) \cap Q\left(\mathbf{R}_{+}\right)=\emptyset$. (For the precise definitions see the section 2. See also [8], [9].) A positive continuous function $w(t)$ on \mathbf{R}_{+} is said to be a doubling weight if there exists a positive number C such that we have

$$
\begin{equation*}
C^{-1} w(t) \leqslant w(2 t) \leqslant C w(t) \quad \text { for all } t \in \mathbf{R}_{+} \tag{1.2}
\end{equation*}
$$

When $w(t)$ does not possess this property, $w(t)$ is said to be a non-doubling weight in the present paper. In one-dimensional case we typically treat a weight function $w(t)$ that may vanish or blow up in infinite order such as $e^{-1 / t}$ or $e^{1 / t}$ at $t=0$. In such cases the limit of ratio $w(t) / w(2 t)$ as $t \rightarrow+0$ may become 0 or $+\infty$, and hence they are regarded as non-doubling weights according to our notion.

[^0]In [8], we have established N-dimensional Hardy inequalities with non-doubling weights being functions of the distance $\delta(x)=\operatorname{dist}(x, \partial \Omega)$ to the boundary $\partial \Omega$, where Ω is a bounded domain of class C^{2} in \mathbf{R}^{N}. In this paper we shall study a variational problem relating to those new inequalities.

We prepare more notations to describe our results. Let $1<p<\infty$. For $W_{p}(t)=$ $w(t)^{p-1}$ with $w(t) \in W\left(\mathbf{R}_{+}\right)$, we define a weight function $W_{p}(\delta(x))$ on Ω by

$$
W_{p}(\delta(x))=\left(W_{p} \circ \delta\right)(x)
$$

By $L^{p}\left(\Omega ; W_{p}(\delta)\right)$ we denote the space of Lebesgue measurable functions with weight $W_{p}(\delta(x))$, for which

$$
\begin{equation*}
\|u\|_{L^{p}\left(\Omega ; W_{p}(\delta)\right)}=\left(\int_{\Omega}|u(x)|^{p} W_{p}(\delta(x)) d x\right)^{1 / p}<+\infty \tag{1.3}
\end{equation*}
$$

$W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right)$ is given by the completion of $C_{c}^{\infty}(\Omega)$ with respect to the norm defined by

$$
\begin{equation*}
\|u\|_{W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right)}=\||\nabla u|\|_{L^{p}\left(\Omega ; W_{p}(\delta)\right)}+\|u\|_{L^{p}\left(\Omega ; W_{p}(\delta)\right)} \tag{1.4}
\end{equation*}
$$

Then, $W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right)$ becomes a Banach space with the norm $\|\cdot\|_{W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right)}$. Under these preparation we recall the weighted Hardy inequalities in [8]. (See Theorem 2.1 and its corollary in Section 2.) In particular for $w(t) \in Q\left(\mathbf{R}_{+}\right)$, we have a simple inequality as Corollary 2.1, which is a generalization of classical Hardy's inequality:

$$
\begin{equation*}
\int_{\Omega}|\nabla u(x)|^{p} W_{p}(\delta(x)) d x \geqslant \gamma \int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x \tag{1.5}
\end{equation*}
$$

for $u(x) \in W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right)$, where η_{0} is a sufficiently small positive number, γ is some positive constant and $F_{\eta_{0}}(t)$ is a positive function defined in Definition 2.3. In particular if $w(t)=1$, then $F_{\eta_{0}}(t)=t\left(0<t \leqslant \eta_{0}\right)$ and (1.5) becomes a well-known Hardy's inequality, which is valid for a bounded domain Ω of \mathbf{R}^{N} with Lipschitz boundary (cf. [4], [6], [10], [11]). Further if Ω is convex, then $\gamma=\Lambda_{p}:=(1-1 / p)^{p}$ holds for arbitrary $1<p<\infty$ (see [11]).

In the present paper we consider the following variational problem relating the general Hardy's inequalities established in [8]. For $\lambda \in \mathbf{R}, W_{p}(t)=w(t)^{p-1}$ and $w(t) \in$ $W_{A}\left(\mathbf{R}_{+}\right)\left(\subset W\left(\mathbf{R}_{+}\right)\right)$, the following variational problem (1.6) can be associated with (1.5):

$$
\begin{equation*}
J_{p, \lambda}^{w}=\inf _{u \in W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right) \backslash\{0\}} \chi_{p, \lambda}^{w}(u) \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi_{p, \lambda}^{w}(u)=\frac{\int_{\Omega}|\nabla u(x)|^{p} W_{p}(\delta(x)) d x-\lambda \int_{\Omega}|u(x)|^{p} W_{p}(\delta(x)) d x}{\int_{\Omega}|u(x)|^{p} W_{p}(\delta(x)) / F_{\eta_{0}}(\delta(x))^{p} d x} . \tag{1.7}
\end{equation*}
$$

Here $W_{A}\left(\mathbf{R}_{+}\right)=P_{A}\left(\mathbf{R}_{+}\right) \cup Q_{A}\left(\mathbf{R}_{+}\right)$is a subclass of $W\left(\mathbf{R}_{+}\right)$defined by Definition 2.6 and η_{0} is a sufficiently small positive number such that the Hardy inequalities in Theorem 2.1 and Corollary 2.1 are valid. Note that $J_{p, 0}^{w}$ gives the best constant in (1.5), the function $\lambda \mapsto J_{p, \lambda}^{w}$ is non-increasing on \mathbf{R} and $J_{p, \lambda}^{w} \rightarrow-\infty$ as $\lambda \rightarrow \infty$.

When $p=2$ and $w(t)=1$, this variational problem (1.6) was originally studied in [4]. Then, the problem (1.6) was intensively studied in [2] in the case that $1<p<\infty$ and $w(t)=t^{\alpha p /(p-1)} \in Q_{A}\left(\mathbf{R}_{+}\right)$with $\alpha<1-1 / p$. In this paper we further investigate the variational problem (1.6) with non-doubling weight functions $w(t) \in W_{A}\left(\mathbf{R}_{+}\right)$and we make clear the attainability of the infimum $J_{p, \lambda}^{w}$ as Theorem 3.1 and Theorem 3.2.

This paper is organized in the following way: In Subsection 2.1 we introduce a class of weight functions $W\left(\mathbf{R}_{+}\right)$and two subclasses $P\left(\mathbf{R}_{+}\right)$and $Q\left(\mathbf{R}_{+}\right)$together with so-called Hardy functions, which are crucial in this paper. Further a notion of admissibilities for $P\left(\mathbf{R}_{+}\right)$and $Q\left(\mathbf{R}_{+}\right)$is introduced. In Subsection 2.2, we recall the weighted Hardy's inequalities in [8] which are crucial in this work. In Section 3, the main results are described. Theorem 3.1 and Theorem 3.2 are established in Section 4 and Section 5 respectively.

2. Preliminaries

2.1. Weight functions

First we introduce a class of weight functions according to [8] which is crucial in this paper.

Definition 2.1. Let us set $\mathbf{R}_{+}=(0, \infty)$ and

$$
\begin{equation*}
W\left(\mathbf{R}_{+}\right)=\left\{w(t) \in C^{1}\left(\mathbf{R}_{+}\right): w(t)>0, \lim _{t \rightarrow+0} w(t)=a \text { for some } a \in[0, \infty]\right\} \tag{2.1}
\end{equation*}
$$

In the next we define two subclasses of $W\left(\mathbf{R}_{+}\right)$.
DEFINITION 2.2. Let us set

$$
\begin{align*}
& P\left(\mathbf{R}_{+}\right)=\left\{w(t) \in W\left(\mathbf{R}_{+}\right): w(t)^{-1} \notin L^{1}((0, \eta)) \text { for some } \eta>0\right\} \tag{2.2}\\
& Q\left(\mathbf{R}_{+}\right)=\left\{w(t) \in W\left(\mathbf{R}_{+}\right): w(t)^{-1} \in L^{1}((0, \eta)) \text { for any } \eta>0\right\} \tag{2.3}
\end{align*}
$$

Here we give fundamental examples:

EXAMPLE 2.1.

1. $t^{\alpha} \in P\left(\mathbf{R}_{+}\right)$if $\alpha \geqslant 1$ and $t^{\alpha} \in Q\left(\mathbf{R}_{+}\right)$if $\alpha<1$.
2. $e^{-1 / t} \in P\left(\mathbf{R}_{+}\right)$and $e^{1 / t} \in Q\left(\mathbf{R}_{+}\right)$.
3. For $\alpha \in \mathbf{R}, t^{\alpha} e^{-1 / t} \in P\left(\mathbf{R}_{+}\right)$and $t^{\alpha} e^{1 / t} \in Q\left(\mathbf{R}_{+}\right)$.

REMARK 2.1.

1. $W\left(\mathbf{R}_{+}\right)=P\left(\mathbf{R}_{+}\right) \cup Q\left(\mathbf{R}_{+}\right)$and $P\left(\mathbf{R}_{+}\right) \cap Q\left(\mathbf{R}_{+}\right)=\emptyset$ hold.
2. If $w(t)^{-1} \notin L^{1}((0, \eta))$ for some $\eta>0$, then $w(t)^{-1} \notin L^{1}((0, \eta))$ for any $\eta>0$. Similarly if $w(t)^{-1} \in L^{1}((0, \eta))$ for some $\eta>0$, then $w(t)^{-1} \in L^{1}((0, \eta))$ for any $\eta>0$.
3. If $w(t) \in P\left(\mathbf{R}_{+}\right)$, then $\lim _{t \rightarrow+0} w(t)=0$. Hence by setting $w(0)=0, w(t)$ is uniquely extended to a continuous function on $[0, \infty)$. On the other hand if $w(t) \in$ $Q\left(\mathbf{R}_{+}\right)$, then possibly $\lim _{t \rightarrow+0} w(t)=+\infty$.

In the next we define functions such as $F_{\eta}(t)$ and $G_{\eta}(t)$ in order to introduce variants of the Hardy potential like $F_{\eta_{0}}(\delta(x))^{-p}$ in (1.5).

DEfinition 2.3. Let $\mu>0$ and $\eta>0$. For $w(t) \in W\left(\mathbf{R}_{+}\right)$, we define the followings:

1. When $w(t) \in P\left(\mathbf{R}_{+}\right)$,

$$
\begin{align*}
& F_{\eta}(t ; w, \mu)= \begin{cases}w(t)\left(\mu+\int_{t}^{\eta} w(s)^{-1} d s\right) & \text { if } t \in(0, \eta), \\
w(\eta) \mu & \text { if } t \geqslant \eta\end{cases} \tag{2.4}\\
& G_{\eta}(t ; w, \mu)= \begin{cases}\mu+\int_{t}^{\eta} F_{\eta}(s ; w, \mu)^{-1} d s & \text { if } t \in(0, \eta) \\
\mu & \text { if } t \geqslant \eta\end{cases} \tag{2.5}
\end{align*}
$$

2. When $w(t) \in Q\left(\mathbf{R}_{+}\right)$,

$$
\begin{align*}
F_{\eta}(t ; w) & = \begin{cases}w(t) \int_{0}^{t} w(s)^{-1} d s & \text { if } t \in(0, \eta), \\
w(\eta) \int_{0}^{\eta} w(s)^{-1} d s & \text { if } t \geqslant \eta,\end{cases} \tag{2.6}\\
G_{\eta}(t ; w, \mu) & = \begin{cases}\mu+\int_{t}^{\eta} F_{\eta}(s ; w)^{-1} d s & \text { if } t \in(0, \eta), \\
\mu & \text { if } t \geqslant \eta .\end{cases} \tag{2.7}
\end{align*}
$$

3. $F_{\eta}(t ; w, \mu)$ and $F_{\eta}(t ; w)$ are abbreviated as $F_{\eta}(t) . G_{\eta}(t ; w, \mu)$ is abbreviated as $G_{\eta}(t)$.
4. For $w(t) \in P\left(\mathbf{R}_{+}\right)$or $Q\left(\mathbf{R}_{+}\right)$, we define

$$
\begin{equation*}
W_{p}(t)=w(t)^{p-1} \tag{2.8}
\end{equation*}
$$

REMARK 2.2. In the definition (2.5), one can replace $G_{\eta}(t ; w, \mu)$ with the more general $G_{\eta}\left(t ; w, \mu, \mu^{\prime}\right)=\mu^{\prime}+\int_{t}^{\eta} F_{\eta}(s ; w, \mu)^{-1} d s$ if $t \in(0, \eta), G_{\eta}\left(t ; w, \mu, \mu^{\prime}\right)=\mu^{\prime}$ if $t \geqslant \eta$ with $\mu^{\prime}>0$. However, for simplicity this paper uses (2.5).

