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Abstract. Let  be a bounded domain of RN (N � 1) with boundary of class C2 . In the present
paper we shall study a variational problem relating the weighted Hardy inequalities with sharp
missing terms established in [8]. As weights we treat non-doubling functions of the distance
 (x) = dist(x,) to the boundary .

1. Introduction

Let W (R+) be a class of functions

{w(t) ∈C1(R+) : w(t) > 0, lim
t→+0

w(t) = a for some a ∈ [0,]}

with R+ = (0,). For 1 < p <  , as weights of Hardy’s inequalities we adopt func-
tions Wp(t) = w(t)p−1 with w(t) ∈ P(R+)∪Q(R+) , where{

P(R+) = {w(t) ∈W (R+) : w(t)−1 /∈ L1((0,)) for some  > 0},
Q(R+) = {w(t) ∈W (R+) : w(t)−1 ∈ L1((0,)) for any  > 0}. (1.1)

Clearly W (R+) = P(R+)∪Q(R+) and P(R+)∩Q(R+) = /0 . (For the precise defini-
tions see the section 2. See also [8], [9].) A positive continuous function w(t) on R+
is said to be a doubling weight if there exists a positive number C such that we have

C−1w(t) � w(2t) � Cw(t) for all t ∈ R+. (1.2)

When w(t) does not possess this property, w(t) is said to be a non-doubling weight in
the present paper. In one-dimensional case we typically treat a weight function w(t)
that may vanish or blow up in infinite order such as e−1/t or e1/t at t = 0. In such
cases the limit of ratio w(t)/w(2t) as t → +0 may become 0 or + , and hence they
are regarded as non-doubling weights according to our notion.
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In [8], we have established N -dimensional Hardy inequalities with non-doubling
weights being functions of the distance  (x) = dist(x,) to the boundary  , where
 is a bounded domain of class C2 in RN . In this paper we shall study a variational
problem relating to those new inequalities.

We prepare more notations to describe our results. Let 1 < p <  . For Wp(t) =
w(t)p−1 with w(t) ∈W (R+) , we define a weight function Wp( (x)) on  by

Wp( (x)) = (Wp ◦  )(x).

By Lp(;Wp( )) we denote the space of Lebesgue measurable functions with weight
Wp( (x)) , for which

‖u‖Lp(;Wp( )) =
(∫


|u(x)|pWp( (x))dx

)1/p

< +. (1.3)

W 1,p
0 (;Wp( )) is given by the completion of C

c () with respect to the norm defined
by

‖u‖
W1,p

0 (;Wp( )) = ‖|u|‖Lp(;Wp( )) +‖u‖Lp(;Wp( )). (1.4)

Then, W 1,p
0 (;Wp( )) becomes a Banach space with the norm ‖·‖

W1,p
0 (;Wp( )) . Under

these preparation we recall the weighted Hardy inequalities in [8]. (See Theorem 2.1
and its corollary in Section 2.) In particular for w(t) ∈ Q(R+) , we have a simple
inequality as Corollary 2.1, which is a generalization of classical Hardy’s inequality:∫


|u(x)|pWp( (x))dx � 

∫


|u(x)|pWp( (x))
F0( (x))p dx (1.5)

for u(x)∈W 1,p
0 (;Wp( )), where 0 is a sufficiently small positive number,  is some

positive constant and F0(t) is a positive function defined in Definition 2.3. In particular
if w(t) = 1, then F0(t) = t (0 < t � 0) and (1.5) becomes a well-known Hardy’s
inequality, which is valid for a bounded domain  of RN with Lipschitz boundary
(cf. [4], [6], [10], [11]). Further if  is convex, then  = p := (1− 1/p)p holds for
arbitrary 1 < p <  (see [11]).

In the present paper we consider the following variational problem relating the
general Hardy’s inequalities established in [8]. For  ∈R , Wp(t)= w(t)p−1 and w(t)∈
WA(R+)(⊂ W (R+)) , the following variational problem (1.6) can be associated with
(1.5):

Jw
p, = inf

u∈W1,p
0 (;Wp( ))\{0}

w
p, (u), (1.6)

where

w
p, (u) =

∫
 |u(x)|pWp( (x))dx−

∫
 |u(x)|pWp( (x))dx∫

 |u(x)|pWp( (x))/F0( (x))pdx
. (1.7)

Here WA(R+) = PA(R+)∪QA(R+) is a subclass of W (R+) defined by Definition 2.6
and 0 is a sufficiently small positive number such that the Hardy inequalities in The-
orem 2.1 and Corollary 2.1 are valid. Note that Jw

p,0 gives the best constant in (1.5), the
function  	→ Jw

p, is non-increasing on R and Jw
p, →− as  →  .
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When p = 2 and w(t) = 1, this variational problem (1.6) was originally studied
in [4]. Then, the problem (1.6) was intensively studied in [2] in the case that 1 < p <
and w(t) = t p/(p−1) ∈QA(R+) with  < 1−1/p . In this paper we further investigate
the variational problem (1.6) with non-doubling weight functions w(t) ∈WA(R+) and
we make clear the attainability of the infimum Jw

p, as Theorem 3.1 and Theorem 3.2.
This paper is organized in the following way: In Subsection 2.1 we introduce

a class of weight functions W (R+) and two subclasses P(R+) and Q(R+) together
with so-called Hardy functions, which are crucial in this paper. Further a notion of
admissibilities for P(R+) and Q(R+) is introduced. In Subsection 2.2, we recall the
weighted Hardy’s inequalities in [8] which are crucial in this work. In Section 3, the
main results are described. Theorem 3.1 and Theorem 3.2 are established in Section 4
and Section 5 respectively.

2. Preliminaries

2.1. Weight functions

First we introduce a class of weight functions according to [8] which is crucial in
this paper.

DEFINITION 2.1. Let us set R+ = (0,) and

W (R+) = {w(t) ∈C1(R+) : w(t) > 0, lim
t→+0

w(t) = a for some a ∈ [0,]}. (2.1)

In the next we define two subclasses of W (R+) .

DEFINITION 2.2. Let us set

P(R+) = {w(t) ∈W (R+) : w(t)−1 /∈ L1((0,)) for some  > 0}, (2.2)

Q(R+) = {w(t) ∈W (R+) : w(t)−1 ∈ L1((0,)) for any  > 0}. (2.3)

Here we give fundamental examples:

EXAMPLE 2.1.

1. t ∈ P(R+) if  � 1 and t ∈ Q(R+) if  < 1.

2. e−1/t ∈ P(R+) and e1/t ∈ Q(R+) .

