GENERALIZED WEIGHTED HARDY'S INEQUALITIES WITH COMPACT PERTURBATIONS

HIROSHI ANDO AND TOSHIO HORIUCHI

(Communicated by T. Burić)

Abstract. Let Ω be a bounded domain of \mathbb{R}^N $(N \ge 1)$ with boundary of class C^2 . In the present paper we shall study a variational problem relating the weighted Hardy inequalities with sharp missing terms established in [8]. As weights we treat non-doubling functions of the distance $\delta(x) = \operatorname{dist}(x, \partial \Omega)$ to the boundary $\partial \Omega$.

1. Introduction

Let $W(\mathbf{R}_+)$ be a class of functions

$$\{w(t) \in C^1(\mathbf{R}_+) : w(t) > 0, \lim_{t \to +0} w(t) = a \text{ for some } a \in [0,\infty]\}$$

with $\mathbf{R}_+ = (0,\infty)$. For $1 , as weights of Hardy's inequalities we adopt functions <math>W_p(t) = w(t)^{p-1}$ with $w(t) \in P(\mathbf{R}_+) \cup Q(\mathbf{R}_+)$, where

$$\begin{cases} P(\mathbf{R}_{+}) = \{w(t) \in W(\mathbf{R}_{+}) : w(t)^{-1} \notin L^{1}((0,\eta)) \text{ for some } \eta > 0\}, \\ Q(\mathbf{R}_{+}) = \{w(t) \in W(\mathbf{R}_{+}) : w(t)^{-1} \in L^{1}((0,\eta)) \text{ for any } \eta > 0\}. \end{cases}$$
(1.1)

Clearly $W(\mathbf{R}_+) = P(\mathbf{R}_+) \cup Q(\mathbf{R}_+)$ and $P(\mathbf{R}_+) \cap Q(\mathbf{R}_+) = \emptyset$. (For the precise definitions see the section 2. See also [8], [9].) A positive continuous function w(t) on \mathbf{R}_+ is said to be a doubling weight if there exists a positive number *C* such that we have

$$C^{-1}w(t) \leqslant w(2t) \leqslant Cw(t) \quad \text{for all} \quad t \in \mathbf{R}_+.$$
(1.2)

When w(t) does not possess this property, w(t) is said to be a non-doubling weight in the present paper. In one-dimensional case we typically treat a weight function w(t) that may vanish or blow up in infinite order such as $e^{-1/t}$ or $e^{1/t}$ at t = 0. In such cases the limit of ratio w(t)/w(2t) as $t \to +0$ may become 0 or $+\infty$, and hence they are regarded as non-doubling weights according to our notion.

This research was partially supported by Grant-in-Aid for Scientific Research (No. 20K03670, No. 21K03304).

Mathematics subject classification (2020): Primary 35J70; Secondary 35J60, 34L30, 26D10.

Keywords and phrases: Weighted Hardy's inequalities, nonlinear eigenvalue problem, weak Hardy property, *p*-Laplace operator with weights.

In [8], we have established *N*-dimensional Hardy inequalities with non-doubling weights being functions of the distance $\delta(x) = \text{dist}(x, \partial \Omega)$ to the boundary $\partial \Omega$, where Ω is a bounded domain of class C^2 in \mathbb{R}^N . In this paper we shall study a variational problem relating to those new inequalities.

We prepare more notations to describe our results. Let $1 . For <math>W_p(t) = w(t)^{p-1}$ with $w(t) \in W(\mathbf{R}_+)$, we define a weight function $W_p(\delta(x))$ on Ω by

$$W_p(\delta(x)) = (W_p \circ \delta)(x).$$

By $L^p(\Omega; W_p(\delta))$ we denote the space of Lebesgue measurable functions with weight $W_p(\delta(x))$, for which

$$\|u\|_{L^p(\Omega;W_p(\delta))} = \left(\int_{\Omega} |u(x)|^p W_p(\delta(x)) \, dx\right)^{1/p} < +\infty.$$

$$(1.3)$$

 $W_0^{1,p}(\Omega; W_p(\delta))$ is given by the completion of $C_c^{\infty}(\Omega)$ with respect to the norm defined by

$$\|u\|_{W_0^{1,p}(\Omega;W_p(\delta))} = \||\nabla u|\|_{L^p(\Omega;W_p(\delta))} + \|u\|_{L^p(\Omega;W_p(\delta))}.$$
(1.4)

Then, $W_0^{1,p}(\Omega; W_p(\delta))$ becomes a Banach space with the norm $\|\cdot\|_{W_0^{1,p}(\Omega; W_p(\delta))}$. Under these preparation we recall the weighted Hardy inequalities in [8]. (See Theorem 2.1 and its corollary in Section 2.) In particular for $w(t) \in Q(\mathbf{R}_+)$, we have a simple inequality as Corollary 2.1, which is a generalization of classical Hardy's inequality:

$$\int_{\Omega} |\nabla u(x)|^p W_p(\delta(x)) \, dx \ge \gamma \int_{\Omega} \frac{|u(x)|^p W_p(\delta(x))}{F_{\eta_0}(\delta(x))^p} \, dx \tag{1.5}$$

for $u(x) \in W_0^{1,p}(\Omega; W_p(\delta))$, where η_0 is a sufficiently small positive number, γ is some positive constant and $F_{\eta_0}(t)$ is a positive function defined in Definition 2.3. In particular if w(t) = 1, then $F_{\eta_0}(t) = t$ ($0 < t \leq \eta_0$) and (1.5) becomes a well-known Hardy's inequality, which is valid for a bounded domain Ω of \mathbb{R}^N with Lipschitz boundary (cf. [4], [6], [10], [11]). Further if Ω is convex, then $\gamma = \Lambda_p := (1 - 1/p)^p$ holds for arbitrary 1 (see [11]).

In the present paper we consider the following variational problem relating the general Hardy's inequalities established in [8]. For $\lambda \in \mathbf{R}$, $W_p(t) = w(t)^{p-1}$ and $w(t) \in W_A(\mathbf{R}_+) (\subset W(\mathbf{R}_+))$, the following variational problem (1.6) can be associated with (1.5):

$$J_{p,\lambda}^{w} = \inf_{u \in W_{0}^{1,p}(\Omega; W_{p}(\delta)) \setminus \{0\}} \chi_{p,\lambda}^{w}(u),$$

$$(1.6)$$

where

$$\chi_{p,\lambda}^{w}(u) = \frac{\int_{\Omega} |\nabla u(x)|^{p} W_{p}(\delta(x)) dx - \lambda \int_{\Omega} |u(x)|^{p} W_{p}(\delta(x)) dx}{\int_{\Omega} |u(x)|^{p} W_{p}(\delta(x)) / F_{\eta_{0}}(\delta(x))^{p} dx}.$$
(1.7)

Here $W_A(\mathbf{R}_+) = P_A(\mathbf{R}_+) \cup Q_A(\mathbf{R}_+)$ is a subclass of $W(\mathbf{R}_+)$ defined by Definition 2.6 and η_0 is a sufficiently small positive number such that the Hardy inequalities in Theorem 2.1 and Corollary 2.1 are valid. Note that $J_{p,0}^w$ gives the best constant in (1.5), the function $\lambda \mapsto J_{p,\lambda}^w$ is non-increasing on **R** and $J_{p,\lambda}^w \to -\infty$ as $\lambda \to \infty$. When p = 2 and w(t) = 1, this variational problem (1.6) was originally studied in [4]. Then, the problem (1.6) was intensively studied in [2] in the case that 1 $and <math>w(t) = t^{\alpha p/(p-1)} \in Q_A(\mathbf{R}_+)$ with $\alpha < 1 - 1/p$. In this paper we further investigate the variational problem (1.6) with non-doubling weight functions $w(t) \in W_A(\mathbf{R}_+)$ and we make clear the attainability of the infimum $J_{p\lambda}^w$ as Theorem 3.1 and Theorem 3.2.

This paper is organized in the following way: In Subsection 2.1 we introduce a class of weight functions $W(\mathbf{R}_+)$ and two subclasses $P(\mathbf{R}_+)$ and $Q(\mathbf{R}_+)$ together with so-called Hardy functions, which are crucial in this paper. Further a notion of admissibilities for $P(\mathbf{R}_+)$ and $Q(\mathbf{R}_+)$ is introduced. In Subsection 2.2, we recall the weighted Hardy's inequalities in [8] which are crucial in this work. In Section 3, the main results are described. Theorem 3.1 and Theorem 3.2 are established in Section 4 and Section 5 respectively.

2. Preliminaries

2.1. Weight functions

First we introduce a class of weight functions according to [8] which is crucial in this paper.

DEFINITION 2.1. Let us set $\mathbf{R}_+ = (0, \infty)$ and

$$W(\mathbf{R}_{+}) = \{w(t) \in C^{1}(\mathbf{R}_{+}) : w(t) > 0, \lim_{t \to +0} w(t) = a \text{ for some } a \in [0, \infty]\}.$$
 (2.1)

In the next we define two subclasses of $W(\mathbf{R}_+)$.

DEFINITION 2.2. Let us set

$$P(\mathbf{R}_{+}) = \{ w(t) \in W(\mathbf{R}_{+}) : w(t)^{-1} \notin L^{1}((0,\eta)) \text{ for some } \eta > 0 \},$$
(2.2)

$$Q(\mathbf{R}_{+}) = \{ w(t) \in W(\mathbf{R}_{+}) : w(t)^{-1} \in L^{1}((0,\eta)) \text{ for any } \eta > 0 \}.$$
(2.3)

Here we give fundamental examples:

EXAMPLE 2.1.

1.
$$t^{\alpha} \in P(\mathbf{R}_{+})$$
 if $\alpha \ge 1$ and $t^{\alpha} \in Q(\mathbf{R}_{+})$ if $\alpha < 1$.

2.
$$e^{-1/t} \in P(\mathbf{R}_+)$$
 and $e^{1/t} \in Q(\mathbf{R}_+)$.

3. For $\alpha \in \mathbf{R}$, $t^{\alpha} e^{-1/t} \in P(\mathbf{R}_+)$ and $t^{\alpha} e^{1/t} \in Q(\mathbf{R}_+)$.

Remark 2.1.