Here we give fundamental examples:
Example 2.2. Let $w(t)=t^{\alpha}$ for $\alpha \in \mathbf{R}$.

1. When $\alpha>1, F_{\eta}(t)=t /(\alpha-1)$ and $G_{\eta}(t)=\mu+(\alpha-1) \log (\eta / t)$ for $t \in(0, \eta)$ provided that $\mu=\eta^{1-\alpha} /(\alpha-1)$.
2. When $\alpha=1, F_{\eta}(t)=t(\mu+\log (\eta / t))$ and $G_{\eta}(t)=\mu-\log \mu+\log (\mu+\log (\eta / t))$ for $t \in(0, \eta)$.
3. When $\alpha<1, F_{\eta}(t)=t /(1-\alpha)$ and $G_{\eta}(t)=\mu+(1-\alpha) \log (\eta / t)$ for $t \in$ $(0, \eta)$.

By using integration by parts we see the followings:
EXAMPLE 2.3.

1. When either $w(t)=e^{-1 / t} \in P\left(\mathbf{R}_{+}\right)$or $w(t)=e^{1 / t} \in Q\left(\mathbf{R}_{+}\right)$, we have $F_{\eta}(t)=$ $O\left(t^{2}\right)$ as $t \rightarrow+0$.
2. Moreover, if $w(t)=\exp \left(\pm t^{-\alpha}\right)$ with $\alpha>0$, then $F_{\eta}(t)=O\left(t^{\alpha+1}\right)$ as $t \rightarrow+0$. In fact, it holds that $\lim _{t \rightarrow+0} F_{\eta}(t) / t^{\alpha+1}=1 / \alpha$.

In a similar way we define the following:
DEFInItion 2.4. Let $\mu>0$ and $\eta>0$. For $w(t) \in W\left(\mathbf{R}_{+}\right)$, we define the followings:

1. When $w(t) \in P\left(\mathbf{R}_{+}\right)$,

$$
f_{\eta}(t ; w, \mu)= \begin{cases}\mu+\int_{t}^{\eta} w(s)^{-1} d s & \text { if } t \in(0, \eta) \tag{2.9}\\ \mu & \text { if } t \geqslant \eta\end{cases}
$$

2. When $w(t) \in Q\left(\mathbf{R}_{+}\right)$,

$$
f_{\eta}(t ; w)= \begin{cases}\int_{0}^{t} w(s)^{-1} d s & \text { if } t \in(0, \eta) \tag{2.10}\\ \int_{0}^{\eta} w(s)^{-1} d s & \text { if } t \geqslant \eta\end{cases}
$$

3. $f_{\eta}(t ; w, \mu)$ and $f_{\eta}(t ; w)$ are abbreviated as $f_{\eta}(t)$.

REMARK 2.3.

1. We note that for $t \in(0, \eta)$

$$
\begin{cases}\frac{d}{d t} \log f_{\eta}(t)=-F_{\eta}(t)^{-1} & \text { if } w(t) \in P\left(\mathbf{R}_{+}\right) \tag{2.11}\\ \frac{d}{d t} \log f_{\eta}(t)=F_{\eta}(t)^{-1} & \text { if } w(t) \in Q\left(\mathbf{R}_{+}\right) \\ \frac{d}{d t} \log G_{\eta}(t)=-\left(F_{\eta}(t) G_{\eta}(t)\right)^{-1}, & \\ \frac{d}{d t} G_{\eta}(t)^{-1}=\left(F_{\eta}(t) G_{\eta}(t)^{2}\right)^{-1} & \text { if } w(t) \in W\left(\mathbf{R}_{+}\right)\end{cases}
$$

By Definition 2.3, Definition 2.4 and (2.11), we see that $F_{\eta}(t)^{-1} \notin L^{1}((0, \eta))$, $\lim _{t \rightarrow+0} G_{\eta}(t)=\infty$ and $\left(F_{\eta}(t) G_{\eta}(t)\right)^{-1} \notin L^{1}((0, \eta))$, but $\left(F_{\eta}(t) G_{\eta}(t)^{2}\right)^{-1} \in$ $L^{1}((0, \eta))$.
2. If $w(t) \in W\left(\mathbf{R}_{+}\right)$, then we have $\liminf _{t \rightarrow+0} F_{\eta}(t)=\liminf _{t \rightarrow+0} F_{\eta}(t) G_{\eta}(t)=0$ from 1 .

EXAMPLE 2.4. If either $w(t)=t^{2} e^{-1 / t} \in P\left(\mathbf{R}_{+}\right)$or $w(t)=t^{2} e^{1 / t} \in Q\left(\mathbf{R}_{+}\right)$, then $F_{\eta}(t)=O\left(t^{2}\right)$ and $G_{\eta}(t)=O(1 / t)$ as $t \rightarrow+0$.

Now we introduce two admissibilities for $P\left(\mathbf{R}_{+}\right)$and $Q\left(\mathbf{R}_{+}\right)$.

DEFINITION 2.5.

1. A function $w(t) \in P\left(\mathbf{R}_{+}\right)$is said to be admissible if there exist positive numbers η and K such that we have

$$
\begin{equation*}
\int_{t}^{\eta} w(s)^{-1} d s \leqslant e^{K / \sqrt{t}} \quad \text { for } t \in(0, \eta) \tag{2.12}
\end{equation*}
$$

2. A function $w(t) \in Q\left(\mathbf{R}_{+}\right)$is said to be admissible if there exist positive numbers η and K such that we have

$$
\begin{equation*}
\int_{0}^{t} w(s)^{-1} d s \geqslant e^{-K / \sqrt{t}} \quad \text { for } t \in(0, \eta) \tag{2.13}
\end{equation*}
$$

Definition 2.6. By $P_{A}\left(\mathbf{R}_{+}\right)$and $Q_{A}\left(\mathbf{R}_{+}\right)$we denote the set of all admissible functions in $P\left(\mathbf{R}_{+}\right)$and $Q\left(\mathbf{R}_{+}\right)$respectively. We set

$$
\begin{equation*}
W_{A}\left(\mathbf{R}_{+}\right)=P_{A}\left(\mathbf{R}_{+}\right) \cup Q_{A}\left(\mathbf{R}_{+}\right) . \tag{2.14}
\end{equation*}
$$

REMARK 2.4. If $w(t) \in W_{A}\left(\mathbf{R}_{+}\right)$, then there exist positive numbers η and K such that we have

$$
\begin{equation*}
\sqrt{t} G_{\eta}(t) \leqslant K \quad \text { for } \quad t \in(0, \eta) \tag{2.15}
\end{equation*}
$$

For the detail, see Proposition 2.1 in [8].
Here we give typical examples:
EXAMPLE 2.5. $e^{-1 / t} \notin P_{A}\left(\mathbf{R}_{+}\right), e^{1 / t} \notin Q_{A}\left(\mathbf{R}_{+}\right)$, but $e^{-1 / \sqrt{t}} \in P_{A}\left(\mathbf{R}_{+}\right), e^{1 / \sqrt{t}} \in$ $Q_{A}\left(\mathbf{R}_{+}\right)$.

Verifications:

$e^{-1 / t} \notin P_{A}\left(\mathbf{R}_{+}\right):$For small $t>0$, we have $\int_{t}^{\eta} e^{1 / s} d s \geqslant \int_{t}^{2 t} e^{1 / s} d s \geqslant t e^{1 /(2 t)}$. But this contradicts to (2.12) for any $K>0$.
$e^{-1 / \sqrt{t}} \in P_{A}\left(\mathbf{R}_{+}\right):$Since $e^{1 / \sqrt{s}} \leqslant e^{1 / \sqrt{t}}(t<s<\eta)$, we have $\int_{t}^{\eta} e^{1 / \sqrt{s}} d s \leqslant \eta e^{1 / \sqrt{t}}$ $\leqslant e^{K / \sqrt{t}}$ for some $K>1$.
$e^{-1 / t} \notin Q_{A}\left(\mathbf{R}_{+}\right)$: For $0<s \leqslant t$, we have $\int_{0}^{t} e^{-1 / s} d s \leqslant t e^{-1 / t}$. But this contradicts to (2.13) for any $K>0$.
$e^{-1 / \sqrt{t}} \in Q_{A}\left(\mathbf{R}_{+}\right):$For $t / 2<s<t$, we have $\int_{0}^{t} e^{-1 / \sqrt{s}} d s \geqslant \int_{t / 2}^{t} e^{-1 / \sqrt{s}} d s \geqslant$ $(t / 2) e^{-\sqrt{2 / t}} \geqslant e^{-K / \sqrt{t}}$ for some $K>\sqrt{2}$.

2.2. Weighted Hardy's inequalities

We define a switching function.
DEFINITION 2.7. (Switching function) For $w(t) \in W\left(\mathbf{R}_{+}\right)=P\left(\mathbf{R}_{+}\right) \cup Q\left(\mathbf{R}_{+}\right)$ we set

$$
s(w)=\left\{\begin{array}{lll}
-1 & \text { if } & w(t) \in P\left(\mathbf{R}_{+}\right) \tag{2.16}\\
1 & \text { if } & w(t) \in Q\left(\mathbf{R}_{+}\right)
\end{array}\right.
$$

Let Ω be a bounded domain of class C^{2} in \mathbf{R}^{N}. Let $\delta(x)=\operatorname{dist}(x, \partial \Omega)$. For each small $\eta>0, \Omega_{\eta}$ and Σ_{η} denote a tubular neighborhood of $\partial \Omega$ and $\partial\left(\Omega \backslash \Omega_{\eta}\right)$ respectively, namely

$$
\begin{equation*}
\Omega_{\eta}=\{x \in \Omega: \delta(x)<\eta\} \quad \text { and } \quad \Sigma_{\eta}=\{x \in \Omega: \delta(x)=\eta\} \tag{2.17}
\end{equation*}
$$

In [8] we established a series of weighted Hardy's inequalities with sharp remainders. In particular, we have the following inequality from Theorem 3.3 in [8] by noting that $F_{\eta}(t) \leqslant F_{\eta_{0}}(t)$ for $\eta \in\left(0, \eta_{0}\right]$ and $t \in(0, \eta)$.