3. For  ∈ R , te−1/t ∈ P(R+) and te1/t ∈ Q(R+) .

REMARK 2.1.

1. W (R+) = P(R+)∪Q(R+) and P(R+)∩Q(R+) = /0 hold.

2. If w(t)−1 /∈ L1((0,)) for some  > 0, then w(t)−1 /∈ L1((0,)) for any  > 0.
Similarly if w(t)−1 ∈ L1((0,)) for some  > 0, then w(t)−1 ∈ L1((0,)) for
any  > 0.
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3. If w(t) ∈ P(R+) , then limt→+0 w(t) = 0. Hence by setting w(0) = 0, w(t) is
uniquely extended to a continuous function on [0,) . On the other hand if w(t)∈
Q(R+) , then possibly limt→+0 w(t) = + .

In the next we define functions such as F(t) and G(t) in order to introduce
variants of the Hardy potential like F0( (x))−p in (1.5).

DEFINITION 2.3. Let  > 0 and  > 0. For w(t) ∈W (R+) , we define the fol-
lowings:

1. When w(t) ∈ P(R+) ,

F(t;w,) =

{
w(t)

(
 +

∫ 
t w(s)−1 ds

)
if t ∈ (0,),

w() if t �  ,
(2.4)

G(t;w,) =

{
+

∫ 
t F(s;w,)−1 ds if t ∈ (0,),

 if t �  .
(2.5)

2. When w(t) ∈ Q(R+) ,

F(t;w) =

{
w(t)

∫ t
0 w(s)−1 ds if t ∈ (0,),

w()
∫ 
0 w(s)−1 ds if t �  ,

(2.6)

G(t;w,) =

{
+

∫ 
t F(s;w)−1 ds if t ∈ (0,),

 if t �  .
(2.7)

3. F(t;w,) and F(t;w) are abbreviated as F(t) . G(t;w,) is abbreviated as
G (t) .

4. For w(t) ∈ P(R+) or Q(R+) , we define

Wp(t) = w(t)p−1. (2.8)

REMARK 2.2. In the definition (2.5), one can replace G(t;w,) with the more
general G (t;w, , ′) =  ′ +

∫ 
t F(s;w,)−1ds if t ∈ (0,) , G (t;w, , ′) =  ′ if

t �  with  ′ > 0. However, for simplicity this paper uses (2.5).

Here we give fundamental examples:

EXAMPLE 2.2. Let w(t) = t for  ∈ R .

1. When  > 1, F(t) = t/(−1) and G (t)= +(−1) log(/t) for t ∈ (0,)
provided that  = 1−/(−1) .

2. When  = 1, F(t)= t(+ log(/t)) and G(t)= − log+ log(+ log(/t))
for t ∈ (0,) .
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3. When  < 1, F(t) = t/(1− ) and G(t) =  + (1−) log(/t) for t ∈
(0,) .

By using integration by parts we see the followings:

EXAMPLE 2.3.

1. When either w(t) = e−1/t ∈ P(R+) or w(t) = e1/t ∈ Q(R+) , we have F(t) =
O(t2) as t → +0.

2. Moreover, if w(t) = exp(±t−) with  > 0, then F(t) = O(t+1) as t → +0.
In fact, it holds that limt→+0 F(t)/t+1 = 1/ .

In a similar way we define the following:

DEFINITION 2.4. Let  > 0 and  > 0. For w(t) ∈W (R+) , we define the fol-
lowings:

1. When w(t) ∈ P(R+) ,

f (t;w,) =

{
 +

∫ 
t w(s)−1 ds if t ∈ (0,),

 if t �  .
(2.9)

2. When w(t) ∈ Q(R+) ,

f (t;w) =

{∫ t
0 w(s)−1 ds if t ∈ (0,),∫ 
0 w(s)−1 ds if t �  .

(2.10)

3. f (t;w,) and f (t;w) are abbreviated as f (t) .

REMARK 2.3.

1. We note that for t ∈ (0,)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d
dt log f (t) = −F(t)−1 if w(t) ∈ P(R+),

d
dt log f (t) = F(t)−1 if w(t) ∈ Q(R+),

d
dt logG(t) = −(F(t)G(t))−1,

d
dt G(t)−1 = (F(t)G(t)2)−1 if w(t) ∈W (R+).

(2.11)

By Definition 2.3, Definition 2.4 and (2.11), we see that F(t)−1 /∈ L1((0,)) ,
limt→+0 G(t) =  and (F(t)G (t))−1 /∈ L1((0,)) , but (F(t)G(t)2)−1 ∈
L1((0,)) .

2. If w(t) ∈W (R+) , then we have liminft→+0 F(t) = liminft→+0 F(t)G (t) = 0
from 1.
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EXAMPLE 2.4. If either w(t) = t2e−1/t ∈ P(R+) or w(t) = t2e1/t ∈Q(R+) , then
F(t) = O(t2) and G(t) = O(1/t) as t → +0.

Now we introduce two admissibilities for P(R+) and Q(R+) .

DEFINITION 2.5.

1. A function w(t) ∈ P(R+) is said to be admissible if there exist positive numbers
 and K such that we have

∫ 

t
w(s)−1 ds � eK/

√
t for t ∈ (0,). (2.12)

2. A function w(t) ∈ Q(R+) is said to be admissible if there exist positive numbers
 and K such that we have

∫ t

0
w(s)−1 ds � e−K/

√
t for t ∈ (0,). (2.13)

DEFINITION 2.6. By PA(R+) and QA(R+) we denote the set of all admissible
functions in P(R+) and Q(R+) respectively. We set

WA(R+) = PA(R+)∪QA(R+). (2.14)

REMARK 2.4. If w(t) ∈ WA(R+) , then there exist positive numbers  and K
such that we have √

t G(t) � K for t ∈ (0,). (2.15)

For the detail, see Proposition 2.1 in [8].

Here we give typical examples:

EXAMPLE 2.5. e−1/t /∈ PA(R+) , e1/t /∈ QA(R+) , but e−1/
√

t ∈ PA(R+) , e1/
√

t ∈
QA(R+) .