- 1. $W(\mathbf{R}_+) = P(\mathbf{R}_+) \cup Q(\mathbf{R}_+)$ and $P(\mathbf{R}_+) \cap Q(\mathbf{R}_+) = \emptyset$ hold.
- 2. If $w(t)^{-1} \notin L^1((0,\eta))$ for some $\eta > 0$, then $w(t)^{-1} \notin L^1((0,\eta))$ for any $\eta > 0$. Similarly if $w(t)^{-1} \in L^1((0,\eta))$ for some $\eta > 0$, then $w(t)^{-1} \in L^1((0,\eta))$ for any $\eta > 0$.

3. If $w(t) \in P(\mathbf{R}_+)$, then $\lim_{t\to+0} w(t) = 0$. Hence by setting w(0) = 0, w(t) is uniquely extended to a continuous function on $[0,\infty)$. On the other hand if $w(t) \in Q(\mathbf{R}_+)$, then possibly $\lim_{t\to+0} w(t) = +\infty$.

In the next we define functions such as $F_{\eta}(t)$ and $G_{\eta}(t)$ in order to introduce variants of the Hardy potential like $F_{\eta_0}(\delta(x))^{-p}$ in (1.5).

DEFINITION 2.3. Let $\mu > 0$ and $\eta > 0$. For $w(t) \in W(\mathbf{R}_+)$, we define the followings:

1. When $w(t) \in P(\mathbf{R}_+)$,

$$F_{\eta}(t;w,\mu) = \begin{cases} w(t) \left(\mu + \int_{t}^{\eta} w(s)^{-1} ds \right) & \text{if } t \in (0,\eta), \\ w(\eta)\mu & \text{if } t \ge \eta, \end{cases}$$
(2.4)

$$G_{\eta}(t;w,\mu) = \begin{cases} \mu + \int_{t}^{\eta} F_{\eta}(s;w,\mu)^{-1} ds & \text{if } t \in (0,\eta), \\ \mu & \text{if } t \ge \eta. \end{cases}$$
(2.5)

2. When $w(t) \in Q(\mathbf{R}_+)$,

$$F_{\eta}(t;w) = \begin{cases} w(t) \int_{0}^{t} w(s)^{-1} ds & \text{if } t \in (0,\eta), \\ w(\eta) \int_{0}^{\eta} w(s)^{-1} ds & \text{if } t \ge \eta, \end{cases}$$
(2.6)

$$G_{\eta}(t; w, \mu) = \begin{cases} \mu + \int_{t}^{\eta} F_{\eta}(s; w)^{-1} ds & \text{if } t \in (0, \eta), \\ \mu & \text{if } t \ge \eta. \end{cases}$$
(2.7)

- 3. $F_{\eta}(t;w,\mu)$ and $F_{\eta}(t;w)$ are abbreviated as $F_{\eta}(t)$. $G_{\eta}(t;w,\mu)$ is abbreviated as $G_{\eta}(t)$.
- 4. For $w(t) \in P(\mathbf{R}_+)$ or $Q(\mathbf{R}_+)$, we define

$$W_p(t) = w(t)^{p-1}.$$
 (2.8)

REMARK 2.2. In the definition (2.5), one can replace $G_{\eta}(t;w,\mu)$ with the more general $G_{\eta}(t;w,\mu,\mu') = \mu' + \int_{t}^{\eta} F_{\eta}(s;w,\mu)^{-1} ds$ if $t \in (0,\eta)$, $G_{\eta}(t;w,\mu,\mu') = \mu'$ if $t \ge \eta$ with $\mu' > 0$. However, for simplicity this paper uses (2.5).

Here we give fundamental examples:

EXAMPLE 2.2. Let $w(t) = t^{\alpha}$ for $\alpha \in \mathbf{R}$.

- 1. When $\alpha > 1$, $F_{\eta}(t) = t/(\alpha 1)$ and $G_{\eta}(t) = \mu + (\alpha 1)\log(\eta/t)$ for $t \in (0, \eta)$ provided that $\mu = \eta^{1-\alpha}/(\alpha 1)$.
- 2. When $\alpha = 1$, $F_{\eta}(t) = t(\mu + \log(\eta/t))$ and $G_{\eta}(t) = \mu \log \mu + \log(\mu + \log(\eta/t))$ for $t \in (0, \eta)$.

3. When $\alpha < 1$, $F_{\eta}(t) = t/(1-\alpha)$ and $G_{\eta}(t) = \mu + (1-\alpha)\log(\eta/t)$ for $t \in (0,\eta)$.

By using integration by parts we see the followings:

EXAMPLE 2.3.

- 1. When either $w(t) = e^{-1/t} \in P(\mathbf{R}_+)$ or $w(t) = e^{1/t} \in Q(\mathbf{R}_+)$, we have $F_{\eta}(t) = O(t^2)$ as $t \to +0$.
- 2. Moreover, if $w(t) = \exp(\pm t^{-\alpha})$ with $\alpha > 0$, then $F_{\eta}(t) = O(t^{\alpha+1})$ as $t \to +0$. In fact, it holds that $\lim_{t\to+0} F_{\eta}(t)/t^{\alpha+1} = 1/\alpha$.

In a similar way we define the following:

DEFINITION 2.4. Let $\mu > 0$ and $\eta > 0$. For $w(t) \in W(\mathbf{R}_+)$, we define the followings:

1. When $w(t) \in P(\mathbf{R}_+)$,

$$f_{\eta}(t; w, \mu) = \begin{cases} \mu + \int_{t}^{\eta} w(s)^{-1} ds & \text{if } t \in (0, \eta), \\ \mu & \text{if } t \ge \eta. \end{cases}$$
(2.9)

2. When $w(t) \in Q(\mathbf{R}_+)$,

$$f_{\eta}(t;w) = \begin{cases} \int_{0}^{t} w(s)^{-1} ds & \text{if } t \in (0,\eta), \\ \int_{0}^{\eta} w(s)^{-1} ds & \text{if } t \ge \eta. \end{cases}$$
(2.10)

3. $f_{\eta}(t;w,\mu)$ and $f_{\eta}(t;w)$ are abbreviated as $f_{\eta}(t)$.

Remark 2.3.

1. We note that for $t \in (0, \eta)$

$$\begin{cases} \frac{d}{dt} \log f_{\eta}(t) = -F_{\eta}(t)^{-1} & \text{if } w(t) \in P(\mathbf{R}_{+}), \\ \frac{d}{dt} \log f_{\eta}(t) = F_{\eta}(t)^{-1} & \text{if } w(t) \in Q(\mathbf{R}_{+}), \\ \frac{d}{dt} \log G_{\eta}(t) = -(F_{\eta}(t)G_{\eta}(t))^{-1}, \\ \frac{d}{dt} G_{\eta}(t)^{-1} = (F_{\eta}(t)G_{\eta}(t)^{2})^{-1} & \text{if } w(t) \in W(\mathbf{R}_{+}). \end{cases}$$
(2.11)

By Definition 2.3, Definition 2.4 and (2.11), we see that $F_{\eta}(t)^{-1} \notin L^{1}((0,\eta))$, $\lim_{t \to +0} G_{\eta}(t) = \infty$ and $(F_{\eta}(t)G_{\eta}(t))^{-1} \notin L^{1}((0,\eta))$, but $(F_{\eta}(t)G_{\eta}(t)^{2})^{-1} \in L^{1}((0,\eta))$.

2. If $w(t) \in W(\mathbf{R}_+)$, then we have $\liminf_{t \to +0} F_{\eta}(t) = \liminf_{t \to +0} F_{\eta}(t)G_{\eta}(t) = 0$ from 1.

EXAMPLE 2.4. If either $w(t) = t^2 e^{-1/t} \in P(\mathbf{R}_+)$ or $w(t) = t^2 e^{1/t} \in Q(\mathbf{R}_+)$, then $F_{\eta}(t) = O(t^2)$ and $G_{\eta}(t) = O(1/t)$ as $t \to +0$.

Now we introduce two admissibilities for $P(\mathbf{R}_+)$ and $Q(\mathbf{R}_+)$.

DEFINITION 2.5.

1. A function $w(t) \in P(\mathbf{R}_+)$ is said to be admissible if there exist positive numbers η and K such that we have

$$\int_t^{\eta} w(s)^{-1} ds \leqslant e^{K/\sqrt{t}} \quad \text{for } t \in (0,\eta).$$
(2.12)

2. A function $w(t) \in Q(\mathbf{R}_+)$ is said to be admissible if there exist positive numbers η and K such that we have

$$\int_{0}^{t} w(s)^{-1} ds \ge e^{-K/\sqrt{t}} \quad \text{for } t \in (0, \eta).$$
 (2.13)

DEFINITION 2.6. By $P_A(\mathbf{R}_+)$ and $Q_A(\mathbf{R}_+)$ we denote the set of all admissible functions in $P(\mathbf{R}_+)$ and $Q(\mathbf{R}_+)$ respectively. We set

$$W_A(\mathbf{R}_+) = P_A(\mathbf{R}_+) \cup Q_A(\mathbf{R}_+). \tag{2.14}$$

REMARK 2.4. If $w(t) \in W_A(\mathbf{R}_+)$, then there exist positive numbers η and K such that we have

$$\sqrt{t} G_{\eta}(t) \leqslant K \quad \text{for } t \in (0, \eta).$$
 (2.15)

For the detail, see Proposition 2.1 in [8].

Here we give typical examples:

EXAMPLE 2.5. $e^{-1/t} \notin P_A(\mathbf{R}_+)$, $e^{1/t} \notin Q_A(\mathbf{R}_+)$, but $e^{-1/\sqrt{t}} \in P_A(\mathbf{R}_+)$, $e^{1/\sqrt{t}} \in Q_A(\mathbf{R}_+)$.

Verifications:

 $\int_{t}^{\eta} e^{-1/t} \notin P_A(\mathbf{R}_+)$: For small t > 0, we have $\int_{t}^{\eta} e^{1/s} ds \ge \int_{t}^{2t} e^{1/s} ds \ge t e^{1/(2t)}$. But this contradicts to (2.12) for any K > 0.