Theorem 2.1. Assume that Ω is a bounded domain of class C^{2} in \mathbf{R}^{N}. Assume that $1<p<\infty$ and $w(t) \in W_{A}\left(\mathbf{R}_{+}\right)$. Assume that $\mu>0$ and η_{0} is a sufficiently small positive number. Then, for $\eta \in\left(0, \eta_{0}\right]$ there exist positive numbers $C=C(w, p, \eta, \mu)$ and $L^{\prime}=L^{\prime}(w, p, \eta, \mu)$ such that for $u(x) \in W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right)$ we have

$$
\begin{align*}
& \int_{\Omega_{\eta}}\left(|\nabla u(x)|^{p}-\Lambda_{p} \frac{|u(x)|^{p}}{F_{\eta_{0}}(\delta(x))^{p}}\right) W_{p}(\delta(x)) d x \\
& \quad \geqslant C \int_{\Omega_{\eta}} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta}(\delta(x))^{p} G_{\eta}(\delta(x))^{2}} d x+s(w) L^{\prime} \int_{\Sigma_{\eta}}|u(x)|^{p} W_{p}(\eta) d \sigma_{\eta} \tag{2.18}
\end{align*}
$$

where $d \sigma_{\eta}$ denotes surface elements on Σ_{η}.
Similarly we have the following inequality from Corollary 3.3 in [8].
Corollary 2.1. Assume that Ω is a bounded domain of class C^{2} in \mathbf{R}^{N}. Assume that $1<p<\infty$ and $w(t) \in W_{A}\left(\mathbf{R}_{+}\right)$. Assume that $\mu>0$ and η_{0} is a sufficiently small positive number. Then, for $\eta \in\left(0, \eta_{0}\right]$ there exist positive numbers $\gamma=\gamma(w, p, \eta, \mu)$ and $L^{\prime}=L^{\prime}(w, p, \eta, \mu)$ such that for $u(x) \in W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right)$ we have

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla u(x)|^{p}-\gamma \frac{|u(x)|^{p}}{F_{\eta}(\delta(x))^{p}}\right) W_{p}(\delta(x)) d x \geqslant s(w) L^{\prime} \int_{\Sigma_{\eta}}|u(x)|^{p} W_{p}(\eta) d \sigma_{\eta} \tag{2.19}
\end{equation*}
$$

where $d \sigma_{\eta}$ denotes surface elements on Σ_{η}.
REMARK 2.5. In Theorem 3.3 and Corollary 3.3 in [8], it was assumed that $u(x) \in$ $W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right) \cap C(\Omega)$. However, since we have the inequalities (2.18) and (2.19) for $u(x) \in C_{c}^{\infty}(\Omega)$, by Lemma 4.5 and Remark 4.1 as stated later, we see that the inequalities (2.18) and (2.19) hold for $u(x) \in W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right)$. Therefore we have Theorem 2.1 and Corollary 2.1.

REMARK 2.6. These inequalities are closely related to the weighted Hardy-Sobolev inequalities with sharp remainder terms (cf. [1], [3], [4], [5], [7], [9], [12]).

3. Main results

Let η_{0} be a sufficiently small positive number such that the Hardy's inequalities in Theorem 2.1 and Corollary 2.1 are valid. Let $w(t) \in W\left(\mathbf{R}_{+}\right)$and $W_{p}(t)=w(t)^{p-1}$ with $1<p<\infty$. Moreover, we assume that

$$
\begin{equation*}
w^{\prime}(t) \geqslant 0 \quad \text { for all } t \in\left(0, \eta_{0}\right) \quad \text { or } \quad w^{\prime}(t) \leqslant 0 \quad \text { for all } t \in\left(0, \eta_{0}\right) \tag{3.1}
\end{equation*}
$$

Then we have the following.

Lemma 3.1. Assume that $w(t) \in W\left(\mathbf{R}_{+}\right)$satisfies (3.1). Then it holds that

$$
\begin{equation*}
\lim _{t \rightarrow+0} F_{\eta_{0}}(t)=0 \tag{3.2}
\end{equation*}
$$

In particular, $F_{\eta_{0}}(t)$ is bounded in \mathbf{R}_{+}.
The proof of Lemma 3.1 is stated at the end of this section.
For $\lambda \in \mathbf{R}$, let us recall the variational problem associated with (1.5):

$$
\begin{equation*}
J_{p, \lambda}^{w}=\inf _{u \in W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right) \backslash\{0\}} \chi_{p, \lambda}^{w}(u), \tag{3.3}
\end{equation*}
$$

where

$$
\chi_{p, \lambda}^{w}(u)=\frac{\int_{\Omega}|\nabla u(x)|^{p} W_{p}(\delta(x)) d x-\lambda \int_{\Omega}|u(x)|^{p} W_{p}(\delta(x)) d x}{\int_{\Omega}|u(x)|^{p} W_{p}(\delta(x)) / F_{\eta_{0}}(\delta(x))^{p} d x} .
$$

Our main result is the following:
THEOREM 3.1. Assume that Ω is a bounded domain of class C^{2} in \mathbf{R}^{N}. Assume that $1<p<\infty$ and $w(t) \in W_{A}\left(\mathbf{R}_{+}\right)$satisfies (3.1). Then, there exists a constant $\lambda^{*} \in \mathbf{R}$ such that:

1. If $\lambda \leqslant \lambda^{*}$, then $J_{p, \lambda}^{w}=\Lambda_{p}$. If $\lambda>\lambda^{*}$, then $J_{p, \lambda}^{w}<\Lambda_{p}$.

Here

$$
\begin{equation*}
\Lambda_{p}=\left(1-\frac{1}{p}\right)^{p} \tag{3.4}
\end{equation*}
$$

Moreover, it holds that:
2. If $\lambda<\lambda^{*}$, then the infimum $J_{p, \lambda}^{w}$ in (3.3) is not attained.
3. If $\lambda>\lambda^{*}$, then the infimum $J_{p, \lambda}^{w}$ in (3.3) is attained.

In particular we have the following inequality:

COROLLARY 3.1. Under the same assumptions as in Theorem 3.1, there exists a constant $\lambda \in \mathbf{R}$ such that for $u(x) \in W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right)$

$$
\begin{align*}
& \int_{\Omega}|\nabla u(x)|^{p} W_{p}(\delta(x)) d x \\
& \quad \geqslant \Lambda_{p} \int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x+\lambda \int_{\Omega}|u(x)|^{p} W_{p}(\delta(x)) d x \tag{3.5}
\end{align*}
$$

REMARK 3.1.

1. For the case of $w(t)=1$ and $\lambda=0$, the value of the infimum $J_{p, 0}^{1}$ in (3.3) and its attainability are studied in [10].
2. For the case of $w(t)=1$ and $p=2$, it is shown that the infimum $J_{2, \lambda}^{1}$ in (3.3) is attained if and only if $\lambda>\lambda^{*}$. See [4]. If $p \neq 2$ and $\lambda=\lambda^{*}$, then it is an open problem whether the infimum $J_{p, \lambda}^{w}$ in (3.3) is achieved.
3. For the case of $w(t)=t^{\alpha p /(p-1)} \in Q_{A}\left(\mathbf{R}_{+}\right)$with $\alpha<1-1 / p$, Theorem 3.1 is shown in [2].
4. In the assertion 3 of Theorem 3.1, the minimizer $u(x) \in W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right)$ for the variational problem (3.3) is a non-trivial weak solution of the following EulerLagrange equation:

$$
-\operatorname{div}\left(W_{p}(\delta)|\nabla u|^{p-2} \nabla u\right)-\lambda W_{p}(\delta)|u|^{p-2} u=J_{p, \lambda}^{w} \frac{W_{p}(\delta)}{F_{\eta_{0}}(\delta)^{p}}|u|^{p-2} u \quad \text { in } \mathscr{D}^{\prime}(\Omega)
$$

When $p=2$ and $\lambda=\lambda^{*}$ hold, we have the following that is rather precise.
THEOREM 3.2. In addition to the assumption of Theorem 3.1, we assume that $p=2$ and $\lambda=\lambda^{*}$. Let $\eta_{0}>0$ be a sufficiently small number as in Theorem 2.1. Moreover we assume that

$$
\begin{equation*}
\lim _{t \rightarrow+0} F_{\eta_{0}}(t) G_{\eta_{0}}(t)^{2}=0 \tag{3.6}
\end{equation*}
$$

Then, $J_{2, \lambda *}^{w}$ is not achieved.
Remark 3.2. By Theorem 3.1, $J_{2, \lambda^{*}}^{w}=1 / 4$ holds.
Example 3.1. Let $w(t)=t^{\alpha p /(p-1)}$ for $\alpha \in \mathbf{R}$. Then $W_{p}(t)=t^{\alpha p}$. If $\alpha \geqslant$ $1-1 / p$, then $w(t) \in P_{A}\left(\mathbf{R}_{+}\right)$, if $\alpha<1-1 / p$, then $w(t) \in Q_{A}\left(\mathbf{R}_{+}\right)$. Clearly (3.1) is valid. We have that as $t \rightarrow+0$

$$
\begin{aligned}
& F_{\eta_{0}}(t)= \begin{cases}O(t) & \text { for } \alpha \neq 1-1 / p \\
O(t \log (1 / t)) & \text { for } \alpha=1-1 / p\end{cases} \\
& G_{\eta_{0}}(t)= \begin{cases}O(\log (1 / t)) & \text { for } \alpha \neq 1-1 / p \\
O(\log \log (1 / t)) & \text { for } \alpha=1-1 / p\end{cases}
\end{aligned}
$$

Therefore (3.6) holds.

Example 3.2. Let either $w(t)=e^{-1 / \sqrt{t}} \in P_{A}\left(\mathbf{R}_{+}\right)$or $w(t)=e^{1 / \sqrt{t}} \in Q_{A}\left(\mathbf{R}_{+}\right)$. Then (3.1) and (3.6) hold. In fact, we have that as $t \rightarrow+0$

$$
F_{\eta_{0}}(t)=O\left(t^{3 / 2}\right), \quad G_{\eta_{0}}(t)=O\left(t^{-1 / 2}\right), \quad F_{\eta_{0}}(t) G_{\eta_{0}}(t)^{2}=O\left(t^{1 / 2}\right)
$$

Here we give the proof of Lemma 3.1.
Proof of Lemma 3.1. First we assume that $w(t) \in P\left(\mathbf{R}_{+}\right)$. Let ε be any number satisfying $0<\varepsilon<2 \eta_{0}$. For $0<t<\varepsilon / 2$ we have that

$$
\begin{equation*}
F_{\eta_{0}}(t)=w(t)\left(\mu+\int_{\varepsilon / 2}^{\eta_{0}} w(s)^{-1} d s\right)+w(t) \int_{t}^{\varepsilon / 2} w(s)^{-1} d s \tag{3.7}
\end{equation*}
$$

Since $w(t)^{-1} \notin L^{1}\left(\left(0, \eta_{0}\right)\right)$, it follows that $\lim _{t \rightarrow+0} w(t)=0$ from the Definition 2.1, and hence $w(t)$ is non-decreasing in $\left(0, \eta_{0}\right.$] by (3.1). Then we have

$$
\begin{equation*}
w(t) \int_{t}^{\varepsilon / 2} w(s)^{-1} d s \leqslant w(t) \int_{t}^{\varepsilon / 2} w(t)^{-1} d s=\frac{\varepsilon}{2}-t<\frac{\varepsilon}{2} . \tag{3.8}
\end{equation*}
$$

By $\lim _{t \rightarrow+0} w(t)=0$, there exists a $\delta>0$ such that for $0<t<\delta$

$$
\begin{equation*}
w(t)<\frac{\varepsilon}{2\left(\mu+\int_{\varepsilon / 2}^{\eta_{0}} w(s)^{-1} d s\right)} \tag{3.9}
\end{equation*}
$$

From (3.7), (3.8) and (3.9) it follows that for $0<t<\min \{\varepsilon / 2, \delta\}$

$$
F_{\eta_{0}}(t)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

which shows (3.2). Secondly we assume that $w(t) \in Q\left(\mathbf{R}_{+}\right)$. If $w^{\prime}(t) \geqslant 0$ for $t \in$ $\left(0, \eta_{0}\right)$, then $\lim _{t \rightarrow+0} w(t)=a<\infty$, and so

$$
F_{\eta_{0}}(t)=w(t) \int_{0}^{t} w(s)^{-1} d s \rightarrow 0 \quad \text { as } t \rightarrow+0
$$

by $w(t) \in L^{1}\left(\left(0, \eta_{0}\right)\right)$. If $w^{\prime}(t) \leqslant 0$ for $t \in\left(0, \eta_{0}\right)$, then we see that for $t \in\left(0, \eta_{0}\right.$]

$$
F_{\eta_{0}}(t)=w(t) \int_{0}^{t} w(s)^{-1} d s \leqslant w(t) \int_{0}^{t} w(t)^{-1} d s=t
$$

which implies (3.2). It concludes the proof.

4. Proof of Theorem 3.1

In this section, we give the proof of Theorem 3.1.