Verifications:
e−1/t /∈ PA(R+) : For small t > 0, we have

∫ 
t e1/s ds �

∫ 2t
t e1/s ds � te1/(2t) . But

this contradicts to (2.12) for any K > 0.
e−1/

√
t ∈PA(R+) : Since e1/

√
s � e1/

√
t (t < s < ) , we have

∫ 
t e1/

√
s ds � e1/

√
t

� eK/
√

t for some K > 1.
e−1/t /∈QA(R+) : For 0 < s � t , we have

∫ t
0 e−1/s ds � te−1/t . But this contradicts

to (2.13) for any K > 0.
e−1/

√
t ∈ QA(R+) : For t/2 < s < t , we have

∫ t
0 e−1/

√
s ds �

∫ t
t/2 e−1/

√
s ds �

(t/2)e−
√

2/t � e−K/
√

t for some K >
√

2.
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2.2. Weighted Hardy’s inequalities

We define a switching function.

DEFINITION 2.7. (Switching function) For w(t) ∈ W (R+) = P(R+)∪Q(R+)
we set

s(w) =

{
−1 if w(t) ∈ P(R+),
1 if w(t) ∈ Q(R+).

(2.16)

Let  be a bounded domain of class C2 in RN . Let  (x) = dist(x,) . For
each small  > 0,  and  denote a tubular neighborhood of  and  ( \)
respectively, namely

 = {x ∈ :  (x) < } and  = {x ∈ :  (x) = }. (2.17)

In [8] we established a series of weighted Hardy’s inequalities with sharp remain-
ders. In particular, we have the following inequality from Theorem 3.3 in [8] by noting
that F(t) � F0(t) for  ∈ (0,0] and t ∈ (0,) .

THEOREM 2.1. Assume that  is a bounded domain of class C2 in RN . Assume
that 1 < p < and w(t) ∈WA(R+) . Assume that  > 0 and 0 is a sufficiently small
positive number. Then, for  ∈ (0,0] there exist positive numbers C =C(w, p, ,)
and L′ = L′(w, p, ,) such that for u(x) ∈W 1,p

0 (;Wp( )) we have∫


(
|u(x)|p −p

|u(x)|p
F0( (x))p

)
Wp( (x))dx

� C
∫


|u(x)|pWp( (x))
F( (x))pG ( (x))2 dx+ s(w)L′

∫


|u(x)|pWp()d , (2.18)

where d denotes surface elements on  .

Similarly we have the following inequality from Corollary 3.3 in [8].

COROLLARY 2.1. Assume that  is a bounded domain of class C2 in RN . As-
sume that 1 < p <  and w(t) ∈ WA(R+) . Assume that  > 0 and 0 is a suffi-
ciently small positive number. Then, for  ∈ (0,0] there exist positive numbers
 = (w, p, ,) and L′ = L′(w, p, ,) such that for u(x) ∈ W 1,p

0 (;Wp( )) we
have∫



(
|u(x)|p− 

|u(x)|p
F( (x))p

)
Wp( (x))dx � s(w)L′

∫


|u(x)|pWp()d , (2.19)

where d denotes surface elements on  .

REMARK 2.5. In Theorem 3.3 and Corollary 3.3 in [8], it was assumed that u(x)∈
W 1,p

0 (;Wp( ))∩C() . However, since we have the inequalities (2.18) and (2.19) for
u(x) ∈C

c () , by Lemma 4.5 and Remark 4.1 as stated later, we see that the inequal-
ities (2.18) and (2.19) hold for u(x) ∈ W 1,p

0 (;Wp( )) . Therefore we have Theorem
2.1 and Corollary 2.1.
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REMARK 2.6. These inequalities are closely related to the weighted Hardy-Sobo-
lev inequalities with sharp remainder terms (cf. [1], [3], [4], [5], [7], [9], [12]).

3. Main results

Let 0 be a sufficiently small positive number such that the Hardy’s inequalities
in Theorem 2.1 and Corollary 2.1 are valid. Let w(t) ∈W (R+) and Wp(t) = w(t)p−1

with 1 < p <  . Moreover, we assume that

w′(t) � 0 for all t ∈ (0,0) or w′(t) � 0 for all t ∈ (0,0). (3.1)

Then we have the following.

LEMMA 3.1. Assume that w(t) ∈W (R+) satisfies (3.1) . Then it holds that

lim
t→+0

F0(t) = 0. (3.2)

In particular, F0(t) is bounded in R+ .

The proof of Lemma 3.1 is stated at the end of this section.
For  ∈ R , let us recall the variational problem associated with (1.5):

Jw
p, = inf

u∈W1,p
0 (;Wp( ))\{0}

w
p, (u), (3.3)

where

w
p, (u) =

∫
 |u(x)|pWp( (x))dx−

∫
 |u(x)|pWp( (x))dx∫

 |u(x)|pWp( (x))/F0( (x))pdx
.

Our main result is the following:

THEOREM 3.1. Assume that  is a bounded domain of class C2 in RN . Assume
that 1 < p <  and w(t) ∈ WA(R+) satisfies (3.1) . Then, there exists a constant
 ∗ ∈ R such that:

1. If  �  ∗ , then Jw
p, = p . If  >  ∗ , then Jw

p, < p .

Here

p =
(

1− 1
p

)p

. (3.4)

Moreover, it holds that:

2. If  <  ∗ , then the infimum Jw
p, in (3.3) is not attained.

3. If  >  ∗ , then the infimum Jw
p, in (3.3) is attained.

In particular we have the following inequality:
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COROLLARY 3.1. Under the same assumptions as in Theorem 3.1, there exists a
constant  ∈ R such that for u(x) ∈W 1,p

0 (;Wp( ))∫

|u(x)|pWp( (x))dx

� p

∫


|u(x)|pWp( (x))
F0( (x))p dx+

∫

|u(x)|pWp( (x))dx. (3.5)

REMARK 3.1.

1. For the case of w(t) = 1 and  = 0, the value of the infimum J1
p,0 in (3.3) and

its attainability are studied in [10].

2. For the case of w(t) = 1 and p = 2, it is shown that the infimum J1
2, in (3.3) is

attained if and only if  >  ∗ . See [4]. If p = 2 and  =  ∗ , then it is an open
problem whether the infimum Jw

p, in (3.3) is achieved.

3. For the case of w(t) = t p/(p−1) ∈ QA(R+) with  < 1− 1/p , Theorem 3.1 is
shown in [2].

4. In the assertion 3 of Theorem 3.1, the minimizer u(x) ∈W 1,p
0 (;Wp( )) for the

variational problem (3.3) is a non-trivial weak solution of the following Euler-
Lagrange equation:

−div
(
Wp( )|u|p−2u

)−Wp( )|u|p−2u = Jw
p,

Wp( )
F0( )p |u|p−2u in D ′().

When p = 2 and  =  ∗ hold, we have the following that is rather precise.