 $e^{-1/\sqrt{t}} \in P_A(\mathbf{R}_+)$: Since $e^{1/\sqrt{s}} \leq e^{1/\sqrt{t}}$ $(t < s < \eta)$, we have $\int_t^{\eta} e^{1/\sqrt{s}} ds \leq \eta e^{1/\sqrt{t}}$ $\leq e^{K/\sqrt{t}}$ for some K > 1.

 $e^{-1/t} \notin Q_A(\mathbf{R}_+)$: For $0 < s \le t$, we have $\int_0^t e^{-1/s} ds \le t e^{-1/t}$. But this contradicts to (2.13) for any K > 0.

 $e^{-1/\sqrt{t}} \in Q_A(\mathbf{R}_+)$: For t/2 < s < t, we have $\int_0^t e^{-1/\sqrt{s}} ds \ge \int_{t/2}^t e^{-1/\sqrt{s}} ds \ge (t/2)e^{-\sqrt{2/t}} \ge e^{-K/\sqrt{t}}$ for some $K > \sqrt{2}$.

2.2. Weighted Hardy's inequalities

We define a switching function.

DEFINITION 2.7. (Switching function) For $w(t) \in W(\mathbf{R}_+) = P(\mathbf{R}_+) \cup Q(\mathbf{R}_+)$ we set

$$s(w) = \begin{cases} -1 & \text{if } w(t) \in P(\mathbf{R}_+), \\ 1 & \text{if } w(t) \in Q(\mathbf{R}_+). \end{cases}$$
(2.16)

Let Ω be a bounded domain of class C^2 in \mathbb{R}^N . Let $\delta(x) = \operatorname{dist}(x, \partial \Omega)$. For each small $\eta > 0$, Ω_{η} and Σ_{η} denote a tubular neighborhood of $\partial \Omega$ and $\partial(\Omega \setminus \Omega_{\eta})$ respectively, namely

$$\Omega_{\eta} = \{ x \in \Omega : \delta(x) < \eta \} \quad \text{and} \quad \Sigma_{\eta} = \{ x \in \Omega : \delta(x) = \eta \}.$$
 (2.17)

In [8] we established a series of weighted Hardy's inequalities with sharp remainders. In particular, we have the following inequality from Theorem 3.3 in [8] by noting that $F_{\eta}(t) \leq F_{\eta_0}(t)$ for $\eta \in (0, \eta_0]$ and $t \in (0, \eta)$.

THEOREM 2.1. Assume that Ω is a bounded domain of class C^2 in \mathbb{R}^N . Assume that $1 and <math>w(t) \in W_A(\mathbb{R}_+)$. Assume that $\mu > 0$ and η_0 is a sufficiently small positive number. Then, for $\eta \in (0, \eta_0]$ there exist positive numbers $C = C(w, p, \eta, \mu)$ and $L' = L'(w, p, \eta, \mu)$ such that for $u(x) \in W_0^{1,p}(\Omega; W_p(\delta))$ we have

$$\int_{\Omega_{\eta}} \left(|\nabla u(x)|^{p} - \Lambda_{p} \frac{|u(x)|^{p}}{F_{\eta_{0}}(\delta(x))^{p}} \right) W_{p}(\delta(x)) dx$$

$$\geq C \int_{\Omega_{\eta}} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta}(\delta(x))^{p} G_{\eta}(\delta(x))^{2}} dx + s(w) L' \int_{\Sigma_{\eta}} |u(x)|^{p} W_{p}(\eta) d\sigma_{\eta}, \qquad (2.18)$$

where $d\sigma_{\eta}$ denotes surface elements on Σ_{η} .

Similarly we have the following inequality from Corollary 3.3 in [8].

COROLLARY 2.1. Assume that Ω is a bounded domain of class C^2 in \mathbb{R}^N . Assume that $1 and <math>w(t) \in W_A(\mathbb{R}_+)$. Assume that $\mu > 0$ and η_0 is a sufficiently small positive number. Then, for $\eta \in (0, \eta_0]$ there exist positive numbers $\gamma = \gamma(w, p, \eta, \mu)$ and $L' = L'(w, p, \eta, \mu)$ such that for $u(x) \in W_0^{1,p}(\Omega; W_p(\delta))$ we have

$$\int_{\Omega} \left(|\nabla u(x)|^p - \gamma \frac{|u(x)|^p}{F_{\eta}(\delta(x))^p} \right) W_p(\delta(x)) \, dx \ge s(w) L' \int_{\Sigma_{\eta}} |u(x)|^p W_p(\eta) \, d\sigma_{\eta}, \quad (2.19)$$

where $d\sigma_{\eta}$ denotes surface elements on Σ_{η} .

REMARK 2.5. In Theorem 3.3 and Corollary 3.3 in [8], it was assumed that $u(x) \in W_0^{1,p}(\Omega; W_p(\delta)) \cap C(\Omega)$. However, since we have the inequalities (2.18) and (2.19) for $u(x) \in C_c^{\infty}(\Omega)$, by Lemma 4.5 and Remark 4.1 as stated later, we see that the inequalities (2.18) and (2.19) hold for $u(x) \in W_0^{1,p}(\Omega; W_p(\delta))$. Therefore we have Theorem 2.1 and Corollary 2.1.

REMARK 2.6. These inequalities are closely related to the weighted Hardy-Sobolev inequalities with sharp remainder terms (cf. [1], [3], [4], [5], [7], [9], [12]).

3. Main results

Let η_0 be a sufficiently small positive number such that the Hardy's inequalities in Theorem 2.1 and Corollary 2.1 are valid. Let $w(t) \in W(\mathbf{R}_+)$ and $W_p(t) = w(t)^{p-1}$ with 1 . Moreover, we assume that

 $w'(t) \ge 0$ for all $t \in (0, \eta_0)$ or $w'(t) \le 0$ for all $t \in (0, \eta_0)$. (3.1)

Then we have the following.

LEMMA 3.1. Assume that $w(t) \in W(\mathbf{R}_+)$ satisfies (3.1). Then it holds that

$$\lim_{t \to +0} F_{\eta_0}(t) = 0.$$
(3.2)

In particular, $F_{\eta_0}(t)$ is bounded in \mathbf{R}_+ .

The proof of Lemma 3.1 is stated at the end of this section. For $\lambda \in \mathbf{R}$, let us recall the variational problem associated with (1.5):

$$J_{p,\lambda}^{w} = \inf_{u \in W_{0}^{1,p}(\Omega; W_{p}(\delta)) \setminus \{0\}} \chi_{p,\lambda}^{w}(u),$$
(3.3)

where

$$\chi_{p,\lambda}^{w}(u) = \frac{\int_{\Omega} |\nabla u(x)|^{p} W_{p}(\delta(x)) dx - \lambda \int_{\Omega} |u(x)|^{p} W_{p}(\delta(x)) dx}{\int_{\Omega} |u(x)|^{p} W_{p}(\delta(x)) / F_{\eta_{0}}(\delta(x))^{p} dx}$$

Our main result is the following:

THEOREM 3.1. Assume that Ω is a bounded domain of class C^2 in \mathbb{R}^N . Assume that $1 and <math>w(t) \in W_A(\mathbb{R}_+)$ satisfies (3.1). Then, there exists a constant $\lambda^* \in \mathbb{R}$ such that:

1. If
$$\lambda \leq \lambda^*$$
, then $J_{p,\lambda}^w = \Lambda_p$. If $\lambda > \lambda^*$, then $J_{p,\lambda}^w < \Lambda_p$.

Here

$$\Lambda_p = \left(1 - \frac{1}{p}\right)^p. \tag{3.4}$$

Moreover, it holds that:

- 2. If $\lambda < \lambda^*$, then the infimum $J^w_{p,\lambda}$ in (3.3) is not attained.
- 3. If $\lambda > \lambda^*$, then the infimum $J_{p,\lambda}^w$ in (3.3) is attained.

In particular we have the following inequality:

COROLLARY 3.1. Under the same assumptions as in Theorem 3.1, there exists a constant $\lambda \in \mathbf{R}$ such that for $u(x) \in W_0^{1,p}(\Omega; W_p(\delta))$

$$\int_{\Omega} |\nabla u(x)|^{p} W_{p}(\delta(x)) dx$$

$$\geq \Lambda_{p} \int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} dx + \lambda \int_{\Omega} |u(x)|^{p} W_{p}(\delta(x)) dx.$$
(3.5)

Remark 3.1.

- 1. For the case of w(t) = 1 and $\lambda = 0$, the value of the infimum $J_{p,0}^1$ in (3.3) and its attainability are studied in [10].
- 2. For the case of w(t) = 1 and p = 2, it is shown that the infimum $J_{2,\lambda}^1$ in (3.3) is attained if and only if $\lambda > \lambda^*$. See [4]. If $p \neq 2$ and $\lambda = \lambda^*$, then it is an open problem whether the infimum $J_{p,\lambda}^w$ in (3.3) is achieved.
- 3. For the case of $w(t) = t^{\alpha p/(p-1)} \in Q_A(\mathbf{R}_+)$ with $\alpha < 1 1/p$, Theorem 3.1 is shown in [2].
- In the assertion 3 of Theorem 3.1, the minimizer u(x) ∈ W₀^{1,p}(Ω; W_p(δ)) for the variational problem (3.3) is a non-trivial weak solution of the following Euler-Lagrange equation:

$$-\operatorname{div}\left(W_p(\delta)|\nabla u|^{p-2}\nabla u\right) - \lambda W_p(\delta)|u|^{p-2}u = J_{p,\lambda}^w \frac{W_p(\delta)}{F_{\eta_0}(\delta)^p}|u|^{p-2}u \quad \text{in } \mathscr{D}'(\Omega).$$

When p = 2 and $\lambda = \lambda^*$ hold, we have the following that is rather precise.