4.1. Upper bound of $J_{p, \lambda}^{w}$

First, we prove the assertion 1 of Theorem 3.1. As test functions we adopt for $\varepsilon>0$ and $0<\eta \leqslant \eta_{0} / 2$

$$
u_{\varepsilon}(t)= \begin{cases}f_{\eta_{0}}(t)^{1+s(w) \varepsilon-1 / p} & (0<t \leqslant \eta) \tag{4.1}\\ f_{\eta_{0}}(\eta)^{1+s(w) \varepsilon-1 / p}(2 \eta-t) / \eta & (\eta<t \leqslant 2 \eta) \\ 0 & \left(2 \eta<t \leqslant \eta_{0}\right)\end{cases}
$$

We note that

$$
u_{\varepsilon}^{\prime}(t)= \begin{cases}(1+s(w) \varepsilon-1 / p) f_{\eta}(t)^{s(w) \varepsilon-1 / p} s(w) / w(t) & (0<t<\eta) \tag{4.2}\\ -f_{\eta_{0}}(\eta)^{1+s(w) \varepsilon-1 / p / \eta} & (\eta<t<2 \eta) \\ 0 & \left(2 \eta<t \leqslant \eta_{0}\right)\end{cases}
$$

We have

$$
\begin{align*}
\int_{0}^{\eta}\left|u_{\varepsilon}^{\prime}(t)\right|^{p} W_{p}(t) d t & =\left(1-\frac{1}{p}+s(w) \varepsilon\right)^{p} \int_{0}^{\eta} f_{\eta_{0}}(t)^{s(w) \varepsilon p-1} \frac{1}{w(t)} d t \\
& =\left(1-\frac{1}{p}+s(w) \varepsilon\right)^{p} \frac{f_{\eta_{0}}(\eta)^{s(w) \varepsilon p}}{p \varepsilon} \tag{4.3}
\end{align*}
$$

In a similar way

$$
\begin{equation*}
\int_{0}^{\eta} \frac{\left|u_{\varepsilon}(t)\right|^{p} W_{p}(t)}{F_{\eta_{0}}(t)^{p}} d t=\int_{0}^{\eta} f_{\eta_{0}}(t)^{s(w) \varepsilon p-1} \frac{1}{w(t)} d t=\frac{f_{\eta_{0}}(\eta)^{s(w) \varepsilon p}}{p \varepsilon} \tag{4.4}
\end{equation*}
$$

Noting that $f_{\eta_{0}}(t)^{s(w) \varepsilon p}$ is bounded by the definitions of $s(w)$ and $f_{\eta_{0}}(t)$, it follows from Lemma 3.1 that

$$
\begin{align*}
\int_{0}^{\eta}\left|u_{\varepsilon}(t)\right|^{p} W_{p}(t) d t & =\int_{0}^{\eta} f_{\eta_{0}}(t)^{p-1+s(w) \varepsilon p_{w}} w(t)^{p-1} d t \\
& =\int_{0}^{\eta} F_{\eta_{0}}(t)^{p-1} f_{\eta_{0}}(t)^{s(w) \varepsilon p} d t<+\infty \tag{4.5}
\end{align*}
$$

Hence we have

$$
\begin{aligned}
\int_{0}^{2 \eta}\left|u_{\varepsilon}^{\prime}(t)\right|^{p} W_{p}(t) d t & =\left(1-\frac{1}{p}+s(w) \varepsilon\right)^{p} \frac{f_{\eta_{0}}(\eta)^{s(w) \varepsilon p}}{p \varepsilon}+C(\varepsilon, \eta) \\
\int_{0}^{2 \eta} \frac{\left|u_{\varepsilon}(t)\right|^{p} W_{p}(t)}{F_{\eta_{0}}(t)^{p}} d t & =\frac{f_{\eta_{0}}(\eta)^{s(w) \varepsilon p}}{p \varepsilon}+D(\varepsilon, \eta) \\
\int_{0}^{2 \eta}\left|u_{\varepsilon}(t)\right|^{p} W_{p}(t) d t & =\int_{0}^{\eta} F_{\eta_{0}}(t)^{p-1} f_{\eta_{0}}(t)^{s(w) \varepsilon p} d t+E(\varepsilon, \eta)
\end{aligned}
$$

where $C(\varepsilon, \eta), D(\varepsilon, \eta)$ and $E(\varepsilon, \eta)$ are given by

$$
\begin{aligned}
& C(\varepsilon, \eta)=f_{\eta_{0}}(\eta)^{p+s(w) \varepsilon p-1} \eta^{-p} \int_{\eta}^{2 \eta} W_{p}(t) d t \\
& D(\varepsilon, \eta)=f_{\eta_{0}}(\eta)^{p+s(w) \varepsilon p-1} \int_{\eta}^{2 \eta} \frac{(2 \eta-t)^{p} W_{p}(t)}{F_{\eta_{0}}(t)^{p} \eta^{p}} d t \\
& E(\varepsilon, \eta)=f_{\eta_{0}}(\eta)^{p+s(w) \varepsilon p-1} \int_{\eta}^{2 \eta} \frac{(2 \eta-t)^{p} W_{p}(t)}{\eta^{p}} d t
\end{aligned}
$$

and they remain bounded as $\varepsilon \rightarrow+0$. Therefore we see that

$$
\begin{equation*}
\frac{\int_{0}^{2 \eta}\left|u_{\varepsilon}^{\prime}(t)\right|^{p} W_{p}(t) d t}{\int_{0}^{2 \eta}\left|u_{\varepsilon}(t)\right|^{p} W_{p}(t) / F_{\eta_{0}}(t)^{p} d t} \rightarrow \Lambda_{p} \quad \text { as } \quad \varepsilon \rightarrow+0 \tag{4.6}
\end{equation*}
$$

and we also have

$$
\begin{equation*}
\frac{\int_{0}^{2 \eta}\left|u_{\varepsilon}(t)\right|^{p} W_{p}(t) d t}{\int_{0}^{2 \eta}\left|u_{\varepsilon}(t)\right|^{p} W_{p}(t) / F_{\eta_{0}}(t)^{p} d t} \rightarrow 0 \quad \text { as } \quad \varepsilon \rightarrow+0 . \tag{4.7}
\end{equation*}
$$

As a result we have the following lemma.

Lemma 4.1. Let $1<p<\infty, 0<\eta \leqslant \eta_{0} / 2$ and $w(t) \in W\left(\mathbf{R}_{+}\right)$. For any $\kappa>0$, there exists a function $h(t) \in W_{0}^{1, p}\left((0,2 \eta) ; W_{p}\right)$ such that

$$
\begin{equation*}
\frac{\int_{0}^{2 \eta}\left|h^{\prime}(t)\right|^{p} W_{p}(t) d t}{\int_{0}^{2 \eta}|h(t)|^{p} W_{p}(t) / F_{\eta_{0}}(t)^{p} d t} \leqslant \Lambda_{p}+\kappa . \tag{4.8}
\end{equation*}
$$

Proof. By $L^{p}\left((0, \eta) ; W_{p}\right)$ we denote the space of Lebesgue measurable functions with weight $W_{p}(t)$, for which

$$
\|u\|_{L^{p}\left((0, \eta) ; W_{p}\right)}=\left(\int_{0}^{\eta}|u(t)|^{p} W_{p}(t) d t\right)^{1 / p}<+\infty .
$$

$W_{0}^{1, p}\left((0, \eta) ; W_{p}\right)$ is given by the completion of $C_{c}^{\infty}((0, \eta))$ with respect to the norm defined by

$$
\|u\|_{W_{0}^{1, p}\left((0, \eta) ; W_{p}\right)}=\left\|u^{\prime}\right\|_{L^{p}\left((0, \eta) ; W_{p}\right)}+\|u\|_{L^{p}\left((0, \eta) ; W_{p}\right)} .
$$

Then $W_{0}^{1, p}\left((0, \eta) ; W_{p}\right)$ becomes a Banach space with the norm $\|\cdot\|_{W_{0}^{1, p}\left((0, \eta) ; W_{p}\right)}$.
Let us set $h(t)=u_{\varepsilon}(t)$ for a sufficiently small $\varepsilon>0$. Then $h(t)$ satisfies the estimate (4.8). It suffices to check that $h(t) \in W_{0}^{1, p}\left((0,2 \eta) ; W_{p}\right)$. If $w(t) \in Q\left(\mathbf{R}_{+}\right)$, then $\lim _{t \rightarrow+0} f_{\eta_{0}}(t)=0$ and $\lim _{t \rightarrow+0} u_{\varepsilon}(t)=\lim _{t \rightarrow+0} f_{\eta_{0}}(t)^{1+s(w) \varepsilon-1 / p}=0$. Therefore $h(t)$ is clearly approximated by test functions in $C_{c}^{\infty}((0,2 \eta))$.

If $w(t) \in P\left(\mathbf{R}_{+}\right)$, then we employ the following lemma:

Lemma 4.2. Assume that $1<p<\infty$ and $w(t) \in P\left(\mathbf{R}_{+}\right)$. For $\varepsilon>0, \eta>0$ and $\eta_{0}>0$ satisfying $0<\eta \leqslant \eta_{0} / 2$, let us set

$$
\begin{equation*}
\varphi_{\varepsilon}(t)=0(0 \leqslant t \leqslant \varepsilon) ; \quad \frac{f_{\eta_{0}}(\varepsilon)-f_{\eta_{0}}(t)}{f_{\eta_{0}}(\varepsilon)-f_{\eta_{0}}(\eta)}(\varepsilon \leqslant t \leqslant \eta) ; \quad 1(\eta \leqslant t \leqslant 2 \eta) \tag{4.9}
\end{equation*}
$$

Then, as $\varepsilon \rightarrow+0, \varphi_{\varepsilon} \rightarrow 1$ in $L^{p}\left((0,2 \eta) ; W_{p}\right)$ and $\varphi_{\varepsilon}^{\prime} \rightarrow 0$ in $L^{p}\left((0,2 \eta) ; W_{p}\right)$.
Proof. Since $\lim _{t \rightarrow+0} f_{\eta_{0}}(t)=\infty$, clearly $\varphi_{\varepsilon}(t) \rightarrow 1$ in $L^{p}\left((0,2 \eta) ; W_{p}\right)$ as $\varepsilon \rightarrow$ +0 , and $\int_{0}^{2 \eta}\left|\varphi_{\varepsilon}^{\prime}(t)\right|^{p} W_{p}(t) d t=\left(f_{\eta_{0}}(\varepsilon)-f_{\eta_{0}}(\eta)\right)^{1-p} \rightarrow 0$ as $\varepsilon \rightarrow+0$. Then we see the assertion.