THEOREM 3.2. In addition to the assumption of Theorem 3.1, we assume that
p = 2 and  =  ∗ . Let 0 > 0 be a sufficiently small number as in Theorem 2.1.
Moreover we assume that

lim
t→+0

F0(t)G0(t)
2 = 0. (3.6)

Then, Jw
2, ∗ is not achieved.

REMARK 3.2. By Theorem 3.1, Jw
2, ∗ = 1/4 holds.

EXAMPLE 3.1. Let w(t) = t p/(p−1) for  ∈ R . Then Wp(t) = t p . If  �
1− 1/p , then w(t) ∈ PA(R+) , if  < 1− 1/p , then w(t) ∈ QA(R+) . Clearly (3.1) is
valid. We have that as t → +0

F0(t) =

{
O(t) for  = 1−1/p,

O
(
t log(1/t)

)
for  = 1−1/p,

G0(t) =

{
O

(
log(1/t)

)
for  = 1−1/p,

O
(
log log(1/t)

)
for  = 1−1/p.

Therefore (3.6) holds.
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EXAMPLE 3.2. Let either w(t) = e−1/
√

t ∈ PA(R+) or w(t) = e1/
√

t ∈ QA(R+) .
Then (3.1) and (3.6) hold. In fact, we have that as t → +0

F0(t) = O
(
t3/2), G0(t) = O

(
t−1/2), F0(t)G0(t)

2 = O
(
t1/2).

Here we give the proof of Lemma 3.1.

Proof of Lemma 3.1. First we assume that w(t) ∈ P(R+) . Let  be any number
satisfying 0 <  < 20 . For 0 < t < /2 we have that

F0(t) = w(t)
(
 +

∫ 0

/2
w(s)−1ds

)
+w(t)

∫ /2

t
w(s)−1ds. (3.7)

Since w(t)−1 /∈ L1((0,0)) , it follows that limt→+0 w(t) = 0 from the Definition 2.1,
and hence w(t) is non-decreasing in (0,0] by (3.1). Then we have

w(t)
∫ /2

t
w(s)−1ds � w(t)

∫ /2

t
w(t)−1ds =


2
− t <


2
. (3.8)

By limt→+0 w(t) = 0, there exists a  > 0 such that for 0 < t < 

w(t) <


2
(
 +

∫ 0
/2 w(s)−1ds

) . (3.9)

From (3.7), (3.8) and (3.9) it follows that for 0 < t < min{/2,}

F0(t) <

2

+

2

= ,

which shows (3.2). Secondly we assume that w(t) ∈ Q(R+) . If w′(t) � 0 for t ∈
(0,0) , then limt→+0 w(t) = a <  , and so

F0(t) = w(t)
∫ t

0
w(s)−1ds → 0 as t → +0

by w(t) ∈ L1((0,0)) . If w′(t) � 0 for t ∈ (0,0) , then we see that for t ∈ (0,0]

F0(t) = w(t)
∫ t

0
w(s)−1ds � w(t)

∫ t

0
w(t)−1ds = t,

which implies (3.2). It concludes the proof. �
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4. Proof of Theorem 3.1

In this section, we give the proof of Theorem 3.1.

4.1. Upper bound of Jw
p,

First, we prove the assertion 1 of Theorem 3.1. As test functions we adopt for
 > 0 and 0 <  � 0/2

u(t) =

⎧⎪⎨
⎪⎩

f0(t)
1+s(w)−1/p (0 < t � ),

f0()1+s(w)−1/p(2− t)/ ( < t � 2),
0 (2 < t � 0).

(4.1)

We note that

u′(t) =

⎧⎪⎨
⎪⎩

(1+ s(w)−1/p) f (t)s(w)−1/ps(w)/w(t) (0 < t < ),
− f0()1+s(w)−1/p/ ( < t < 2),
0 (2 < t � 0).

(4.2)

We have ∫ 

0
|u′(t)|pWp(t)dt =

(
1− 1

p
+ s(w)

)p ∫ 

0
f0(t)

s(w) p−1 1
w(t)

dt

=
(

1− 1
p

+ s(w)
)p f0()s(w) p

p
. (4.3)

In a similar way

∫ 

0

|u(t)|pWp(t)
F0(t)p dt =

∫ 

0
f0(t)

s(w) p−1 1
w(t)

dt =
f0()s(w) p

p
. (4.4)

Noting that f0(t)
s(w) p is bounded by the definitions of s(w) and f0(t) , it follows

from Lemma 3.1 that∫ 

0
|u(t)|pWp(t)dt =

∫ 

0
f0(t)

p−1+s(w) pw(t)p−1 dt

=
∫ 

0
F0(t)

p−1 f0(t)
s(w) p dt < +. (4.5)

Hence we have∫ 2

0
|u′(t)|pWp(t)dt =

(
1− 1

p
+ s(w)

)p f0()s(w) p

p
+C(,),

∫ 2

0

|u(t)|pWp(t)
F0(t)p dt =

f0()s(w) p

p
+D(,),

∫ 2

0
|u(t)|pWp(t)dt =

∫ 

0
F0(t)

p−1 f0(t)
s(w) p dt +E(,),
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where C(,) , D(,) and E(,) are given by

C(,) = f0()p+s(w) p−1−p
∫ 2


Wp(t)dt,

D(,) = f0()p+s(w) p−1
∫ 2



(2− t)pWp(t)
F0(t)p p dt,

E(,) = f0()p+s(w) p−1
∫ 2



(2− t)pWp(t)
 p dt,

and they remain bounded as  → +0. Therefore we see that

∫ 2
0 |u′(t)|pWp(t)dt∫ 2

0 |u(t)|pWp(t)/F0(t)pdt
→ p as  → +0, (4.6)

and we also have
∫ 2
0 |u(t)|pWp(t)dt∫ 2

0 |u(t)|pWp(t)/F0(t)pdt
→ 0 as  → +0. (4.7)

As a result we have the following lemma.

LEMMA 4.1. Let 1 < p < , 0 <  � 0/2 and w(t) ∈W (R+) . For any  > 0 ,
there exists a function h(t) ∈W 1,p

0 ((0,2);Wp) such that

∫ 2
0 |h′(t)|pWp(t)dt∫ 2

0 |h(t)|pWp(t)/F0(t)pdt
� p + . (4.8)

Proof. By Lp((0,);Wp) we denote the space of Lebesgue measurable functions
with weight Wp(t) , for which

‖u‖Lp((0,);Wp) =
(∫ 

0
|u(t)|pWp(t)dt

)1/p

< +.