THEOREM 3.2. In addition to the assumption of Theorem 3.1, we assume that p = 2 and $\lambda = \lambda^*$. Let $\eta_0 > 0$ be a sufficiently small number as in Theorem 2.1. Moreover we assume that

$$\lim_{t \to +0} F_{\eta_0}(t) G_{\eta_0}(t)^2 = 0.$$
(3.6)

Then, J_{2,λ^*}^w is not achieved.

REMARK 3.2. By Theorem 3.1, $J_{2,\lambda^*}^w = 1/4$ holds.

EXAMPLE 3.1. Let $w(t) = t^{\alpha p/(p-1)}$ for $\alpha \in \mathbf{R}$. Then $W_p(t) = t^{\alpha p}$. If $\alpha \ge 1 - 1/p$, then $w(t) \in P_A(\mathbf{R}_+)$, if $\alpha < 1 - 1/p$, then $w(t) \in Q_A(\mathbf{R}_+)$. Clearly (3.1) is valid. We have that as $t \to +0$

$$F_{\eta_0}(t) = \begin{cases} O(t) & \text{for } \alpha \neq 1 - 1/p, \\ O(t\log(1/t)) & \text{for } \alpha = 1 - 1/p, \end{cases}$$
$$G_{\eta_0}(t) = \begin{cases} O(\log(1/t)) & \text{for } \alpha \neq 1 - 1/p, \\ O(\log\log(1/t)) & \text{for } \alpha = 1 - 1/p. \end{cases}$$

Therefore (3.6) holds.

EXAMPLE 3.2. Let either $w(t) = e^{-1/\sqrt{t}} \in P_A(\mathbf{R}_+)$ or $w(t) = e^{1/\sqrt{t}} \in Q_A(\mathbf{R}_+)$. Then (3.1) and (3.6) hold. In fact, we have that as $t \to +0$

$$F_{\eta_0}(t) = O(t^{3/2}), \quad G_{\eta_0}(t) = O(t^{-1/2}), \quad F_{\eta_0}(t)G_{\eta_0}(t)^2 = O(t^{1/2}).$$

Here we give the proof of Lemma 3.1.

Proof of Lemma 3.1. First we assume that $w(t) \in P(\mathbf{R}_+)$. Let ε be any number satisfying $0 < \varepsilon < 2\eta_0$. For $0 < t < \varepsilon/2$ we have that

$$F_{\eta_0}(t) = w(t) \left(\mu + \int_{\varepsilon/2}^{\eta_0} w(s)^{-1} ds \right) + w(t) \int_t^{\varepsilon/2} w(s)^{-1} ds.$$
(3.7)

Since $w(t)^{-1} \notin L^1((0,\eta_0))$, it follows that $\lim_{t\to+0} w(t) = 0$ from the Definition 2.1, and hence w(t) is non-decreasing in $(0,\eta_0]$ by (3.1). Then we have

$$w(t)\int_{t}^{\varepsilon/2}w(s)^{-1}ds \leqslant w(t)\int_{t}^{\varepsilon/2}w(t)^{-1}ds = \frac{\varepsilon}{2} - t < \frac{\varepsilon}{2}.$$
(3.8)

By $\lim_{t \to +0} w(t) = 0$, there exists a $\delta > 0$ such that for $0 < t < \delta$

$$w(t) < \frac{\varepsilon}{2\left(\mu + \int_{\varepsilon/2}^{\eta_0} w(s)^{-1} ds\right)}.$$
(3.9)

From (3.7), (3.8) and (3.9) it follows that for $0 < t < \min\{\epsilon/2, \delta\}$

$$F_{\eta_0}(t) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

which shows (3.2). Secondly we assume that $w(t) \in Q(\mathbf{R}_+)$. If $w'(t) \ge 0$ for $t \in (0, \eta_0)$, then $\lim_{t \to +0} w(t) = a < \infty$, and so

$$F_{\eta_0}(t) = w(t) \int_0^t w(s)^{-1} ds \to 0 \text{ as } t \to +0$$

by $w(t) \in L^1((0,\eta_0))$. If $w'(t) \leq 0$ for $t \in (0,\eta_0)$, then we see that for $t \in (0,\eta_0]$

$$F_{\eta_0}(t) = w(t) \int_0^t w(s)^{-1} ds \leqslant w(t) \int_0^t w(t)^{-1} ds = t,$$

which implies (3.2). It concludes the proof. \Box

4. Proof of Theorem 3.1

In this section, we give the proof of Theorem 3.1.

4.1. Upper bound of $J_{p,\lambda}^{W}$

First, we prove the assertion 1 of Theorem 3.1. As test functions we adopt for $\varepsilon>0$ and $0<\eta\leqslant\eta_0/2$

$$u_{\varepsilon}(t) = \begin{cases} f_{\eta_0}(t)^{1+s(w)\varepsilon - 1/p} & (0 < t \le \eta), \\ f_{\eta_0}(\eta)^{1+s(w)\varepsilon - 1/p}(2\eta - t)/\eta & (\eta < t \le 2\eta), \\ 0 & (2\eta < t \le \eta_0). \end{cases}$$
(4.1)

We note that

$$u_{\varepsilon}'(t) = \begin{cases} (1+s(w)\varepsilon - 1/p) f_{\eta}(t)^{s(w)\varepsilon - 1/p} s(w)/w(t) & (0 < t < \eta), \\ -f_{\eta_0}(\eta)^{1+s(w)\varepsilon - 1/p}/\eta & (\eta < t < 2\eta), \\ 0 & (2\eta < t \le \eta_0). \end{cases}$$
(4.2)

We have

$$\int_0^{\eta} |u_{\varepsilon}'(t)|^p W_p(t) dt = \left(1 - \frac{1}{p} + s(w)\varepsilon\right)^p \int_0^{\eta} f_{\eta_0}(t)^{s(w)\varepsilon p - 1} \frac{1}{w(t)} dt$$
$$= \left(1 - \frac{1}{p} + s(w)\varepsilon\right)^p \frac{f_{\eta_0}(\eta)^{s(w)\varepsilon p}}{p\varepsilon}.$$
(4.3)

In a similar way

$$\int_{0}^{\eta} \frac{|u_{\varepsilon}(t)|^{p} W_{p}(t)}{F_{\eta_{0}}(t)^{p}} dt = \int_{0}^{\eta} f_{\eta_{0}}(t)^{s(w)\varepsilon p-1} \frac{1}{w(t)} dt = \frac{f_{\eta_{0}}(\eta)^{s(w)\varepsilon p}}{p\varepsilon}.$$
 (4.4)

Noting that $f_{\eta_0}(t)^{s(w)\varepsilon p}$ is bounded by the definitions of s(w) and $f_{\eta_0}(t)$, it follows from Lemma 3.1 that

$$\int_{0}^{\eta} |u_{\varepsilon}(t)|^{p} W_{p}(t) dt = \int_{0}^{\eta} f_{\eta_{0}}(t)^{p-1+s(w)\varepsilon p} w(t)^{p-1} dt$$
$$= \int_{0}^{\eta} F_{\eta_{0}}(t)^{p-1} f_{\eta_{0}}(t)^{s(w)\varepsilon p} dt < +\infty.$$
(4.5)

Hence we have

$$\begin{split} &\int_{0}^{2\eta} |u_{\varepsilon}'(t)|^{p} W_{p}(t) dt = \left(1 - \frac{1}{p} + s(w)\varepsilon\right)^{p} \frac{f_{\eta_{0}}(\eta)^{s(w)\varepsilon p}}{p\varepsilon} + C(\varepsilon, \eta), \\ &\int_{0}^{2\eta} \frac{|u_{\varepsilon}(t)|^{p} W_{p}(t)}{F_{\eta_{0}}(t)^{p}} dt = \frac{f_{\eta_{0}}(\eta)^{s(w)\varepsilon p}}{p\varepsilon} + D(\varepsilon, \eta), \\ &\int_{0}^{2\eta} |u_{\varepsilon}(t)|^{p} W_{p}(t) dt = \int_{0}^{\eta} F_{\eta_{0}}(t)^{p-1} f_{\eta_{0}}(t)^{s(w)\varepsilon p} dt + E(\varepsilon, \eta), \end{split}$$

where $C(\varepsilon, \eta)$, $D(\varepsilon, \eta)$ and $E(\varepsilon, \eta)$ are given by

$$\begin{split} C(\varepsilon,\eta) &= f_{\eta_0}(\eta)^{p+s(w)\varepsilon_{p-1}}\eta^{-p}\int_{\eta}^{2\eta}W_p(t)dt,\\ D(\varepsilon,\eta) &= f_{\eta_0}(\eta)^{p+s(w)\varepsilon_{p-1}}\int_{\eta}^{2\eta}\frac{(2\eta-t)^pW_p(t)}{F_{\eta_0}(t)^p\eta^p}dt,\\ E(\varepsilon,\eta) &= f_{\eta_0}(\eta)^{p+s(w)\varepsilon_{p-1}}\int_{\eta}^{2\eta}\frac{(2\eta-t)^pW_p(t)}{\eta^p}dt, \end{split}$$

and they remain bounded as $\varepsilon \to +0$. Therefore we see that

$$\frac{\int_0^{2\eta} |u_{\varepsilon}'(t)|^p W_p(t) dt}{\int_0^{2\eta} |u_{\varepsilon}(t)|^p W_p(t) / F_{\eta_0}(t)^p dt} \to \Lambda_p \quad \text{as} \ \varepsilon \to +0,$$
(4.6)

and we also have

$$\frac{\int_0^{2\eta} |u_{\varepsilon}(t)|^p W_p(t) dt}{\int_0^{2\eta} |u_{\varepsilon}(t)|^p W_p(t) / F_{\eta_0}(t)^p dt} \to 0 \quad \text{as } \varepsilon \to +0.$$
(4.7)

As a result we have the following lemma.