End of the proof of Lemma 4.1. For $0<\bar{\varepsilon}<\eta$, we set $h_{\bar{\varepsilon}}(t)=\varphi_{\bar{\varepsilon}}(t) h(t)$, where $\varphi_{\bar{\varepsilon}}(t)$ is defined by (4.9) with $\varepsilon=\bar{\varepsilon}$. Then $\operatorname{supp} h_{\bar{\varepsilon}}(t) \subset[\bar{\varepsilon}, 2 \eta]$. By virtue of Lemma 4.2, we also see that $h_{\bar{\varepsilon}}(t) \rightarrow h(t)$ in $W^{1, p}\left((0,2 \eta) ; W_{p}\right)$ as $\bar{\varepsilon} \rightarrow+0$. In fact, noting that $h_{\bar{\varepsilon}}^{\prime}(t)=\varphi_{\bar{\varepsilon}}^{\prime}(t) h(t)+\varphi_{\bar{\varepsilon}}(t) h^{\prime}(t)$, we have

$$
\begin{aligned}
& \int_{0}^{2 \eta}\left|h_{\bar{\varepsilon}}^{\prime}(t)-h^{\prime}(t)\right|^{p} W_{p}(t) d t \\
& \quad \leqslant C_{p}\left(\int_{0}^{2 \eta}\left(1-\varphi_{\bar{\varepsilon}}(t)\right)^{p}\left|h^{\prime}(t)\right|^{p} W_{p}(t) d t+\int_{0}^{2 \eta}\left|\varphi_{\bar{\varepsilon}}^{\prime}(t)\right|^{p}|h(t)|^{p} W_{p}(t) d t\right)
\end{aligned}
$$

with some constant $C_{p}>0$ depending only on p. The first term obviously goes to 0 as $\bar{\varepsilon} \rightarrow+0$. As for the second, noting that $s(w)=-1$ and $0<\varepsilon<1$, we have

$$
\begin{aligned}
\int_{0}^{2 \eta}\left|\varphi_{\bar{\varepsilon}}^{\prime}(t)\right|^{p}|h(t)|^{p} W_{p}(t) d t & =\int_{\bar{\varepsilon}}^{\eta}\left|\varphi_{\bar{\varepsilon}}^{\prime}(t)\right|^{p}|h(t)|^{p} W_{p}(t) d t \\
& =\frac{1}{\left(f_{\eta_{0}}(\bar{\varepsilon})-f_{\eta_{0}}(\eta)\right)^{p}} \int_{\bar{\varepsilon}}^{\eta} \frac{f_{\eta_{0}}(t)^{p-1+p s(w) \varepsilon}}{w(t)} d t \\
& =\frac{1}{p(1-\varepsilon)} \frac{f_{\eta_{0}}(\bar{\varepsilon})^{p(1-\varepsilon)}-f_{\eta_{0}}(\eta)^{p(1-\varepsilon)}}{\left(f_{\eta_{0}}(\bar{\varepsilon})-f_{\eta_{0}}(\eta)\right)^{p}}
\end{aligned}
$$

Since $\lim _{t \rightarrow+0} f_{\eta_{0}}(t)=\infty$, we see that $\int_{0}^{2 \eta}\left|\varphi_{\bar{\varepsilon}}^{\prime}(t)\right|^{p}|h(t)|^{p} W_{p}(t) d t \rightarrow 0$ as $\bar{\varepsilon} \rightarrow+0$. Since $h \bar{\varepsilon}(t)$ is clearly approximated by test functions in $C_{c}^{\infty}((0,2 \eta))$, the assertion $h(t) \in W_{0}^{1, p}\left((0,2 \eta) ; W_{p}\right)$ follows.

Lemma 4.3. Let Ω be a bounded domain of class C^{2} in \mathbf{R}^{N}. Let $1<p<\infty$ and $w(t) \in W\left(\mathbf{R}_{+}\right)$. Then it holds that

$$
\begin{equation*}
J_{p, \lambda}^{w} \leqslant \Lambda_{p} \tag{4.10}
\end{equation*}
$$

for all $\lambda \in \mathbf{R}$.
Proof. For each small $\eta>0$, by Ω_{η} we denote a tubular neighborhood of $\partial \Omega$;

$$
\begin{equation*}
\Omega_{\eta}=\{x \in \Omega: \delta(x)=\operatorname{dist}(x, \partial \Omega)<\eta\} \tag{4.11}
\end{equation*}
$$

Since the boundary $\partial \Omega$ is of class C^{2}, there exists an $\eta_{0}>0$ such that for any $\eta \in$ $\left(0, \eta_{0}\right)$ and every $x \in \Omega_{\eta}$ we have a unique point $\sigma(x) \in \partial \Omega$ satisfying $\delta(x)=\mid x-$ $\sigma(x) \mid$. The mapping

$$
\Omega_{\eta} \ni x \mapsto(\delta(x), \sigma(x))=(t, \sigma) \in(0, \eta) \times \partial \Omega
$$

is a C^{2} diffeomorphism, and its inverse is given by

$$
(0, \eta) \times \partial \Omega \ni(t, \sigma) \mapsto x(t, \sigma)=\sigma+t \cdot n(\sigma) \in \Omega_{\eta}
$$

where $n(\sigma)$ is the inward unit normal to $\partial \Omega$ at $\sigma \in \partial \Omega$. For each $t \in(0, \eta)$, the mapping

$$
\partial \Omega \ni \sigma \mapsto \sigma_{t}(\sigma)=x(t, \sigma) \in \Sigma_{t}=\{x \in \Omega: \delta(x)=t\}
$$

is also a C^{2} diffeomorphism of $\partial \Omega$ onto Σ_{t}, and its Jacobian satisfies

$$
\begin{equation*}
\left|\operatorname{Jac} \sigma_{t}(\sigma)-1\right| \leqslant c t \quad \text { for any } \sigma \in \partial \Omega \tag{4.12}
\end{equation*}
$$

where c is a positive constant depending only on $\eta_{0}, \partial \Omega$ and the choice of local coordinates. Since $n(\sigma)$ is orthogonal to Σ_{t} at $\sigma_{t}(\sigma)=\sigma+t \cdot n(\sigma) \in \Sigma_{t}$, it follows that for every integrable function $v(x)$ in Ω_{η}

$$
\begin{align*}
\int_{\Omega_{\eta}} v(x) d x & =\int_{0}^{\eta} d t \int_{\Sigma_{t}} v\left(\sigma_{t}\right) d \sigma_{t} \\
& =\int_{0}^{\eta} d t \int_{\partial \Omega} v(x(t, \sigma))\left|\operatorname{Jac} \sigma_{t}(\sigma)\right| d \sigma \tag{4.13}
\end{align*}
$$

where $d \sigma$ and $d \sigma_{t}$ denote surface elements on $\partial \Omega$ and Σ_{t}, respectively. Hence (4.13) together with (4.12) implies that for every integrable function $v(x)$ in Ω_{η}

$$
\begin{align*}
\int_{0}^{\eta}(1-c t) d t \int_{\partial \Omega}|v(x(t, \sigma))| d \sigma & \leqslant \int_{\Omega_{\eta}}|v(x)| d x \tag{4.14}\\
& \leqslant \int_{0}^{\eta}(1+c t) d t \int_{\partial \Omega}|v(x(t, \sigma))| d \sigma \tag{4.15}
\end{align*}
$$

Let $\kappa>0$, and let $\eta \in\left(0, \eta_{0}\right)$. Take $h(t) \in W_{0}^{1, p}\left((0, \eta) ; W_{p}\right)$ be a function satisfying (4.8) with replacing 2η by η for simplicity. Define

$$
u(x)=\left\{\begin{array}{lll}
h(\delta(x)) & \text { if } & x \in \Omega_{\eta} \tag{4.16}\\
0 & \text { if } & x \in \Omega \backslash \Omega_{\eta}
\end{array}\right.
$$

Then we have supp $u \subset \Omega_{\eta}$. Since $|\nabla u(x)|=\left|h^{\prime}(\delta(x))\right|$ for $x \in \Omega_{\eta}$ by $|\nabla \delta(x)|=1$, it follows from (4.15) that

$$
\begin{equation*}
\int_{\Omega_{\eta}}|\nabla u(x)|^{p} W_{p}(\delta(x)) d x \leqslant(1+c \eta)|\partial \Omega| \int_{0}^{\eta}\left|h^{\prime}(t)\right|^{p} W_{p}(t) d t \tag{4.17}
\end{equation*}
$$

which implies $u(x) \in W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right)$ by Lemma 4.1. On the other hand, by (4.14) and (4.16) we have that

$$
\begin{equation*}
\int_{\Omega_{\eta}}|u(x)|^{p} \frac{W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x \geqslant(1-c \eta)|\partial \Omega| \int_{0}^{\eta}|h(t)|^{p} \frac{W_{p}(t)}{F_{\eta_{0}}(t)^{p}} d t . \tag{4.18}
\end{equation*}
$$

By combining (4.17), (4.18) and trivial estimate

$$
\begin{equation*}
\int_{\Omega_{\eta}}|u(x)|^{p} W_{p}(\delta(x)) d x \leqslant\left(\sup _{0<t<\eta} F_{\eta_{0}}(t)\right)^{p} \int_{\Omega_{\eta}}|u(x)|^{p} \frac{W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x, \tag{4.19}
\end{equation*}
$$

we obtain that

$$
\chi_{p, \lambda}^{w}(u) \leqslant \frac{1+c \eta}{1-c \eta} \frac{\int_{0}^{\eta}\left|h^{\prime}(t)\right|^{p} W_{p}(t) d t}{\left.\int_{0}^{\eta}|h(t)|^{p} W_{p}(t) / F_{\eta_{0}}(t)\right)^{p} d t}+|\lambda|\left(\sup _{0<t<\eta} F_{\eta_{0}}(t)\right)^{p} .
$$

This together with Lemma 4.1 implies that

$$
\begin{equation*}
J_{p, \lambda}^{w} \leqslant \frac{1+c \eta}{1-c \eta}\left(\Lambda_{p}+\kappa\right)+|\lambda|\left(\sup _{0<t<\eta} F_{\eta_{0}}(t)\right)^{p} . \tag{4.20}
\end{equation*}
$$

Letting $\eta \rightarrow+0$ and $\kappa \rightarrow+0$ in (4.20), then (4.10) follows from Lemma 3.1. Therefore it concludes the proof.

Lemma 4.4. Let Ω be a bounded domain of class C^{2} in \mathbf{R}^{N}. Let $1<p<\infty$ and $w(t) \in W_{A}\left(\mathbf{R}_{+}\right)$. Then there exists a $\lambda \in \mathbf{R}$ such that $J_{p, \lambda}^{w}=\Lambda_{p}$.

Proof. Let $\eta_{0}>0$ be a sufficiently small number as in Theorem 2.1. Take and fix any $u(x) \in W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right) \backslash\{0\}$. Then, for $\eta \in\left(0, \eta_{0}\right]$

$$
\begin{align*}
& \int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x \\
& \quad=\int_{\Omega_{\eta}} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x+\int_{\Omega_{\backslash \Omega_{\eta}}} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x . \tag{4.21}
\end{align*}
$$

Since there exists a positive number C_{η} independent of $u(x)$ such that

$$
\begin{equation*}
\int_{\Omega_{\Omega} \backslash \Omega_{\eta}}|u(x)|^{p} \frac{W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x \leqslant C_{\eta} \int_{\Omega \backslash \Omega_{\eta}}|u(x)|^{p} W_{p}(\delta(x)) d x, \tag{4.22}
\end{equation*}
$$

by using Hardy's inequality (2.18) we have

$$
\begin{align*}
\Lambda_{p} \int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x \leqslant & \int_{\Omega_{\eta}}|\nabla u(x)|^{p} W_{p}(\delta(x)) d x-s(w) L^{\prime} \int_{\Sigma_{\eta}}\left|u\left(\sigma_{\eta}\right)\right|^{p} W_{p}(\eta) d \sigma_{\eta} \\
& +\Lambda_{p} C_{\eta} \int_{\Omega \backslash \Omega_{\eta}}|u(x)|^{p} W_{p}(\delta(x)) d x . \tag{4.23}
\end{align*}
$$

In order to control the integrand on the surface Σ_{η} we prepare the following:

Lemma 4.5. Let Ω be a bounded domain of class C^{2} in \mathbf{R}^{N}. Let $1<p<\infty$ and $w(t) \in W\left(\mathbf{R}_{+}\right)$. Assume that η_{0} is a sufficiently small positive number and $\eta \in$ $\left(0, \eta_{0} / 3\right)$. Then, for any $\varepsilon>0$ there exists a positive number $C_{\varepsilon, \eta}$ such that we have for any $u(x) \in W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right)$

$$
\begin{equation*}
\|u\|_{L^{p}\left(\Sigma_{\eta} ; W_{p}(\delta)\right)}^{p} \leqslant \varepsilon\|\mid \nabla u\|_{L^{p}\left(\Omega_{3 \eta} \backslash \overline{\Omega_{\eta}} ; W_{p}(\delta)\right)}^{p}+C_{\varepsilon, \eta}\|u\|_{L^{p}\left(\Omega_{3 \eta} \backslash \overline{\Omega_{\eta}} ; W_{p}(\delta)\right)}^{p} . \tag{4.24}
\end{equation*}
$$

Here we denote by $\overline{\Omega_{\eta}}$ the closure of Ω_{η}.
REMARK 4.1. By Rellich's theorem and Hardy type inequality, we see that the imbedding $W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right) \hookrightarrow L^{p}\left(\Omega ; W_{p}(\delta)\right)$ is compact. Therefore, by this lemma we see that a trace operator $W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right) \rightarrow L^{p}\left(\Sigma_{\eta} ; W_{p}(\delta)\right)$ is also compact.