W 1,p
0 ((0,);Wp) is given by the completion of C

c ((0,)) with respect to the norm
defined by

‖u‖
W1,p

0 ((0,);Wp)
= ‖u′‖Lp((0,);Wp) +‖u‖Lp((0,);Wp).

Then W 1,p
0 ((0,);Wp) becomes a Banach space with the norm ‖ · ‖

W1,p
0 ((0,);Wp)

.

Let us set h(t) = u(t) for a sufficiently small  > 0. Then h(t) satisfies the
estimate (4.8). It suffices to check that h(t) ∈ W 1,p

0 ((0,2);Wp) . If w(t) ∈ Q(R+) ,
then limt→+0 f0(t) = 0 and limt→+0 u(t) = limt→+0 f0(t)

1+s(w)−1/p = 0. Therefore
h(t) is clearly approximated by test functions in C

c ((0,2)) .
If w(t) ∈ P(R+) , then we employ the following lemma:
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LEMMA 4.2. Assume that 1 < p <  and w(t) ∈ P(R+) . For  > 0 ,  > 0 and
0 > 0 satisfying 0 <  � 0/2 , let us set

(t) = 0 (0 � t � );
f0()− f0(t)
f0()− f0()

( � t � ); 1 ( � t � 2). (4.9)

Then, as  → +0 ,  → 1 in Lp((0,2);Wp) and  ′
 → 0 in Lp((0,2);Wp) .

Proof. Since limt→+0 f0(t) =  , clearly (t) → 1 in Lp((0,2);Wp) as  →
+0, and

∫ 2
0 | ′

 (t)|pWp(t)dt = ( f0()− f0 ())1−p → 0 as  → +0. Then we see
the assertion. �

End of the proof of Lemma 4.1. For 0 <  <  , we set h(t) = (t)h(t) , where
(t) is defined by (4.9) with  =  . Then supph(t) ⊂ [,2 ] . By virtue of Lemma
4.2, we also see that h(t)→ h(t) in W 1,p((0,2);Wp) as  →+0. In fact, noting that
h′(t) =  ′

(t)h(t)+(t)h′(t) , we have

∫ 2

0
|h′(t)−h′(t)|pWp(t)dt

� Cp

(∫ 2

0
(1−(t))p|h′(t)|pWp(t)dt +

∫ 2

0
| ′

(t)|p|h(t)|pWp(t)dt

)

with some constant Cp > 0 depending only on p . The first term obviously goes to 0
as  → +0. As for the second, noting that s(w) = −1 and 0 <  < 1, we have

∫ 2

0
| ′

(t)|p|h(t)|pWp(t)dt =
∫ 


| ′

 (t)|p|h(t)|pWp(t)dt

=
1

( f0()− f0())p

∫ 



f0(t)
p−1+ps(w)

w(t)
dt

=
1

p(1− )
f0()p(1−)− f0()p(1−)

( f0()− f0())p .

Since limt→+0 f0(t) =  , we see that
∫ 2
0 | ′

 (t)|p|h(t)|pWp(t)dt → 0 as  → +0.
Since h(t) is clearly approximated by test functions in C

c ((0,2)) , the assertion
h(t) ∈W 1,p

0 ((0,2);Wp) follows. �

LEMMA 4.3. Let  be a bounded domain of class C2 in RN . Let 1 < p < and
w(t) ∈W (R+) . Then it holds that

Jw
p, � p (4.10)

for all  ∈ R .

Proof. For each small  > 0, by  we denote a tubular neighborhood of  ;

 = {x ∈ :  (x) = dist(x,) < }. (4.11)
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Since the boundary  is of class C2 , there exists an 0 > 0 such that for any  ∈
(0,0) and every x ∈  we have a unique point (x) ∈  satisfying  (x) = |x−
(x)| . The mapping

 � x 	→ ( (x),(x)) = (t,) ∈ (0,)× 

is a C2 diffeomorphism, and its inverse is given by

(0,)×  � (t,) 	→ x(t,) =  + t ·n() ∈ ,

where n() is the inward unit normal to  at  ∈  . For each t ∈ (0,) , the
mapping

 �  	→ t() = x(t,) ∈ t = {x ∈ :  (x) = t}
is also a C2 diffeomorphism of  onto t , and its Jacobian satisfies

|Jact()−1|� ct for any  ∈ , (4.12)

where c is a positive constant depending only on 0 ,  and the choice of local
coordinates. Since n() is orthogonal to t at t() =  + t · n() ∈ t , it follows
that for every integrable function v(x) in 

∫


v(x)dx =
∫ 

0
dt

∫
t

v(t)dt

=
∫ 

0
dt

∫


v(x(t,))|Jact()|d , (4.13)

where d and dt denote surface elements on  and t , respectively. Hence (4.13)
together with (4.12) implies that for every integrable function v(x) in 

∫ 

0
(1− ct)dt

∫


|v(x(t,))|d �
∫


|v(x)|dx (4.14)

�
∫ 

0
(1+ ct)dt

∫


|v(x(t,))|d . (4.15)

Let  > 0, and let  ∈ (0,0) . Take h(t) ∈W 1,p
0 ((0,);Wp) be a function satis-

fying (4.8) with replacing 2 by  for simplicity. Define

u(x) =

{
h( (x)) if x ∈ ,

0 if x ∈\ .
(4.16)

Then we have suppu ⊂ . Since |u(x)| = |h′( (x))| for x ∈ by | (x)| = 1, it
follows from (4.15) that

∫


|u(x)|pWp( (x))dx � (1+ c)||
∫ 

0
|h′(t)|pWp(t)dt, (4.17)
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which implies u(x)∈W 1,p
0 (;Wp( )) by Lemma 4.1. On the other hand, by (4.14) and

(4.16) we have that∫


|u(x)|p Wp( (x))
F0( (x))p dx � (1− c)||

∫ 

0
|h(t)|p Wp(t)

F0(t)p dt. (4.18)

By combining (4.17), (4.18) and trivial estimate
∫


|u(x)|pWp( (x))dx �
(

sup
0<t<

F0(t)
)p ∫


|u(x)|p Wp( (x))

F0( (x))p dx, (4.19)

we obtain that

w
p, (u) � 1+ c

1− c

∫ 
0 |h′(t)|pWp(t)dt∫ 

0 |h(t)|pWp(t)/F0(t)pdt
+ | |

(
sup

0<t<
F0(t)

)p
.