LEMMA 4.1. Let $1 , <math>0 < \eta \leq \eta_0/2$ and $w(t) \in W(\mathbf{R}_+)$. For any $\kappa > 0$, there exists a function $h(t) \in W_0^{1,p}((0,2\eta);W_p)$ such that

$$\frac{\int_{0}^{2\eta} |h'(t)|^{p} W_{p}(t) dt}{\int_{0}^{2\eta} |h(t)|^{p} W_{p}(t) / F_{\eta_{0}}(t)^{p} dt} \leqslant \Lambda_{p} + \kappa.$$
(4.8)

Proof. By $L^p((0,\eta); W_p)$ we denote the space of Lebesgue measurable functions with weight $W_p(t)$, for which

$$\|u\|_{L^p((0,\eta);W_p)} = \left(\int_0^\eta |u(t)|^p W_p(t) dt\right)^{1/p} < +\infty.$$

 $W_0^{1,p}((0,\eta);W_p)$ is given by the completion of $C_c^{\infty}((0,\eta))$ with respect to the norm defined by

$$\|u\|_{W_0^{1,p}((0,\eta);W_p)} = \|u'\|_{L^p((0,\eta);W_p)} + \|u\|_{L^p((0,\eta);W_p)}.$$

Then $W_0^{1,p}((0,\eta);W_p)$ becomes a Banach space with the norm $\|\cdot\|_{W_0^{1,p}((0,\eta);W_p)}$.

Let us set $h(t) = u_{\varepsilon}(t)$ for a sufficiently small $\varepsilon > 0$. Then h(t) satisfies the estimate (4.8). It suffices to check that $h(t) \in W_0^{1,p}((0,2\eta);W_p)$. If $w(t) \in Q(\mathbf{R}_+)$, then $\lim_{t\to+0} f_{\eta_0}(t) = 0$ and $\lim_{t\to+0} u_{\varepsilon}(t) = \lim_{t\to+0} f_{\eta_0}(t)^{1+s(w)\varepsilon-1/p} = 0$. Therefore h(t) is clearly approximated by test functions in $C_{\varepsilon}^{\infty}((0,2\eta))$.

If $w(t) \in P(\mathbf{R}_+)$, then we employ the following lemma:

LEMMA 4.2. Assume that $1 and <math>w(t) \in P(\mathbf{R}_+)$. For $\varepsilon > 0$, $\eta > 0$ and $\eta_0 > 0$ satisfying $0 < \eta \leq \eta_0/2$, let us set

$$\varphi_{\varepsilon}(t) = 0 \ (0 \leqslant t \leqslant \varepsilon); \quad \frac{f_{\eta_0}(\varepsilon) - f_{\eta_0}(t)}{f_{\eta_0}(\varepsilon) - f_{\eta_0}(\eta)} \ (\varepsilon \leqslant t \leqslant \eta); \quad 1 \ (\eta \leqslant t \leqslant 2\eta).$$
(4.9)

Then, as $\varepsilon \to +0$, $\varphi_{\varepsilon} \to 1$ in $L^p((0,2\eta); W_p)$ and $\varphi'_{\varepsilon} \to 0$ in $L^p((0,2\eta); W_p)$.

Proof. Since $\lim_{t\to+0} f_{\eta_0}(t) = \infty$, clearly $\varphi_{\varepsilon}(t) \to 1$ in $L^p((0,2\eta); W_p)$ as $\varepsilon \to +0$, and $\int_0^{2\eta} |\varphi'_{\varepsilon}(t)|^p W_p(t) dt = (f_{\eta_0}(\varepsilon) - f_{\eta_0}(\eta))^{1-p} \to 0$ as $\varepsilon \to +0$. Then we see the assertion. \Box

End of the proof of Lemma 4.1. For $0 < \overline{\varepsilon} < \eta$, we set $h_{\overline{\varepsilon}}(t) = \varphi_{\overline{\varepsilon}}(t)h(t)$, where $\varphi_{\overline{\varepsilon}}(t)$ is defined by (4.9) with $\varepsilon = \overline{\varepsilon}$. Then $\operatorname{supp} h_{\overline{\varepsilon}}(t) \subset [\overline{\varepsilon}, 2\eta]$. By virtue of Lemma 4.2, we also see that $h_{\overline{\varepsilon}}(t) \to h(t)$ in $W^{1,p}((0,2\eta);W_p)$ as $\overline{\varepsilon} \to +0$. In fact, noting that $h'_{\overline{\varepsilon}}(t) = \varphi'_{\overline{\varepsilon}}(t)h(t) + \varphi_{\overline{\varepsilon}}(t)h'(t)$, we have

$$\int_{0}^{2\eta} |h_{\overline{\varepsilon}}'(t) - h'(t)|^{p} W_{p}(t) dt$$

$$\leq C_{p} \left(\int_{0}^{2\eta} (1 - \varphi_{\overline{\varepsilon}}(t))^{p} |h'(t)|^{p} W_{p}(t) dt + \int_{0}^{2\eta} |\varphi_{\overline{\varepsilon}}'(t)|^{p} |h(t)|^{p} W_{p}(t) dt \right)$$

with some constant $C_p > 0$ depending only on p. The first term obviously goes to 0 as $\overline{\varepsilon} \to +0$. As for the second, noting that s(w) = -1 and $0 < \varepsilon < 1$, we have

$$\begin{split} \int_{0}^{2\eta} |\varphi_{\overline{\varepsilon}}'(t)|^{p} |h(t)|^{p} W_{p}(t) dt &= \int_{\overline{\varepsilon}}^{\eta} |\varphi_{\overline{\varepsilon}}'(t)|^{p} |h(t)|^{p} W_{p}(t) dt \\ &= \frac{1}{(f_{\eta_{0}}(\overline{\varepsilon}) - f_{\eta_{0}}(\eta))^{p}} \int_{\overline{\varepsilon}}^{\eta} \frac{f_{\eta_{0}}(t)^{p-1+ps(w)\varepsilon}}{w(t)} dt \\ &= \frac{1}{p(1-\varepsilon)} \frac{f_{\eta_{0}}(\overline{\varepsilon})^{p(1-\varepsilon)} - f_{\eta_{0}}(\eta)^{p(1-\varepsilon)}}{(f_{\eta_{0}}(\overline{\varepsilon}) - f_{\eta_{0}}(\eta))^{p}}. \end{split}$$

Since $\lim_{t\to+0} f_{\eta_0}(t) = \infty$, we see that $\int_0^{2\eta} |\varphi'_{\overline{\varepsilon}}(t)|^p |h(t)|^p W_p(t) dt \to 0$ as $\overline{\varepsilon} \to +0$. Since $h_{\overline{\varepsilon}}(t)$ is clearly approximated by test functions in $C_c^{\infty}((0,2\eta))$, the assertion $h(t) \in W_0^{1,p}((0,2\eta); W_p)$ follows. \Box

LEMMA 4.3. Let Ω be a bounded domain of class C^2 in \mathbb{R}^N . Let $1 and <math>w(t) \in W(\mathbb{R}_+)$. Then it holds that

$$J_{p,\lambda}^{w} \leqslant \Lambda_{p} \tag{4.10}$$

for all $\lambda \in \mathbf{R}$.

Proof. For each small $\eta > 0$, by Ω_{η} we denote a tubular neighborhood of $\partial \Omega$;

$$\Omega_{\eta} = \{ x \in \Omega : \delta(x) = \operatorname{dist}(x, \partial \Omega) < \eta \}.$$
(4.11)

Since the boundary $\partial \Omega$ is of class C^2 , there exists an $\eta_0 > 0$ such that for any $\eta \in (0, \eta_0)$ and every $x \in \Omega_{\eta}$ we have a unique point $\sigma(x) \in \partial \Omega$ satisfying $\delta(x) = |x - \sigma(x)|$. The mapping

$$\Omega_{\eta} \ni x \mapsto (\delta(x), \sigma(x)) = (t, \sigma) \in (0, \eta) \times \partial \Omega$$

is a C^2 diffeomorphism, and its inverse is given by

$$(0,\eta) \times \partial \Omega \ni (t,\sigma) \mapsto x(t,\sigma) = \sigma + t \cdot n(\sigma) \in \Omega_{\eta},$$

where $n(\sigma)$ is the inward unit normal to $\partial \Omega$ at $\sigma \in \partial \Omega$. For each $t \in (0, \eta)$, the mapping

$$\partial \Omega \ni \boldsymbol{\sigma} \mapsto \boldsymbol{\sigma}_t(\boldsymbol{\sigma}) = x(t, \boldsymbol{\sigma}) \in \Sigma_t = \{x \in \Omega : \delta(x) = t\}$$

is also a C^2 diffeomorphism of $\partial \Omega$ onto Σ_t , and its Jacobian satisfies

$$|\operatorname{Jac} \sigma_t(\sigma) - 1| \leqslant ct$$
 for any $\sigma \in \partial \Omega$, (4.12)

where *c* is a positive constant depending only on η_0 , $\partial \Omega$ and the choice of local coordinates. Since $n(\sigma)$ is orthogonal to Σ_t at $\sigma_t(\sigma) = \sigma + t \cdot n(\sigma) \in \Sigma_t$, it follows that for every integrable function v(x) in Ω_η

$$\int_{\Omega_{\eta}} v(x) dx = \int_{0}^{\eta} dt \int_{\Sigma_{t}} v(\sigma_{t}) d\sigma_{t}$$
$$= \int_{0}^{\eta} dt \int_{\partial\Omega} v(x(t,\sigma)) |\operatorname{Jac} \sigma_{t}(\sigma)| d\sigma, \qquad (4.13)$$

where $d\sigma$ and $d\sigma_t$ denote surface elements on $\partial\Omega$ and Σ_t , respectively. Hence (4.13) together with (4.12) implies that for every integrable function v(x) in Ω_η

$$\int_{0}^{\eta} (1 - ct) dt \int_{\partial \Omega} |v(x(t, \sigma))| d\sigma \leq \int_{\Omega_{\eta}} |v(x)| dx$$
(4.14)

$$\leq \int_0^{\eta} (1+ct) dt \int_{\partial \Omega} |v(x(t,\sigma))| d\sigma.$$
 (4.15)

Let $\kappa > 0$, and let $\eta \in (0, \eta_0)$. Take $h(t) \in W_0^{1,p}((0, \eta); W_p)$ be a function satisfying (4.8) with replacing 2η by η for simplicity. Define

$$u(x) = \begin{cases} h(\delta(x)) & \text{if } x \in \Omega_{\eta}, \\ 0 & \text{if } x \in \Omega \setminus \Omega_{\eta}. \end{cases}$$
(4.16)