Proof. For $\eta \in\left(0, \max _{x \in \Omega} \delta(x) / 3\right)$, let $W^{1, p}\left(\Omega_{3 \eta} \backslash \overline{\Omega_{\eta}} ; W_{p}(\delta)\right)$ be given by the completion of $C^{\infty}\left(\Omega_{3 \eta} \backslash \overline{\Omega_{\eta}}\right)$ with respect to the norm defined by

$$
\|u\|_{W^{1, p}\left(\Omega_{3 \eta} \backslash \overline{\Omega_{\eta}} ; W_{p}(\delta)\right)}=\|\mid \nabla u\|_{L^{p}\left(\Omega_{3 \eta} \backslash \overline{\Omega_{\eta}} ; W_{p}(\delta)\right)}+\|u\|_{L^{p}\left(\Omega_{3 \eta} \backslash \overline{\Omega_{\eta}} ; W_{p}(\delta)\right)} .
$$

Since $W_{p}(\delta(x))>0$ in $\overline{\Omega_{3 \eta} \backslash \overline{\Omega_{\eta}}}, W^{1, p}\left(\Omega_{3 \eta} \backslash \overline{\Omega_{\eta}} ; W_{p}(\delta)\right)$ is well-defined and becomes a Banach space with the norm $\|\cdot\|_{W^{1, p}\left(\Omega_{3 \eta} \backslash \overline{\Omega_{\eta}} ; W_{p}(\delta)\right)}$.

Hence the inequality (4.24) follows from the standard theory for a trace operator

$$
W^{1, p}\left(\Omega_{3 \eta} \backslash \overline{\Omega_{\eta}} ; W_{p}(\delta)\right) \rightarrow L^{p}\left(\Sigma_{\eta} ; W_{p}(\delta)\right)
$$

Here we give a simple proof of it. We use the following cut-off function $\psi(x) \in C^{\infty}(\Omega)$ such that $\psi(x) \geqslant 0$ and

$$
\psi(x)= \begin{cases}1 & \left(x \in \Omega_{2 \eta}\right) \tag{4.25}\\ 0 & \left(x \in \Omega \backslash \Omega_{3 \eta}\right) .\end{cases}
$$

We retain the notations in the proof of Lemma 4.3. Take and fix a $u(x) \in W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right)$ and assume $u(x) \geqslant 0$. Then,

$$
\begin{aligned}
\int_{\Sigma_{\eta}} u\left(\sigma_{\eta}\right)^{p} W_{p}(\eta) d \sigma_{\eta}= & \int_{\partial \Omega} u(x(\eta, \sigma))^{p} W_{p}(\eta)\left|\operatorname{Jac} \sigma_{\eta}(\sigma)\right| d \sigma \\
= & -\int_{\partial \Omega} d \sigma \int_{\eta}^{3 \eta} \frac{\partial}{\partial t}\left(u(x(t, \sigma))^{p} \psi(x(t, \sigma)) W_{p}(t)\left|\operatorname{Jac} \sigma_{t}(\sigma)\right|\right) d t \\
= & -\int_{\partial \Omega} d \sigma \int_{\eta}^{3 \eta} \frac{\partial}{\partial t}\left(u(x(t, \sigma))^{p}\right) \cdot \psi(x(t, \sigma)) W_{p}(t)\left|\operatorname{Jac} \sigma_{t}(\sigma)\right| d t \\
& -\int_{\partial \Omega} d \sigma \int_{\eta}^{3 \eta} u(x(t, \sigma))^{p} \cdot \frac{\partial}{\partial t}\left(\psi(x(t, \sigma)) W_{p}(t)\left|\operatorname{Jac} \sigma_{t}(\sigma)\right|\right) d t \\
= & I_{1}+I_{2}
\end{aligned}
$$

Note that $x(t, \sigma), W_{p}(t), \operatorname{Jac} \sigma_{t}(\sigma) \in C^{1}$ in $t \in(\eta, 3 \eta)$ and

$$
\int_{\Omega_{3 \eta} \backslash \Omega_{\eta}} u(x)^{p} d x=\int_{\partial \Omega} d \sigma \int_{\eta}^{3 \eta} u(x(t, \sigma))^{p}\left|\operatorname{Jac} \sigma_{t}(\sigma)\right| d t .
$$

Then, we have for some $C_{\eta}>0$ independent of $u(x)$

$$
\left|I_{2}\right| \leqslant C_{\eta} \int_{\Omega_{3 \eta} \backslash \Omega_{\eta}} u(x)^{p} W_{p}(\delta(x)) d x
$$

As for I_{1}, for any $\varepsilon>0$ there is a positive number C_{ε} independent of $u(x)$ and η such that we have

$$
\left|I_{1}\right| \leqslant \varepsilon \int_{\Omega_{3 \eta} \backslash \Omega_{\eta}}|\nabla u(x)|^{p} W_{p}(\delta(x)) d x+C_{\varepsilon} \int_{\Omega_{3 \eta} \backslash \Omega_{\eta}} u(x)^{p} W_{p}(\delta(x)) d x
$$

Therefore we obtain (4.24). It concludes the proof of Lemma 4.5.
End of the proof of Lemma 4.4. From (4.23) and Lemma 4.5, it follows that

$$
\begin{aligned}
& \int_{\Omega_{\eta}}|\nabla u(x)|^{p} W_{p}(\delta(x)) d x \\
& \geqslant \Lambda_{p} \int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta)^{p}} d x-\Lambda_{p} C_{\eta} \int_{\Omega \backslash \Omega_{\eta}}|u(x)|^{p} W_{p}(\delta(x)) d x \\
& \quad-L^{\prime}\left(\varepsilon \int_{\Omega_{3 \eta} \backslash \Omega_{\eta}}|\nabla u(x)|^{p} W_{p}(\delta(x)) d x+C_{\varepsilon, \eta} \int_{\Omega_{3 \eta} \backslash \Omega_{\eta}}|u(x)|^{p} W_{p}(\delta(x)) d x\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
& \int_{\Omega_{\eta}}|\nabla u(x)|^{p} W_{p}(\delta(x)) d x+L^{\prime} \varepsilon \int_{\Omega_{3 \eta} \backslash \Omega_{\eta}}|\nabla u(x)|^{p} W_{p}(\delta(x)) d x \\
& \quad \geqslant \Lambda_{p} \int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x-\left(L^{\prime} C_{\varepsilon, \eta}+\Lambda_{p} C_{\eta}\right) \int_{\Omega \backslash \Omega_{\eta}}|u(x)|^{p} W_{p}(\delta(x)) d x .
\end{aligned}
$$

Now we set $L^{\prime} \varepsilon=1$ and $C^{\prime}=-\left(L^{\prime} C_{\varepsilon, \eta}+\Lambda_{p} C_{\eta}\right)<0$, and we have the desired estimate:

$$
\int_{\Omega}|\nabla u(x)|^{p} W_{p}(\delta(x)) d x \geqslant \Lambda_{p} \int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x+C^{\prime} \int_{\Omega}|u(x)|^{p} W_{p}(\delta(x)) d x
$$

which implies that

$$
\chi_{p, \lambda}^{w}(u) \geqslant \Lambda_{p}
$$

for $\lambda \leqslant C^{\prime}$. Consequently, it holds that $J_{p, \lambda}^{w} \geqslant \Lambda_{p}$ for $\lambda \leqslant C^{\prime}$. This together with (4.10) implies the desired conclusion. It completes the proof of Lemma 4.4.

Proof of the assertion 1 of Theorem 3.1. By Lemma 4.4 and $\lim _{\lambda \rightarrow \infty} J_{p, \lambda}^{w}=-\infty$, the set $\left\{\lambda \in \mathbf{R}: J_{p, \lambda}^{w}=\Lambda_{p}\right\}$ is non-empty and upper bounded. Hence the $\sup \{\lambda \in \mathbf{R}$: $\left.J_{p, \lambda}^{w}=\Lambda_{p}\right\}$ exists finitely. Put

$$
\begin{equation*}
\lambda^{*}=\sup \left\{\lambda \in \mathbf{R}: J_{p, \lambda}^{w}=\Lambda_{p}\right\} \tag{4.26}
\end{equation*}
$$

Since the function $\lambda \mapsto J_{p, \lambda}^{w}$ is non-increasing on \mathbf{R}, it follows from Lemma 4.3 and Lemma 4.4 that $J_{p, \lambda}^{w}=\Lambda_{p}$ for $\lambda<\lambda^{*}$ and $J_{p, \lambda}^{w}<\Lambda_{p}$ for $\lambda>\lambda^{*}$. Since $J_{p, \lambda}^{w}$ is clearly Lipschitz continuous on \mathbf{R} with respect to λ, we have the equality $J_{p, \lambda^{*}}^{w}=\Lambda_{p}$. Therefore the assertion 1 of Theorem 3.1 is valid.
4.2. $J_{p, \lambda}^{w}$ is not attained when $\lambda<\lambda^{*}$

Next, we prove the assertion 2 of Theorem 3.1.
Proof of the assertion 2 of Theorem 3.1. Suppose that for some $\lambda<\lambda^{*}$ the infimum $J_{p, \lambda}^{w}$ in (3.3) is attained at an element $u \in W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right) \backslash\{0\}$. Then, by the assertion 1 of Theorem 3.1, we have that

$$
\begin{equation*}
\chi_{p, \lambda}^{w}(u)=J_{p, \lambda}^{w}=\Lambda_{p} \tag{4.27}
\end{equation*}
$$

and for $\lambda<\bar{\lambda}<\lambda^{*}$

$$
\begin{equation*}
\chi_{p, \bar{\lambda}}^{w}(u) \geqslant J_{p, \bar{\lambda}}^{w}=\Lambda_{p} . \tag{4.28}
\end{equation*}
$$

From (4.27) and (4.28) it follows that

$$
(\bar{\lambda}-\lambda) \int_{\Omega}|u(x)|^{p} W_{p}(\delta(x)) d x \leqslant 0 .
$$

Since $\bar{\lambda}-\lambda>0$, we conclude that

$$
\int_{\Omega}|u(x)|^{p} W_{p}(\delta(x)) d x=0
$$

which contradicts $u \neq 0$ in $W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right)$. Therefore it completes the proof.

4.3. Attainability of $J_{p, \lambda}^{w}$ when $\lambda>\lambda^{*}$

At last, we prove the assertion 3 of Theorem 3.1. Let η_{0} be sufficiently small as in Theorem 2.1 and let $\eta \in\left(0, \eta_{0}\right]$. Let $\left\{u_{k}\right\}$ be a minimizing sequence for the variational problem (3.3) normalized so that

$$
\begin{equation*}
\int_{\Omega} \frac{\left|u_{k}(x)\right|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x=1 \quad \text { for all } k \tag{4.29}
\end{equation*}
$$

Since $\left\{u_{k}\right\}$ is bounded in $W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right)$, by taking a suitable subsequence, we may assume that there exists a $u \in W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right)$ such that

$$
\begin{align*}
\nabla u_{k} \xrightarrow{\text { weak }} \nabla u & \text { in }\left(L^{p}\left(\Omega ; W_{p}(\delta)\right)\right)^{N}, \tag{4.30}\\
u_{k} \xrightarrow{\text { weak }} u & \text { in } L^{p}\left(\Omega ; W_{p}(\delta) / F_{\eta_{0}}(\delta)^{p}\right), \tag{4.31}\\
u_{k} \longrightarrow u & \text { in } L^{p}\left(\Omega ; W_{p}(\delta)\right) \tag{4.32}
\end{align*}
$$

and

$$
\begin{equation*}
u_{k} \longrightarrow u \quad \text { in } L^{p}\left(\Sigma_{\eta} ; W_{p}(\delta)\right) \tag{4.33}
\end{equation*}
$$

by Remark 4.1. Under these preparation we establish the properties of concentration and compactness for the minimizing sequence, respectively.