This together with Lemma 4.1 implies that

Jw
p, � 1+ c

1− c
(p +)+ | |

(
sup

0<t<
F0(t)

)p
. (4.20)

Letting →+0 and →+0 in (4.20), then (4.10) follows from Lemma 3.1. Therefore
it concludes the proof. �

LEMMA 4.4. Let  be a bounded domain of class C2 in RN . Let 1 < p < and
w(t) ∈WA(R+) . Then there exists a  ∈ R such that Jw

p, = p .

Proof. Let 0 > 0 be a sufficiently small number as in Theorem 2.1. Take and fix
any u(x) ∈W 1,p

0 (;Wp( ))\ {0} . Then, for  ∈ (0,0]∫


|u(x)|pWp( (x))
F0( (x))p dx

=
∫


|u(x)|pWp( (x))
F0( (x))p dx+

∫
\

|u(x)|pWp( (x))
F0( (x))p dx. (4.21)

Since there exists a positive number C independent of u(x) such that

∫
\

|u(x)|p Wp( (x))
F0( (x))p dx � C

∫
\

|u(x)|pWp( (x))dx, (4.22)

by using Hardy’s inequality (2.18) we have

p

∫


|u(x)|pWp( (x))
F0( (x))p dx �

∫


|u(x)|pWp( (x))dx− s(w)L′
∫


|u()|pWp()d

+pC

∫
\

|u(x)|pWp( (x))dx. (4.23)

In order to control the integrand on the surface  we prepare the following:
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LEMMA 4.5. Let  be a bounded domain of class C2 in RN . Let 1 < p < 
and w(t) ∈W (R+) . Assume that 0 is a sufficiently small positive number and  ∈
(0,0/3) . Then, for any  > 0 there exists a positive number C, such that we have

for any u(x) ∈W 1,p
0 (;Wp( ))

‖u‖p
Lp( ;Wp( )) � ‖|u|‖p

Lp(3\ ;Wp( ))
+C,‖u‖p

Lp(3\ ;Wp( ))
. (4.24)

Here we denote by  the closure of  .

REMARK 4.1. By Rellich’s theorem and Hardy type inequality, we see that the
imbedding W 1,p

0 (;Wp( )) ↪→ Lp(;Wp( )) is compact. Therefore, by this lemma

we see that a trace operator W 1,p
0 (;Wp( )) → Lp( ;Wp( )) is also compact.

Proof. For  ∈ (0,maxx∈  (x)/3) , let W 1,p(3 \ ;Wp( )) be given by the
completion of C(3 \) with respect to the norm defined by

‖u‖W1,p(3\ ;Wp( )) = ‖|u|‖Lp(3\ ;Wp( )) +‖u‖Lp(3\ ;Wp( )).

Since Wp( (x)) > 0 in 3 \ , W 1,p(3 \ ;Wp( )) is well-defined and becomes
a Banach space with the norm ‖ · ‖W1,p(3\ ;Wp( )) .

Hence the inequality (4.24) follows from the standard theory for a trace operator

W 1,p(3 \ ;Wp( )) → Lp( ;Wp( )).

Here we give a simple proof of it. We use the following cut-off function (x) ∈C()
such that (x) � 0 and

(x) =

{
1 (x ∈2),
0 (x ∈\3).

(4.25)

We retain the notations in the proof of Lemma 4.3. Take and fix a u(x)∈W 1,p
0 (;Wp( ))

and assume u(x) � 0. Then,∫


u( )pWp()d =
∫


u(x( ,))pWp()|Jac ()|d

=−
∫


d
∫ 3




 t

(u(x(t,))p(x(t,))Wp(t)|Jact()|) dt

=−
∫


d
∫ 3




 t

(u(x(t,))p) ·(x(t,))Wp(t)|Jact()|dt

−
∫


d
∫ 3


u(x(t,))p · 

 t
((x(t,))Wp(t)|Jact()|) dt

= I1 + I2.

Note that x(t,),Wp(t),Jact() ∈C1 in t ∈ ( ,3) and∫
3\

u(x)p dx =
∫


d
∫ 3


u(x(t,))p|Jact()|dt.



HARDY’S INEQUALITIES WITH COMPACT PERTURBATIONS 119

Then, we have for some C > 0 independent of u(x)

|I2| � C

∫
3\

u(x)pWp( (x))dx.

As for I1 , for any  > 0 there is a positive number C independent of u(x) and  such
that we have

|I1| � 
∫
3\

|u(x)|pWp( (x))dx+C

∫
3\

u(x)pWp( (x))dx.

Therefore we obtain (4.24). It concludes the proof of Lemma 4.5. �
End of the proof of Lemma 4.4. From (4.23) and Lemma 4.5, it follows that∫


|u(x)|pWp( (x))dx

� p

∫


|u(x)|pWp( (x))
F0( )p dx−pC

∫
\

|u(x)|pWp( (x))dx

−L′
(


∫
3\

|u(x)|pWp( (x))dx+C,

∫
3\

|u(x)|pWp( (x))dx

)
,

and so∫


|u(x)|pWp( (x))dx+L′
∫
3\

|u(x)|pWp( (x))dx

� p

∫


|u(x)|pWp( (x))
F0( (x))p dx− (

L′C, +pC
)∫

\
|u(x)|pWp( (x))dx.

Now we set L′ = 1 and C′ =−(
L′C, +pC

)
< 0, and we have the desired estimate:∫


|u(x)|pWp( (x))dx � p

∫


|u(x)|pWp( (x))
F0( (x))p dx+C′

∫

|u(x)|pWp( (x))dx,

which implies that
w

p, (u) � p

for  �C′ . Consequently, it holds that Jw
p, �p for  �C′ . This together with (4.10)

implies the desired conclusion. It completes the proof of Lemma 4.4. �

Proof of the assertion 1 of Theorem 3.1. By Lemma 4.4 and lim→ Jw
p, = − ,

the set { ∈ R : Jw
p, = p} is non-empty and upper bounded. Hence the sup{ ∈ R :

Jw
p, = p} exists finitely. Put

 ∗ = sup{ ∈ R : Jw
p, = p}. (4.26)

Since the function  	→ Jw
p, is non-increasing on R , it follows from Lemma 4.3 and

Lemma 4.4 that Jw
p, = p for  <  ∗ and Jw

p, < p for  >  ∗ . Since Jw
p, is

clearly Lipschitz continuous on R with respect to  , we have the equality Jw
p, ∗ = p .

Therefore the assertion 1 of Theorem 3.1 is valid. �
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4.2. Jw
p, is not attained when  <  ∗

Next, we prove the assertion 2 of Theorem 3.1.