Then we have supp $u \subset \Omega_{\eta}$. Since $|\nabla u(x)| = |h'(\delta(x))|$ for $x \in \Omega_{\eta}$ by $|\nabla \delta(x)| = 1$, it follows from (4.15) that

$$\int_{\Omega_{\eta}} |\nabla u(x)|^{p} W_{p}(\delta(x)) dx \leq (1+c\eta) |\partial \Omega| \int_{0}^{\eta} |h'(t)|^{p} W_{p}(t) dt, \qquad (4.17)$$

which implies $u(x) \in W_0^{1,p}(\Omega; W_p(\delta))$ by Lemma 4.1. On the other hand, by (4.14) and (4.16) we have that

$$\int_{\Omega_{\eta}} |u(x)|^p \frac{W_p(\delta(x))}{F_{\eta_0}(\delta(x))^p} dx \ge (1 - c\eta) |\partial\Omega| \int_0^{\eta} |h(t)|^p \frac{W_p(t)}{F_{\eta_0}(t)^p} dt.$$

$$(4.18)$$

By combining (4.17), (4.18) and trivial estimate

$$\int_{\Omega_{\eta}} |u(x)|^{p} W_{p}(\delta(x)) dx \leqslant \left(\sup_{0 < t < \eta} F_{\eta_{0}}(t)\right)^{p} \int_{\Omega_{\eta}} |u(x)|^{p} \frac{W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} dx,$$
(4.19)

we obtain that

$$\chi_{p,\lambda}^{w}(u) \leq \frac{1+c\eta}{1-c\eta} \frac{\int_{0}^{\eta} |h'(t)|^{p} W_{p}(t) dt}{\int_{0}^{\eta} |h(t)|^{p} W_{p}(t) / F_{\eta_{0}}(t)^{p} dt} + |\lambda| \Big(\sup_{0 < t < \eta} F_{\eta_{0}}(t) \Big)^{p}.$$

This together with Lemma 4.1 implies that

$$J_{p,\lambda}^{w} \leqslant \frac{1+c\eta}{1-c\eta} (\Lambda_{p}+\kappa) + |\lambda| \Big(\sup_{0 < t < \eta} F_{\eta_{0}}(t) \Big)^{p}.$$
(4.20)

Letting $\eta \to +0$ and $\kappa \to +0$ in (4.20), then (4.10) follows from Lemma 3.1. Therefore it concludes the proof. \Box

LEMMA 4.4. Let Ω be a bounded domain of class C^2 in \mathbb{R}^N . Let $1 and <math>w(t) \in W_A(\mathbb{R}_+)$. Then there exists a $\lambda \in \mathbb{R}$ such that $J_{p,\lambda}^w = \Lambda_p$.

Proof. Let $\eta_0 > 0$ be a sufficiently small number as in Theorem 2.1. Take and fix any $u(x) \in W_0^{1,p}(\Omega; W_p(\delta)) \setminus \{0\}$. Then, for $\eta \in (0, \eta_0]$

$$\int_{\Omega} \frac{|u(x)|^p W_p(\delta(x))}{F_{\eta_0}(\delta(x))^p} dx$$

=
$$\int_{\Omega_{\eta}} \frac{|u(x)|^p W_p(\delta(x))}{F_{\eta_0}(\delta(x))^p} dx + \int_{\Omega \setminus \Omega_{\eta}} \frac{|u(x)|^p W_p(\delta(x))}{F_{\eta_0}(\delta(x))^p} dx.$$
(4.21)

Since there exists a positive number C_{η} independent of u(x) such that

$$\int_{\Omega \setminus \Omega_{\eta}} |u(x)|^{p} \frac{W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} dx \leq C_{\eta} \int_{\Omega \setminus \Omega_{\eta}} |u(x)|^{p} W_{p}(\delta(x)) dx,$$
(4.22)

by using Hardy's inequality (2.18) we have

$$\Lambda_p \int_{\Omega} \frac{|u(x)|^p W_p(\delta(x))}{F_{\eta_0}(\delta(x))^p} dx \leq \int_{\Omega_{\eta}} |\nabla u(x)|^p W_p(\delta(x)) dx - s(w) L' \int_{\Sigma_{\eta}} |u(\sigma_{\eta})|^p W_p(\eta) d\sigma_{\eta} + \Lambda_p C_{\eta} \int_{\Omega \setminus \Omega_{\eta}} |u(x)|^p W_p(\delta(x)) dx.$$

$$(4.23)$$

In order to control the integrand on the surface Σ_{η} we prepare the following:

LEMMA 4.5. Let Ω be a bounded domain of class C^2 in \mathbb{R}^N . Let 1 $and <math>w(t) \in W(\mathbb{R}_+)$. Assume that η_0 is a sufficiently small positive number and $\eta \in (0, \eta_0/3)$. Then, for any $\varepsilon > 0$ there exists a positive number $C_{\varepsilon,\eta}$ such that we have for any $u(x) \in W_0^{1,p}(\Omega; W_p(\delta))$

$$\|u\|_{L^{p}(\Sigma_{\eta};W_{p}(\delta))}^{p} \leqslant \varepsilon \||\nabla u\|\|_{L^{p}(\Omega_{3\eta}\setminus\overline{\Omega_{\eta}};W_{p}(\delta))}^{p} + C_{\varepsilon,\eta}\|u\|_{L^{p}(\Omega_{3\eta}\setminus\overline{\Omega_{\eta}};W_{p}(\delta))}^{p}.$$
(4.24)

Here we denote by $\overline{\Omega_{\eta}}$ *the closure of* Ω_{η} *.*

REMARK 4.1. By Rellich's theorem and Hardy type inequality, we see that the imbedding $W_0^{1,p}(\Omega; W_p(\delta)) \hookrightarrow L^p(\Omega; W_p(\delta))$ is compact. Therefore, by this lemma we see that a trace operator $W_0^{1,p}(\Omega; W_p(\delta)) \to L^p(\Sigma_\eta; W_p(\delta))$ is also compact.

Proof. For $\eta \in (0, \max_{x \in \Omega} \delta(x)/3)$, let $W^{1,p}(\Omega_{3\eta} \setminus \overline{\Omega_{\eta}}; W_p(\delta))$ be given by the completion of $C^{\infty}(\Omega_{3\eta} \setminus \overline{\Omega_{\eta}})$ with respect to the norm defined by

$$\|u\|_{W^{1,p}(\Omega_{3\eta}\setminus\overline{\Omega_{\eta}};W_p(\delta))} = \||\nabla u\|\|_{L^p(\Omega_{3\eta}\setminus\overline{\Omega_{\eta}};W_p(\delta))} + \|u\|_{L^p(\Omega_{3\eta}\setminus\overline{\Omega_{\eta}};W_p(\delta))}.$$

Since $W_p(\delta(x)) > 0$ in $\overline{\Omega_{3\eta} \setminus \overline{\Omega_{\eta}}}$, $W^{1,p}(\Omega_{3\eta} \setminus \overline{\Omega_{\eta}}; W_p(\delta))$ is well-defined and becomes a Banach space with the norm $\|\cdot\|_{W^{1,p}(\Omega_{3\eta} \setminus \overline{\Omega_{\eta}}; W_p(\delta))}$.

Hence the inequality (4.24) follows from the standard theory for a trace operator

$$W^{1,p}(\Omega_{3\eta} \setminus \overline{\Omega_{\eta}}; W_p(\delta)) \to L^p(\Sigma_{\eta}; W_p(\delta)).$$

Here we give a simple proof of it. We use the following cut-off function $\psi(x) \in C^{\infty}(\Omega)$ such that $\psi(x) \ge 0$ and

$$\Psi(x) = \begin{cases} 1 & (x \in \Omega_{2\eta}), \\ 0 & (x \in \Omega \setminus \Omega_{3\eta}). \end{cases}$$
(4.25)

We retain the notations in the proof of Lemma 4.3. Take and fix a $u(x) \in W_0^{1,p}(\Omega; W_p(\delta))$ and assume $u(x) \ge 0$. Then,

$$\begin{split} \int_{\Sigma_{\eta}} u(\sigma_{\eta})^{p} W_{p}(\eta) d\sigma_{\eta} &= \int_{\partial\Omega} u(x(\eta,\sigma))^{p} W_{p}(\eta) |\operatorname{Jac} \sigma_{\eta}(\sigma)| d\sigma \\ &= -\int_{\partial\Omega} d\sigma \int_{\eta}^{3\eta} \frac{\partial}{\partial t} \left(u(x(t,\sigma))^{p} \psi(x(t,\sigma)) W_{p}(t) |\operatorname{Jac} \sigma_{t}(\sigma)| \right) dt \\ &= -\int_{\partial\Omega} d\sigma \int_{\eta}^{3\eta} \frac{\partial}{\partial t} \left(u(x(t,\sigma))^{p} \cdot \psi(x(t,\sigma)) W_{p}(t) |\operatorname{Jac} \sigma_{t}(\sigma)| \right) dt \\ &- \int_{\partial\Omega} d\sigma \int_{\eta}^{3\eta} u(x(t,\sigma))^{p} \cdot \frac{\partial}{\partial t} \left(\psi(x(t,\sigma)) W_{p}(t) |\operatorname{Jac} \sigma_{t}(\sigma)| \right) dt \\ &= I_{1} + I_{2}. \end{split}$$

Note that $x(t, \sigma), W_p(t), \text{Jac } \sigma_t(\sigma) \in C^1$ in $t \in (\eta, 3\eta)$ and

$$\int_{\Omega_{3\eta}\setminus\Omega_{\eta}} u(x)^p dx = \int_{\partial\Omega} d\sigma \int_{\eta}^{3\eta} u(x(t,\sigma))^p |\operatorname{Jac} \sigma_t(\sigma)| dt.$$

Then, we have for some $C_{\eta} > 0$ independent of u(x)

$$|I_2| \leq C_\eta \int_{\Omega_{3\eta} \setminus \Omega_\eta} u(x)^p W_p(\delta(x)) \, dx.$$