Proposition 4.1. Let Ω be a bounded domain of class C^{2} in \mathbf{R}^{N}. Let $1<p<$ ∞ and $w(t) \in W_{A}\left(\mathbf{R}_{+}\right)$. Let $\lambda \in \mathbf{R}$. Let $\left\{u_{k}\right\}$ be a minimizing sequence for (3.3) satisfying (4.29) and (4.30) $\sim(4.33)$ with $u=0$. Then it holds that

$$
\begin{equation*}
\nabla u_{k} \longrightarrow 0 \quad \text { in }\left(L_{\mathrm{loc}}^{p}\left(\Omega ; W_{p}(\delta)\right)\right)^{N} \tag{4.34}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{p, \lambda}^{w}=\Lambda_{p} \tag{4.35}
\end{equation*}
$$

Proof. Let $\eta_{0}>0$ be a sufficiently small number as in Theorem 2.1 and let $\eta \in$ $\left(0, \eta_{0}\right]$. By Hardy's inequality (2.18) and (4.29) we have that

$$
\begin{aligned}
\int_{\Omega_{\eta}} \mid & \left.\nabla u_{k}(x)\right|^{p} W_{p}(\delta(x)) d x \\
& \geqslant \Lambda_{p} \int_{\Omega_{\eta}} \frac{\left|u_{k}(x)\right|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x+s(w) L^{\prime} \int_{\Sigma_{\eta}}\left|u_{k}\left(\sigma_{\eta}\right)\right|^{p} W_{p}(\eta) d \sigma_{\eta} \\
& =\Lambda_{p}\left(1-\int_{\Omega \backslash \Omega_{\eta}} \frac{\left|u_{k}(x)\right|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x\right)+s(w) L^{\prime} \int_{\Sigma_{\eta}}\left|u_{k}\left(\sigma_{\eta}\right)\right|^{p} W_{p}(\eta) d \sigma_{\eta}
\end{aligned}
$$

and so

$$
\begin{align*}
\chi_{p, \lambda}^{w}\left(u_{k}\right) \geqslant & \Lambda_{p}\left(1-\int_{\Omega \backslash \Omega_{\eta}} \frac{\left|u_{k}(x)\right|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x\right)+s(w) L^{\prime} \int_{\Sigma_{\eta}}\left|u_{k}\left(\sigma_{\eta}\right)\right|^{p} W_{p}(\eta) d \sigma_{\eta} \\
& +\int_{\Omega \backslash \Omega_{\eta}}\left|\nabla u_{k}(x)\right|^{p} W_{p}(\delta(x)) d x-\lambda \int_{\Omega}\left|u_{k}(x)\right|^{p} W_{p}(\delta(x)) d x . \tag{4.36}
\end{align*}
$$

Since there exists a positive number C_{η} independent of u_{k} such that

$$
\int_{\Omega \backslash \Omega_{\eta}} \frac{\left|u_{k}(x)\right|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x \leqslant C_{\eta} \int_{\Omega}\left|u_{k}(x)\right|^{p} W_{p}(\delta(x)) d x
$$

it follows from (4.32) with $u=0$ that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\Omega \backslash \Omega_{\eta}} \frac{\left|u_{k}(x)\right|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x=0 \tag{4.37}
\end{equation*}
$$

Hence, letting $k \rightarrow \infty$ in (4.36), by (4.37), (4.32) and (4.33) with $u=0$, we obtain that

$$
0 \leqslant \limsup _{k \rightarrow \infty} \int_{\Omega \backslash \Omega_{\eta}}\left|\nabla u_{k}(x)\right|^{p} W_{p}(\delta(x)) d x \leqslant J_{p, \lambda}^{w}-\Lambda_{p} .
$$

Since $J_{p, \lambda}^{w}-\Lambda_{p} \leqslant 0$ by Lemma 4.3, we conclude that $J_{p, \lambda}^{w}-\Lambda_{p}=0$ and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\Omega \backslash \Omega_{\eta}}\left|\nabla u_{k}(x)\right|^{p} W_{p}(\delta(x)) d x=0 \tag{4.38}
\end{equation*}
$$

These show (4.34) and (4.35). Consequently it completes the proof.

Proposition 4.2. Let Ω be a bounded domain of class C^{2} in \mathbf{R}^{N}. Let $1<p<$ $\infty, w(t) \in W_{A}\left(\mathbf{R}_{+}\right)$and $\lambda \in \mathbf{R}$. Let $\left\{u_{k}\right\}$ be a minimizing sequence for (3.3) satisfying (4.29) and (4.30) $\sim(4.33)$ with $u \neq 0$. Then it holds that

$$
\begin{equation*}
J_{p, \lambda}^{w}=\min \left(\Lambda_{p}, \chi_{p, \lambda}^{w}(u)\right) . \tag{4.39}
\end{equation*}
$$

In addition, if $J_{p, \lambda}^{w}<\Lambda_{p}$, then it holds that

$$
\begin{equation*}
J_{p, \lambda}^{w}=\chi_{p, \lambda}^{w}(u) \tag{4.40}
\end{equation*}
$$

namely u is a minimizer for (3.3), and

$$
\begin{equation*}
u_{k} \longrightarrow u \quad \text { in } W_{0}^{1, p}\left(\Omega ; W_{p}(\delta)\right) . \tag{4.41}
\end{equation*}
$$

Proof. Let $\eta_{0}>0$ be a sufficiently small number as in Theorem 2.1 and let $\eta \in$ $\left(0, \eta_{0}\right.$]. Then we have (4.36) by the same arguments as in the proof of Proposition 4.1. Since there exists a positive number C_{η} independent of u_{k} such that

$$
\int_{\Omega \backslash \Omega_{\eta}} \frac{\left|u_{k}(x)-u(x)\right|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x \leqslant C_{\eta} \int_{\Omega}\left|u_{k}(x)-u(x)\right|^{p} W_{p}(\delta(x)) d x
$$

(4.32) implies that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{\Omega \backslash \Omega_{\eta}} \frac{\left|u_{k}(x)\right|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x=\int_{\Omega \backslash \Omega_{\eta}} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x . \tag{4.42}
\end{equation*}
$$

Since it follows from (4.30) that $\nabla u_{k} \longrightarrow \nabla u$ weakly in $\left(L^{p}\left(\Omega \backslash \overline{\Omega_{\eta}} ; W_{p}(\delta)\right)\right)^{N}$, by weakly lower semi-continuity of the L^{p}-norm, we see that

$$
\begin{align*}
\liminf _{k \rightarrow \infty} \int_{\Omega_{\Omega} \Omega_{\eta}}\left|\nabla u_{k}(x)\right|^{p} W_{p}(\delta(x)) d x & \geqslant\left(\liminf _{k \rightarrow \infty}\left\|\left|\nabla u_{k}\right|\right\|_{L^{p}\left(\Omega \backslash \overline{\Omega_{\eta}} ; W_{p}(\delta)\right)}\right)^{p} \\
& \geqslant\||\nabla u|\|_{L^{p}\left(\Omega \backslash \overline{\Omega_{\eta}} ; W_{p}(\delta)\right)}^{p} \\
& =\int_{\Omega \backslash \Omega_{\eta}}|\nabla u(x)|^{p} W_{p}(\delta(x)) d x \tag{4.43}
\end{align*}
$$

Hence, by letting $k \rightarrow \infty$ in (4.36), from (4.32), (4.33), (4.42) and (4.43) it follows that

$$
\begin{align*}
J_{p, \lambda}^{w} \geqslant & \Lambda_{p}\left(1-\int_{\Omega \backslash \Omega_{\eta}} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x\right)+s(w) L^{\prime} \int_{\Sigma_{\eta}}\left|u\left(\sigma_{\eta}\right)\right|^{p} W_{p}(\eta) d \sigma_{\eta} \\
& +\int_{\Omega \backslash \Omega_{\eta}}|\nabla u(x)|^{p} W_{p}(\delta(x)) d x-\lambda \int_{\Omega}|u(x)|^{p} W_{p}(\delta(x)) d x \tag{4.44}
\end{align*}
$$

If $w(t) \in Q\left(\mathbf{R}_{+}\right)$, then $s(w)=1$, hence we can omit the integrand on the surface Σ_{η}. On the other hand if $w(t) \in P\left(\mathbf{R}_{+}\right)$, then $\lim _{t \rightarrow+0} W_{p}(t)=\lim _{t \rightarrow+0} w(t)^{p-1}=0$. Thus, letting $\eta \rightarrow+0$ in (4.44), we obtain that

$$
\begin{align*}
J_{p, \lambda}^{w} \geqslant & \Lambda_{p}\left(1-\int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x\right) \\
& +\int_{\Omega}|\nabla u(x)|^{p} W_{p}(\delta(x)) d x-\lambda \int_{\Omega}|u(x)|^{p} W_{p}(\delta(x)) d x . \tag{4.45}
\end{align*}
$$

Since it holds that

$$
\begin{equation*}
0<\int_{\Omega}|u(x)|^{p} \frac{W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x \leqslant \liminf _{k \rightarrow \infty} \int_{\Omega} \frac{\left|u_{k}(x)\right|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x=1 \tag{4.46}
\end{equation*}
$$

by $u \neq 0$, (4.29), (4.31) and weakly lower semi-continuity of the L^{p}-norm, we have from (4.45) and (4.46) that

$$
\begin{align*}
J_{p, \lambda}^{w} & \geqslant \Lambda_{p}\left(1-\int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x\right)+\chi_{p, \lambda}^{w}(u) \int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x \\
& \geqslant \min \left(\Lambda_{p}, \chi_{p, \lambda}^{w}(u)\right) \tag{4.47}
\end{align*}
$$

This together with Lemma 4.3 implies (4.39). Moreover, by (4.39) and (4.47), we conclude that

$$
\begin{equation*}
J_{p, \lambda}^{w}=\Lambda_{p}\left(1-\int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x\right)+\chi_{p, \lambda}^{w}(u) \int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x \tag{4.48}
\end{equation*}
$$

In addition, if $J_{p, \lambda}^{w}<\Lambda_{p}$, then $J_{p, \lambda}^{w}=\chi_{p, \lambda}^{w}(u)$ by (4.39), and so, it follows from (4.48) and (4.29) that

$$
\begin{equation*}
\int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x=1=\lim _{k \rightarrow \infty} \int_{\Omega} \frac{\left|u_{k}(x)\right|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} d x \tag{4.49}
\end{equation*}
$$

(4.31) and (4.49) imply that

$$
\begin{equation*}
u_{k} \longrightarrow u \quad \text { in } L^{p}\left(\Omega, W_{p}(\delta) / F_{\eta_{0}}(\delta)^{p}\right) \tag{4.50}
\end{equation*}
$$

Further, by (4.29), (4.32), (4.40) and (4.49), we obtain that

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla u_{k}(x)\right|^{p} W_{p}(\delta(x)) d x=\chi_{p, \lambda}^{w}\left(u_{k}\right)+\lambda \int_{\Omega}\left|u_{k}(x)\right|^{p} W_{p}(\delta(x)) d x \\
& \quad \longrightarrow \chi_{p, \lambda}^{w}(u)+\lambda \int_{\Omega}|u(x)|^{p} W_{p}(\delta(x)) d x=\int_{\Omega}|\nabla u(x)|^{p} W_{p}(\delta(x)) d x .
\end{aligned}
$$

This together with (4.30) implies that

$$
\begin{equation*}
\nabla u_{k} \longrightarrow \nabla u \quad \text { in }\left(L^{p}\left(\Omega ; W_{p}(\delta)\right)\right)^{N} \tag{4.51}
\end{equation*}
$$

(4.51) and (4.32) show (4.41). Consequently it completes the proof.