Proof of the assertion 2 of Theorem 3.1. Suppose that for some  <  ∗ the in-
fimum Jw

p, in (3.3) is attained at an element u ∈W 1,p
0 (;Wp( ))\ {0} . Then, by the

assertion 1 of Theorem 3.1, we have that

w
p, (u) = Jw

p, = p (4.27)

and for  <  <  ∗

w
p,

(u) � Jw
p,

= p. (4.28)

From (4.27) and (4.28) it follows that

( − )
∫

|u(x)|pWp( (x))dx � 0.

Since  − > 0, we conclude that∫

|u(x)|pWp( (x))dx = 0,

which contradicts u = 0 in W 1,p
0 (;Wp( )) . Therefore it completes the proof. �

4.3. Attainability of Jw
p, when  >  ∗

At last, we prove the assertion 3 of Theorem 3.1. Let 0 be sufficiently small as in
Theorem 2.1 and let  ∈ (0,0] . Let {uk} be a minimizing sequence for the variational
problem (3.3) normalized so that

∫


|uk(x)|pWp( (x))
F0( (x))p dx = 1 for all k. (4.29)

Since {uk} is bounded in W 1,p
0 (;Wp( )) , by taking a suitable subsequence, we may

assume that there exists a u ∈W 1,p
0 (;Wp( )) such that

uk
weak−→ u in (Lp(;Wp( )))N , (4.30)

uk
weak−→ u in Lp(;Wp( )/F0( )p), (4.31)

uk −→ u in Lp(;Wp( )) (4.32)

and
uk −→ u in Lp( ;Wp( )) (4.33)

by Remark 4.1. Under these preparation we establish the properties of concentration
and compactness for the minimizing sequence, respectively.
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PROPOSITION 4.1. Let  be a bounded domain of class C2 in RN . Let 1 < p <
 and w(t) ∈ WA(R+) . Let  ∈ R . Let {uk} be a minimizing sequence for (3.3)
satisfying (4.29) and (4.30) ∼ (4.33) with u = 0 . Then it holds that

uk −→ 0 in (Lp
loc(;Wp( )))N (4.34)

and
Jw
p, = p. (4.35)

Proof. Let 0 > 0 be a sufficiently small number as in Theorem 2.1 and let  ∈
(0,0] . By Hardy’s inequality (2.18) and (4.29) we have that∫


|uk(x)|pWp( (x))dx

� p

∫


|uk(x)|pWp( (x))
F0( (x))p dx+ s(w)L′

∫


|uk()|pWp()d

= p

(
1−

∫
\

|uk(x)|pWp( (x))
F0( (x))p dx

)
+ s(w)L′

∫


|uk( )|pWp()d ,

and so

w
p, (uk) � p

(
1−

∫
\

|uk(x)|pWp( (x))
F0( (x))p dx

)
+ s(w)L′

∫


|uk( )|pWp()d

+
∫
\

|uk(x)|pWp( (x))dx−
∫

|uk(x)|pWp( (x))dx. (4.36)

Since there exists a positive number C independent of uk such that

∫
\

|uk(x)|pWp( (x))
F0( (x))p dx � C

∫

|uk(x)|pWp( (x))dx,

it follows from (4.32) with u = 0 that

lim
k→

∫
\

|uk(x)|pWp( (x))
F0( (x))p dx = 0. (4.37)

Hence, letting k →  in (4.36), by (4.37), (4.32) and (4.33) with u = 0, we obtain that

0 � limsup
k→

∫
\

|uk(x)|pWp( (x))dx � Jw
p, −p.

Since Jw
p, −p � 0 by Lemma 4.3, we conclude that Jw

p, −p = 0 and

lim
k→

∫
\

|uk(x)|pWp( (x))dx = 0. (4.38)

These show (4.34) and (4.35). Consequently it completes the proof. �
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PROPOSITION 4.2. Let  be a bounded domain of class C2 in RN . Let 1 < p <
 , w(t)∈WA(R+) and  ∈R . Let {uk} be a minimizing sequence for (3.3) satisfying
(4.29) and (4.30) ∼ (4.33) with u = 0 . Then it holds that

Jw
p, = min

(
p,w

p, (u)
)
. (4.39)

In addition, if Jw
p, < p , then it holds that

Jw
p, = w

p, (u), (4.40)

namely u is a minimizer for (3.3) , and

uk −→ u in W 1,p
0 (;Wp( )). (4.41)

Proof. Let 0 > 0 be a sufficiently small number as in Theorem 2.1 and let  ∈
(0,0] . Then we have (4.36) by the same arguments as in the proof of Proposition 4.1.
Since there exists a positive number C independent of uk such that∫

\

|uk(x)−u(x)|pWp( (x))
F0( (x))p dx � C

∫

|uk(x)−u(x)|pWp( (x))dx,

(4.32) implies that

lim
k→

∫
\

|uk(x)|pWp( (x))
F0( (x))p dx =

∫
\

|u(x)|pWp( (x))
F0( (x))p dx. (4.42)

Since it follows from (4.30) that uk −→ u weakly in (Lp( \ ;Wp( )))N , by
weakly lower semi-continuity of the Lp -norm, we see that

liminf
k→

∫
\

|uk(x)|pWp( (x))dx �
(

liminf
k→

‖|uk|‖Lp(\ ;Wp( ))

)p

� ‖|u|‖p
Lp(\ ;Wp( ))

=
∫
\

|u(x)|pWp( (x))dx. (4.43)

Hence, by letting k →  in (4.36), from (4.32), (4.33), (4.42) and (4.43) it follows that

Jw
p, � p

(
1−

∫
\

|u(x)|pWp( (x))
F0( (x))p dx

)
+ s(w)L′

∫


|u( )|pWp()d

+
∫
\

|u(x)|pWp( (x))dx−
∫

|u(x)|pWp( (x))dx. (4.44)

If w(t) ∈ Q(R+) , then s(w) = 1, hence we can omit the integrand on the surface  .
On the other hand if w(t) ∈ P(R+) , then limt→+0Wp(t) = limt→+0 w(t)p−1 = 0. Thus,
letting  → +0 in (4.44), we obtain that

Jw
p, � p

(
1−

∫


|u(x)|pWp( (x))
F0( (x))p dx

)

+
∫

|u(x)|pWp( (x))dx−

∫

|u(x)|pWp( (x))dx. (4.45)
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Since it holds that

0 <
∫

|u(x)|p Wp( (x))

F0( (x))p dx � liminf
k→

∫


|uk(x)|pWp( (x))
F0( (x))p dx = 1 (4.46)

by u = 0, (4.29), (4.31) and weakly lower semi-continuity of the Lp -norm, we have
from (4.45) and (4.46) that