As for I_1 , for any $\varepsilon > 0$ there is a positive number C_{ε} independent of u(x) and η such that we have

$$|I_1| \leqslant \varepsilon \int_{\Omega_{3\eta} \setminus \Omega_{\eta}} |\nabla u(x)|^p W_p(\delta(x)) \, dx + C_{\varepsilon} \int_{\Omega_{3\eta} \setminus \Omega_{\eta}} u(x)^p W_p(\delta(x)) \, dx$$

Therefore we obtain (4.24). It concludes the proof of Lemma 4.5. \Box

End of the proof of Lemma 4.4. From (4.23) and Lemma 4.5, it follows that

$$\begin{split} &\int_{\Omega\eta} |\nabla u(x)|^p W_p(\delta(x)) \, dx \\ &\geqslant \Lambda_p \int_{\Omega} \frac{|u(x)|^p W_p(\delta(x))}{F_{\eta_0}(\delta)^p} \, dx - \Lambda_p C_\eta \int_{\Omega \setminus \Omega\eta} |u(x)|^p W_p(\delta(x)) \, dx \\ &- L' \left(\varepsilon \int_{\Omega_{3\eta} \setminus \Omega\eta} |\nabla u(x)|^p W_p(\delta(x)) \, dx + C_{\varepsilon,\eta} \int_{\Omega_{3\eta} \setminus \Omega\eta} |u(x)|^p W_p(\delta(x)) \, dx \right), \end{split}$$

and so

$$\begin{split} &\int_{\Omega_{\eta}} |\nabla u(x)|^{p} W_{p}(\delta(x)) \, dx + L' \varepsilon \int_{\Omega_{3\eta} \setminus \Omega_{\eta}} |\nabla u(x)|^{p} W_{p}(\delta(x)) \, dx \\ &\geqslant \Lambda_{p} \int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} \, dx - \left(L' C_{\varepsilon,\eta} + \Lambda_{p} C_{\eta}\right) \int_{\Omega \setminus \Omega_{\eta}} |u(x)|^{p} W_{p}(\delta(x)) \, dx. \end{split}$$

Now we set $L' \varepsilon = 1$ and $C' = -(L'C_{\varepsilon,\eta} + \Lambda_p C_\eta) < 0$, and we have the desired estimate:

$$\int_{\Omega} |\nabla u(x)|^p W_p(\delta(x)) \, dx \ge \Lambda_p \int_{\Omega} \frac{|u(x)|^p W_p(\delta(x))}{F_{\eta_0}(\delta(x))^p} \, dx + C' \int_{\Omega} |u(x)|^p W_p(\delta(x)) \, dx,$$

which implies that

$$\chi_{p,\lambda}^w(u) \ge \Lambda_p$$

for $\lambda \leq C'$. Consequently, it holds that $J_{p,\lambda}^w \geq \Lambda_p$ for $\lambda \leq C'$. This together with (4.10) implies the desired conclusion. It completes the proof of Lemma 4.4. \Box

Proof of the assertion 1 of Theorem 3.1. By Lemma 4.4 and $\lim_{\lambda\to\infty} J_{p,\lambda}^w = -\infty$, the set $\{\lambda \in \mathbf{R} : J_{p,\lambda}^w = \Lambda_p\}$ is non-empty and upper bounded. Hence the sup $\{\lambda \in \mathbf{R} : J_{p,\lambda}^w = \Lambda_p\}$ exists finitely. Put

$$\lambda^* = \sup\{\lambda \in \mathbf{R} : J_{p,\lambda}^w = \Lambda_p\}.$$
(4.26)

Since the function $\lambda \mapsto J_{p,\lambda}^w$ is non-increasing on **R**, it follows from Lemma 4.3 and Lemma 4.4 that $J_{p,\lambda}^w = \Lambda_p$ for $\lambda < \lambda^*$ and $J_{p,\lambda}^w < \Lambda_p$ for $\lambda > \lambda^*$. Since $J_{p,\lambda}^w$ is clearly Lipschitz continuous on **R** with respect to λ , we have the equality $J_{p,\lambda^*}^w = \Lambda_p$. Therefore the assertion 1 of Theorem 3.1 is valid. \Box

4.2. $J_{n\lambda}^w$ is not attained when $\lambda < \lambda^*$

Next, we prove the assertion 2 of Theorem 3.1.

Proof of the assertion 2 of Theorem 3.1. Suppose that for some $\lambda < \lambda^*$ the infimum $J_{p,\lambda}^w$ in (3.3) is attained at an element $u \in W_0^{1,p}(\Omega; W_p(\delta)) \setminus \{0\}$. Then, by the assertion 1 of Theorem 3.1, we have that

$$\chi_{p,\lambda}^{w}(u) = J_{p,\lambda}^{w} = \Lambda_p \tag{4.27}$$

and for $\lambda < \overline{\lambda} < \lambda^*$

$$\chi^{w}_{p,\bar{\lambda}}(u) \geqslant J^{w}_{p,\bar{\lambda}} = \Lambda_{p}.$$
(4.28)

From (4.27) and (4.28) it follows that

$$(\overline{\lambda} - \lambda) \int_{\Omega} |u(x)|^p W_p(\delta(x)) dx \leq 0.$$

Since $\overline{\lambda} - \lambda > 0$, we conclude that

$$\int_{\Omega} |u(x)|^p W_p(\delta(x)) \, dx = 0,$$

which contradicts $u \neq 0$ in $W_0^{1,p}(\Omega; W_p(\delta))$. Therefore it completes the proof. \Box

4.3. Attainability of $J_{n\lambda}^{w}$ when $\lambda > \lambda^{*}$

At last, we prove the assertion 3 of Theorem 3.1. Let η_0 be sufficiently small as in Theorem 2.1 and let $\eta \in (0, \eta_0]$. Let $\{u_k\}$ be a minimizing sequence for the variational problem (3.3) normalized so that

$$\int_{\Omega} \frac{|u_k(x)|^p W_p(\delta(x))}{F_{\eta_0}(\delta(x))^p} dx = 1 \quad \text{for all } k.$$
(4.29)

Since $\{u_k\}$ is bounded in $W_0^{1,p}(\Omega; W_p(\delta))$, by taking a suitable subsequence, we may assume that there exists a $u \in W_0^{1,p}(\Omega; W_p(\delta))$ such that

$$\nabla u_k \stackrel{weak}{\longrightarrow} \nabla u \quad \text{in} \ (L^p(\Omega; W_p(\delta)))^N,$$
(4.30)

$$u_k \xrightarrow{weak} u \quad \text{in } L^p(\Omega; W_p(\delta)/F_{\eta_0}(\delta)^p),$$

$$(4.31)$$

$$u_k \longrightarrow u \quad \text{in} \ L^p(\Omega; W_p(\delta))$$

$$(4.32)$$

and

$$u_k \longrightarrow u \quad \text{in } L^p(\Sigma_\eta; W_p(\delta))$$

$$(4.33)$$

by Remark 4.1. Under these preparation we establish the properties of concentration and compactness for the minimizing sequence, respectively.

PROPOSITION 4.1. Let Ω be a bounded domain of class C^2 in \mathbb{R}^N . Let $1 and <math>w(t) \in W_A(\mathbb{R}_+)$. Let $\lambda \in \mathbb{R}$. Let $\{u_k\}$ be a minimizing sequence for (3.3) satisfying (4.29) and (4.30) ~ (4.33) with u = 0. Then it holds that

$$\nabla u_k \longrightarrow 0 \quad in \ (L^p_{\text{loc}}(\Omega; W_p(\delta)))^N$$

$$(4.34)$$

and

$$J_{p,\lambda}^{w} = \Lambda_{p}. \tag{4.35}$$

Proof. Let $\eta_0 > 0$ be a sufficiently small number as in Theorem 2.1 and let $\eta \in (0, \eta_0]$. By Hardy's inequality (2.18) and (4.29) we have that

$$\begin{split} &\int_{\Omega_{\eta}} |\nabla u_{k}(x)|^{p} W_{p}(\delta(x)) dx \\ &\geqslant \Lambda_{p} \int_{\Omega_{\eta}} \frac{|u_{k}(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} dx + s(w) L' \int_{\Sigma_{\eta}} |u_{k}(\sigma_{\eta})|^{p} W_{p}(\eta) d\sigma_{\eta} \\ &= \Lambda_{p} \left(1 - \int_{\Omega \setminus \Omega_{\eta}} \frac{|u_{k}(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} dx \right) + s(w) L' \int_{\Sigma_{\eta}} |u_{k}(\sigma_{\eta})|^{p} W_{p}(\eta) d\sigma_{\eta}, \end{split}$$

and so

$$\chi_{p,\lambda}^{w}(u_{k}) \geq \Lambda_{p} \left(1 - \int_{\Omega \setminus \Omega_{\eta}} \frac{|u_{k}(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} dx\right) + s(w) L' \int_{\Sigma_{\eta}} |u_{k}(\sigma_{\eta})|^{p} W_{p}(\eta) d\sigma_{\eta} + \int_{\Omega \setminus \Omega_{\eta}} |\nabla u_{k}(x)|^{p} W_{p}(\delta(x)) dx - \lambda \int_{\Omega} |u_{k}(x)|^{p} W_{p}(\delta(x)) dx.$$
(4.36)

Since there exists a positive number C_{η} independent of u_k such that

$$\int_{\Omega \setminus \Omega_{\eta}} \frac{|u_k(x)|^p W_p(\delta(x))}{F_{\eta_0}(\delta(x))^p} dx \leq C_{\eta} \int_{\Omega} |u_k(x)|^p W_p(\delta(x)) dx,$$

it follows from (4.32) with u = 0 that

$$\lim_{k \to \infty} \int_{\Omega \setminus \Omega_{\eta}} \frac{|u_k(x)|^p W_p(\delta(x))}{F_{\eta_0}(\delta(x))^p} \, dx = 0.$$
(4.37)