Proof of the assertion 3 of Theorem 3.1. Let $\lambda>\lambda^{*}$. Then $J_{p, \lambda}^{w}<\Lambda_{p}$ by the assertion 1 of Theorem 3.1. Let $\left\{u_{k}\right\}$ be a minimizing sequence for (3.3) satisfying $(4.29) \sim(4.33)$. Then we see that $u \neq 0$ by Proposition 4.1. Therefore, by applying Proposition 4.2, we conclude that $\chi_{p, \lambda}^{w}(u)=J_{p, \lambda}^{w}$, namely u is a minimizer for (3.3). It finishes the proof.

5. Proof of Theorem 3.2

For $M>0$ and $w(t) \in W\left(\mathbf{R}_{+}\right)$, we define the following operator:

$$
\begin{equation*}
L_{M}^{w}(u(x))=-\operatorname{div}(w(\delta(x)) \nabla u(x))-J_{2, \lambda *}^{w} \frac{w(\delta(x)) u(x)}{F_{\eta_{0}}(\delta(x))^{2}}+M w(\delta(x)) u(x) . \tag{5.1}
\end{equation*}
$$

Our proof of Theorem 3.2 is relied on the maximum principle and the following nonexistence result on the operator L_{M}^{w} :

Lemma 5.1. Let Ω be a bounded domain of class C^{2} in \mathbf{R}^{N}. Assume that $w(t) \in$ $W_{A}\left(\mathbf{R}_{+}\right)$and $w(t)$ satisfies the condition (3.6). If $u(x)$ is a non-negative function in $W_{0}^{1,2}(\Omega ; w(\delta)) \cap C(\bar{\Omega})$ and satisfies the inequality

$$
\begin{equation*}
L_{M}^{w}(u(x)) \geqslant 0 \quad \text { in } \Omega \tag{5.2}
\end{equation*}
$$

in the sense of distributions for some positive number M, then $u(x) \equiv 0$.
Admitting this lemma for the moment, we prove Theorem 3.2.
Proof of Theorem 3.2. If the infimum $J_{2, \lambda^{*}}^{w}$ in (3.3) is achieved by a function $u(x)$ then it is also achieved by $|u(x)|$. Therefore there exists $u(x) \in W_{0}^{1,2}(\Omega ; w(\delta))$, $u(x) \geqslant 0$ such that

$$
-\operatorname{div}(w(\delta(x)) \nabla u(x))-J_{2, \lambda *}^{w} \frac{w(\delta(x)) u(x)}{F_{\eta_{0}}(\delta(x))^{2}}-\lambda^{*} w(\delta(x)) u(x)=0
$$

By the standard regularity theory of the elliptic type, we see that $u(x) \in C(\bar{\Omega})$, and by the maximum principle, $u(x)>0$ in Ω. Then $u(x)$ clearly satisfies the inequality (5.2) for some $M>0$, and hence the assertion of Theorem 3.2 is a consequence of Lemma 5.1.

Proof of Lemma 5.1. Assume by contradiction that there exists a non-negative function $u(x)$ as in Lemma 5.1. By the maximum principle, we see $u(x)>0$ in Ω. Let us set

$$
v_{s}(t)=f_{\eta_{0}}(t)^{1 / 2} G_{\eta_{0}}(t)^{-s} \quad \text { for } \quad s>1 / 2
$$

Then we have $v_{s}(t) \in W_{0}^{1,2}\left(\left(0, \eta_{0}\right) ; w\right)$ and $v_{s}(\delta(x)) \in W_{0}^{1,2}\left(\Omega_{\eta_{0}} ; w(\delta)\right)$. We assume that η_{0} is sufficiently small so that $\delta(x) \in C^{2}\left(\Omega_{\eta_{0}}\right)$, and Theorem 2.1 holds in $\Omega_{\eta_{0}}$. Since $|\nabla \delta(x)|=1$, we have for $\delta=\delta(x)$

$$
\operatorname{div}\left(w(\boldsymbol{\delta}) \nabla\left(v_{s}(\boldsymbol{\delta})\right)\right)=w(\boldsymbol{\delta}) v_{s}^{\prime}(\boldsymbol{\delta}) \Delta \boldsymbol{\delta}+w^{\prime}(\boldsymbol{\delta}) v_{s}^{\prime}(\boldsymbol{\delta})+w(\boldsymbol{\delta}) v_{s}^{\prime \prime}(\boldsymbol{\delta})
$$

With somewhat more calculations we have

$$
\begin{aligned}
\operatorname{div}(w(\delta) \nabla & \left.\left(v_{s}(\delta)\right)\right)=f_{\eta_{0}}(\delta)^{-1 / 2} G_{\eta_{0}}(\delta)^{-s}\left(s(w) / 2+s G_{\eta_{0}}(\delta)^{-1}\right) \Delta \delta \\
& +w(\delta)^{-1} f_{\eta_{0}}(\delta)^{-3 / 2} G_{\eta_{0}}(\delta)^{-s}\left(-1 / 4+s(s+1) G_{\eta_{0}}(\delta)^{-2}\right)
\end{aligned}
$$

Since $J_{2, \lambda^{*}}^{w}=1 / 4$ by Remark 3.2, we have

$$
\begin{aligned}
L_{M}^{w}\left(v_{s}(\delta)\right)= & -w(\delta)^{-1} f_{\eta_{0}}(\delta)^{-3 / 2} G_{\eta_{0}}(\delta)^{-s-2} \\
& \times\left\{s(s+1)+F_{\eta_{0}}(\delta)\left(s(w) G_{\eta_{0}}(\delta)^{2} / 2+s G_{\eta_{0}}(\delta)\right) \Delta \delta-M F_{\eta_{0}}(\delta)^{2} G_{\eta_{0}}(\delta)^{2}\right\}
\end{aligned}
$$

From Lemma 3.1, Remark 2.3, 1 and (3.6) it follows that

$$
F_{\eta_{0}}(t), G_{\eta_{0}}(t)^{-1}, F_{\eta_{0}}(t) G_{\eta_{0}}(t), F_{\eta_{0}}(t) G_{\eta_{0}}(t)^{2} \longrightarrow 0 \quad \text { as } t \rightarrow+0
$$

Therefore we have

$$
L_{M}^{w}\left(v_{s}(\delta(x))\right) \leqslant 0 \quad \text { in } \Omega_{\eta_{0}}
$$

Now we choose a small $\varepsilon>0$ so that $\varepsilon v_{s}(\delta(x)) \leqslant u(x)$ on $\Sigma_{\eta_{0}}$, and set $w_{s}(\delta(x))=$ $\varepsilon v_{s}(\delta(x))-u(x)$. Then $w_{s}^{+}(\delta(x))=\max \left(w_{s}(\delta(x)), 0\right) \in W_{0}^{1,2}\left(\Omega_{\eta_{0}} ; w(\delta)\right)$, and we see that

$$
L_{M}^{w}\left(w_{s}(\delta(x))\right) \leqslant 0 \quad \text { in } \Omega_{\eta_{0}}
$$

Hence we have for $\delta=\delta(x)$

$$
\int_{\Omega_{\eta_{0}}}\left(\left|\nabla w_{s}^{+}(\delta)\right|^{2} w(\delta)-\frac{w(\delta) w_{s}^{+}(\delta)^{2}}{4 F_{\eta_{0}}(\delta)^{2}}+M w(\delta) w_{s}^{+}(\delta)^{2}\right) d x \leqslant 0
$$

But, by Theorem 2.1, we have

$$
\int_{\Omega_{\eta_{0}}}\left(\left|\nabla w_{s}^{+}(\delta(x))\right|^{2} w(\delta(x))-\frac{w(\delta(x)) w_{s}^{+}(\delta(x))^{2}}{4 F_{\eta_{0}}(\delta(x))^{2}}\right) d x \geqslant 0
$$

Therefore we have $w_{s}^{+}(\delta(x))=0$ in $\Omega_{\eta_{0}}$, and so $\varepsilon v_{s}(\delta(x)) \leqslant u(x)$ in $\Omega_{\eta_{0}}$ for any $s>$ $1 / 2$. By letting $s \rightarrow 1 / 2, \varepsilon f_{\eta_{0}}(\delta(x))^{1 / 2} G_{\eta_{0}}(\delta(x))^{-1 / 2} \leqslant u(x)$ holds in $\Omega_{\eta_{0}}$. Namely

$$
\frac{u(x)^{2} w(\delta(x))}{F_{\eta_{0}}(\delta(x))^{2}} \geqslant \varepsilon^{2} \frac{1}{F_{\eta_{0}}(\delta(x)) G_{\eta_{0}}(\delta(x))} \quad \text { in } \Omega_{\eta_{0}}
$$

Since it holds that $\left(F_{\eta_{0}}(\delta(x)) G_{\eta_{0}}(\delta(x))\right)^{-1} \notin L^{1}\left(\Omega_{\eta_{0}}\right)$ by Remark 2.3, 1, we have that $u(x) \notin L^{2}\left(\Omega_{\eta_{0}} ; w(\delta) / F_{\eta_{0}}(\delta)^{2}\right)$. This together with Hardy's inequality (2.18) contradicts to that $u(x) \in W_{0}^{1,2}(\Omega ; w(\delta))$.

REFERENCES

[1] H. Ando, T. Horiuchi, Missing terms in the weighted Hardy-Sobolev inequalities and its application, Kyoto J. Math., vol. 52, no. 4 (2012), 759-796.
[2] H. Ando, T. Horiuchi, Weighted Hardy's inequalities and the variational problem with compact perturbations, Mathematical Journal of Ibaraki University, vol. 52 (2020), 15-26.
[3] H. Ando, T. Horiuchi, E. Nakai, Weighted Hardy inequalities with infinitely many sharp missing terms, Mathematical Journal of Ibaraki University, vol. 46 (2014), 9-30.
[4] H. Brezis, M. Marcus, Hardy's inequalities revisited, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^{e} série, tome 25, no. 1-2 (1997), 217-237.
[5] Z. Chen, Y. Shen, Sharp Hardy-Sobolev inequalities with general weights and remainder terms, Journal of inequalities and applications, (2009), Article ID 419845, 24 pages, doi:10.1155/2009/419845.
[6] E. B. Davis, The Hardy constant, Quart. J. Math. Oxford, (2) vol. 46 (1995), 417-431.
[7] A. Detalla, T. Horiuchi, H. Ando, Missing terms in Hardy-Sobolev inequalities and its application, Far East Journal of Mathematical Sciences, vol. 14, no. 3 (2004), 333-359.
[8] T. Horiuchi, Hardy's inequalities with non-doubling weights and sharp remainders, Scientiae Mathematicae Japonicae, 85, no. 2 (2023), 125-147; Scientiae Mathematicae Japonicae, in Edition Electronica, e-2022-2.
[9] X. Liu, T. Horiuchi, H. Ando, One dimensional weighted Hardy's inequalities and application, Journal of Mathematical Inequalities, vol. 14 (2020), no. 4, 1203-1222.
[10] M. Marcus, V. J. Mizel, Y. Pinchover, On the best constant for Hardy's inequality in \mathbb{R}^{n}, Trans. Amer. Math. Soc., vol. 350, no. 8 (1998), 3237-3255.
[11] T. MATSKEWICh, P. E. Sobolevskir, The best possible constant in a generalized Hardy's inequality for convex domains in \mathbb{R}^{n}, Nonlinear Analysis TMA, vol. 28 (1997), 1601-1610.
[12] V. G. MAZ' JA, Soboloev spaces (2nd edition), Springer, (2011).

[^0]: Mathematics subject classification (2020): Primary 35J70; Secondary 35J60, 34L30, 26D10.
 Keywords and phrases: Weighted Hardy's inequalities, nonlinear eigenvalue problem, weak Hardy property, p-Laplace operator with weights.

 This research was partially supported by Grant-in-Aid for Scientific Research (No. 20K03670, No. 21K03304).