Jw
p, � p

(
1−

∫


|u(x)|pWp( (x))
F0( (x))p dx

)
+ w

p, (u)
∫


|u(x)|pWp( (x))
F0( (x))p dx

� min
(
p,w

p, (u)
)
. (4.47)

This together with Lemma 4.3 implies (4.39). Moreover, by (4.39) and (4.47), we
conclude that

Jw
p, = p

(
1−

∫


|u(x)|pWp( (x))
F0( (x))p dx

)
+ w

p, (u)
∫


|u(x)|pWp( (x))
F0( (x))p dx. (4.48)

In addition, if Jw
p, < p , then Jw

p, = w
p, (u) by (4.39), and so, it follows from (4.48)

and (4.29) that

∫


|u(x)|pWp( (x))
F0( (x))p dx = 1 = lim

k→

∫


|uk(x)|pWp( (x))
F0( (x))p dx. (4.49)

(4.31) and (4.49) imply that

uk −→ u in Lp(,Wp( )/F0( )p). (4.50)

Further, by (4.29), (4.32), (4.40) and (4.49), we obtain that

∫

|uk(x)|pWp( (x))dx = w

p, (uk)+
∫

|uk(x)|pWp( (x))dx

−→ w
p, (u)+

∫

|u(x)|pWp( (x))dx =

∫

|u(x)|pWp( (x))dx.

This together with (4.30) implies that

uk −→ u in (Lp(;Wp( )))N . (4.51)

(4.51) and (4.32) show (4.41). Consequently it completes the proof. �

Proof of the assertion 3 of Theorem 3.1. Let  >  ∗ . Then Jw
p, < p by the

assertion 1 of Theorem 3.1. Let {uk} be a minimizing sequence for (3.3) satisfying
(4.29) ∼ (4.33) . Then we see that u = 0 by Proposition 4.1. Therefore, by applying
Proposition 4.2, we conclude that w

p, (u) = Jw
p, , namely u is a minimizer for (3.3). It

finishes the proof. �
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5. Proof of Theorem 3.2

For M > 0 and w(t) ∈W (R+) , we define the following operator:

Lw
M(u(x)) = −div(w( (x))u(x))− Jw

2, ∗
w( (x))u(x)
F0( (x))2 +Mw( (x))u(x). (5.1)

Our proof of Theorem 3.2 is relied on the maximum principle and the following non-
existence result on the operator Lw

M :

LEMMA 5.1. Let  be a bounded domain of class C2 in RN . Assume that w(t)∈
WA(R+) and w(t) satisfies the condition (3.6) . If u(x) is a non-negative function in
W 1,2

0 (;w( ))∩C() and satisfies the inequality

Lw
M(u(x)) � 0 in  (5.2)

in the sense of distributions for some positive number M , then u(x) ≡ 0 .

Admitting this lemma for the moment, we prove Theorem 3.2.

Proof of Theorem 3.2. If the infimum Jw
2, ∗ in (3.3) is achieved by a function

u(x) then it is also achieved by |u(x)| . Therefore there exists u(x) ∈ W 1,2
0 (;w( )) ,

u(x) � 0 such that

−div(w( (x))u(x))− Jw
2, ∗

w( (x))u(x)
F0( (x))2 − ∗w( (x))u(x) = 0.

By the standard regularity theory of the elliptic type, we see that u(x) ∈C() , and by
the maximum principle, u(x) > 0 in  . Then u(x) clearly satisfies the inequality (5.2)
for some M > 0, and hence the assertion of Theorem 3.2 is a consequence of Lemma
5.1. �

Proof of Lemma 5.1. Assume by contradiction that there exists a non-negative
function u(x) as in Lemma 5.1. By the maximum principle, we see u(x) > 0 in  . Let
us set

vs(t) = f0(t)
1/2G0(t)

−s for s > 1/2.

Then we have vs(t) ∈ W 1,2
0 ((0,0);w) and vs( (x)) ∈ W 1,2

0 (0 ;w( )) . We assume
that 0 is sufficiently small so that  (x) ∈ C2(0) , and Theorem 2.1 holds in 0 .
Since | (x)| = 1, we have for  =  (x)

div(w( )(vs( ))) = w( )v′s( ) +w′( )v′s( )+w( )v′′s ( ).

With somewhat more calculations we have

div(w( )(vs( ))) = f0( )−1/2G0( )−s (s(w)/2+ sG0( )−1)
+w( )−1 f0( )−3/2G0( )−s (−1/4+ s(s+1)G0( )−2) .
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Since Jw
2, ∗ = 1/4 by Remark 3.2, we have

Lw
M(vs( )) = −w( )−1 f0( )−3/2G0( )−s−2

×{
s(s+1)+F0( )

(
s(w)G0( )2/2+ sG0( )

)
 −MF0( )2G0( )2}.

From Lemma 3.1, Remark 2.3, 1 and (3.6) it follows that

F0(t), G0(t)
−1, F0(t)G0(t), F0(t)G0(t)

2 −→ 0 as t → +0.

Therefore we have
Lw

M(vs( (x))) � 0 in 0 .

Now we choose a small  > 0 so that vs( (x)) � u(x) on 0 , and set ws( (x)) =
vs( (x))−u(x) . Then w+

s ( (x)) = max
(
ws( (x)),0

) ∈W 1,2
0 (0 ;w( )) , and we see

that
Lw

M(ws( (x))) � 0 in 0 .

Hence we have for  =  (x)

∫
0

(
|w+

s ( )|2w( )− w( )w+
s ( )2

4F0( )2 +Mw( )w+
s ( )2

)
dx � 0.

But, by Theorem 2.1, we have

∫
0

(
|w+

s ( (x))|2w( (x))− w( (x))w+
s ( (x))2

4F0( (x))2

)
dx � 0.

Therefore we have w+
s ( (x)) = 0 in 0 , and so vs( (x)) � u(x) in 0 for any s >

1/2. By letting s → 1/2,  f0( (x))1/2G0( (x))−1/2 � u(x) holds in 0 . Namely

u(x)2w( (x))
F0( (x))2 � 2 1

F0( (x))G0( (x))
in 0 .

Since it holds that
(
F0( (x))G0 ( (x))

)−1
/∈ L1(0) by Remark 2.3, 1, we have that

u(x) /∈ L2(0 ;w( )/F0( )2) . This together with Hardy’s inequality (2.18) contra-
dicts to that u(x) ∈W 1,2

0 (;w( )) . �
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