Hence, letting $k \rightarrow \infty$ in (4.36), by (4.37), (4.32) and (4.33) with u = 0, we obtain that

$$0 \leq \limsup_{k \to \infty} \int_{\Omega \setminus \Omega_{\eta}} |\nabla u_k(x)|^p W_p(\delta(x)) \, dx \leq J_{p,\lambda}^w - \Lambda_p.$$

Since $J_{p,\lambda}^w - \Lambda_p \leq 0$ by Lemma 4.3, we conclude that $J_{p,\lambda}^w - \Lambda_p = 0$ and

$$\lim_{k \to \infty} \int_{\Omega \setminus \Omega_{\eta}} |\nabla u_k(x)|^p W_p(\delta(x)) \, dx = 0.$$
(4.38)

These show (4.34) and (4.35). Consequently it completes the proof. \Box

PROPOSITION 4.2. Let Ω be a bounded domain of class C^2 in \mathbb{R}^N . Let $1 , <math>w(t) \in W_A(\mathbb{R}_+)$ and $\lambda \in \mathbb{R}$. Let $\{u_k\}$ be a minimizing sequence for (3.3) satisfying (4.29) and (4.30) ~ (4.33) with $u \neq 0$. Then it holds that

$$J_{p,\lambda}^{w} = \min(\Lambda_{p}, \chi_{p,\lambda}^{w}(u)).$$
(4.39)

In addition, if $J_{p,\lambda}^w < \Lambda_p$, then it holds that

$$J_{p,\lambda}^{w} = \chi_{p,\lambda}^{w}(u), \qquad (4.40)$$

namely u is a minimizer for (3.3), and

$$u_k \longrightarrow u \quad in \ W_0^{1,p}(\Omega; W_p(\delta)).$$
 (4.41)

Proof. Let $\eta_0 > 0$ be a sufficiently small number as in Theorem 2.1 and let $\eta \in (0, \eta_0]$. Then we have (4.36) by the same arguments as in the proof of Proposition 4.1. Since there exists a positive number C_{η} independent of u_k such that

$$\int_{\Omega\setminus\Omega_{\eta}} \frac{|u_k(x) - u(x)|^p W_p(\delta(x))}{F_{\eta_0}(\delta(x))^p} dx \leqslant C_{\eta} \int_{\Omega} |u_k(x) - u(x)|^p W_p(\delta(x)) dx$$

(4.32) implies that

$$\lim_{k \to \infty} \int_{\Omega \setminus \Omega_{\eta}} \frac{|u_k(x)|^p W_p(\delta(x))}{F_{\eta_0}(\delta(x))^p} dx = \int_{\Omega \setminus \Omega_{\eta}} \frac{|u(x)|^p W_p(\delta(x))}{F_{\eta_0}(\delta(x))^p} dx.$$
(4.42)

Since it follows from (4.30) that $\nabla u_k \longrightarrow \nabla u$ weakly in $(L^p(\Omega \setminus \overline{\Omega_{\eta}}; W_p(\delta)))^N$, by weakly lower semi-continuity of the L^p -norm, we see that

$$\begin{aligned} \liminf_{k \to \infty} \int_{\Omega \setminus \Omega_{\eta}} |\nabla u_{k}(x)|^{p} W_{p}(\delta(x)) \, dx &\geq \left(\liminf_{k \to \infty} \||\nabla u_{k}\|\|_{L^{p}(\Omega \setminus \overline{\Omega_{\eta}}; W_{p}(\delta))} \right)^{p} \\ &\geq \||\nabla u\|\|_{L^{p}(\Omega \setminus \overline{\Omega_{\eta}}; W_{p}(\delta))}^{p} \\ &= \int_{\Omega \setminus \Omega_{\eta}} |\nabla u(x)|^{p} W_{p}(\delta(x)) \, dx. \end{aligned}$$
(4.43)

Hence, by letting $k \rightarrow \infty$ in (4.36), from (4.32), (4.33), (4.42) and (4.43) it follows that

$$J_{p,\lambda}^{w} \ge \Lambda_{p} \left(1 - \int_{\Omega \setminus \Omega_{\eta}} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} dx \right) + s(w) L' \int_{\Sigma_{\eta}} |u(\sigma_{\eta})|^{p} W_{p}(\eta) d\sigma_{\eta} + \int_{\Omega \setminus \Omega_{\eta}} |\nabla u(x)|^{p} W_{p}(\delta(x)) dx - \lambda \int_{\Omega} |u(x)|^{p} W_{p}(\delta(x)) dx.$$
(4.44)

If $w(t) \in Q(\mathbf{R}_+)$, then s(w) = 1, hence we can omit the integrand on the surface Σ_{η} . On the other hand if $w(t) \in P(\mathbf{R}_+)$, then $\lim_{t\to+0} W_p(t) = \lim_{t\to+0} w(t)^{p-1} = 0$. Thus, letting $\eta \to +0$ in (4.44), we obtain that

$$J_{p,\lambda}^{w} \ge \Lambda_{p} \left(1 - \int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} dx \right) + \int_{\Omega} |\nabla u(x)|^{p} W_{p}(\delta(x)) dx - \lambda \int_{\Omega} |u(x)|^{p} W_{p}(\delta(x)) dx.$$
(4.45)

Since it holds that

$$0 < \int_{\Omega} |u(x)|^p \frac{W_p(\delta(x))}{F_{\eta_0}(\delta(x))^p} dx \leq \liminf_{k \to \infty} \int_{\Omega} \frac{|u_k(x)|^p W_p(\delta(x))}{F_{\eta_0}(\delta(x))^p} dx = 1$$
(4.46)

by $u \neq 0$, (4.29), (4.31) and weakly lower semi-continuity of the L^p -norm, we have from (4.45) and (4.46) that

$$J_{p,\lambda}^{w} \ge \Lambda_{p} \left(1 - \int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} dx \right) + \chi_{p,\lambda}^{w}(u) \int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} dx$$
$$\ge \min(\Lambda_{p}, \chi_{p,\lambda}^{w}(u)).$$
(4.47)

This together with Lemma 4.3 implies (4.39). Moreover, by (4.39) and (4.47), we conclude that

$$J_{p,\lambda}^{w} = \Lambda_p \left(1 - \int_{\Omega} \frac{|u(x)|^p W_p(\delta(x))}{F_{\eta_0}(\delta(x))^p} dx \right) + \chi_{p,\lambda}^{w}(u) \int_{\Omega} \frac{|u(x)|^p W_p(\delta(x))}{F_{\eta_0}(\delta(x))^p} dx.$$
(4.48)

In addition, if $J_{p,\lambda}^w < \Lambda_p$, then $J_{p,\lambda}^w = \chi_{p,\lambda}^w(u)$ by (4.39), and so, it follows from (4.48) and (4.29) that

$$\int_{\Omega} \frac{|u(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} dx = 1 = \lim_{k \to \infty} \int_{\Omega} \frac{|u_{k}(x)|^{p} W_{p}(\delta(x))}{F_{\eta_{0}}(\delta(x))^{p}} dx.$$
(4.49)

(4.31) and (4.49) imply that

$$u_k \longrightarrow u \quad \text{in } L^p(\Omega, W_p(\delta)/F_{\eta_0}(\delta)^p).$$
 (4.50)

Further, by (4.29), (4.32), (4.40) and (4.49), we obtain that

$$\int_{\Omega} |\nabla u_k(x)|^p W_p(\delta(x)) \, dx = \chi_{p,\lambda}^w(u_k) + \lambda \int_{\Omega} |u_k(x)|^p W_p(\delta(x)) \, dx$$
$$\longrightarrow \chi_{p,\lambda}^w(u) + \lambda \int_{\Omega} |u(x)|^p W_p(\delta(x)) \, dx = \int_{\Omega} |\nabla u(x)|^p W_p(\delta(x)) \, dx.$$

This together with (4.30) implies that

$$\nabla u_k \longrightarrow \nabla u$$
 in $(L^p(\Omega; W_p(\delta)))^N$. (4.51)

(4.51) and (4.32) show (4.41). Consequently it completes the proof.

Proof of the assertion 3 of Theorem 3.1. Let $\lambda > \lambda^*$. Then $J_{p,\lambda}^w < \Lambda_p$ by the assertion 1 of Theorem 3.1. Let $\{u_k\}$ be a minimizing sequence for (3.3) satisfying $(4.29) \sim (4.33)$. Then we see that $u \neq 0$ by Proposition 4.1. Therefore, by applying Proposition 4.2, we conclude that $\chi_{p,\lambda}^w(u) = J_{p,\lambda}^w$, namely u is a minimizer for (3.3). It finishes the proof. \Box

5. Proof of Theorem 3.2

For M > 0 and $w(t) \in W(\mathbf{R}_+)$, we define the following operator:

$$L_{M}^{w}(u(x)) = -\operatorname{div}(w(\delta(x))\nabla u(x)) - J_{2,\lambda^{*}}^{w} \frac{w(\delta(x))u(x)}{F_{\eta_{0}}(\delta(x))^{2}} + Mw(\delta(x))u(x).$$
(5.1)

Our proof of Theorem 3.2 is relied on the maximum principle and the following nonexistence result on the operator L_M^w :

LEMMA 5.1. Let Ω be a bounded domain of class C^2 in \mathbb{R}^N . Assume that $w(t) \in W_A(\mathbb{R}_+)$ and w(t) satisfies the condition (3.6). If u(x) is a non-negative function in $W_0^{1,2}(\Omega; w(\delta)) \cap C(\overline{\Omega})$ and satisfies the inequality

$$L_M^w(u(x)) \ge 0$$
 in Ω (5.2)

in the sense of distributions for some positive number M, then $u(x) \equiv 0$.

Admitting this lemma for the moment, we prove Theorem 3.2.

Proof of Theorem 3.2. If the infimum J_{2,λ^*}^w in (3.3) is achieved by a function u(x) then it is also achieved by |u(x)|. Therefore there exists $u(x) \in W_0^{1,2}(\Omega; w(\delta))$, $u(x) \ge 0$ such that

$$-\operatorname{div}(w(\delta(x))\nabla u(x)) - J_{2,\lambda*}^{w} \frac{w(\delta(x))u(x)}{F_{\eta_0}(\delta(x))^2} - \lambda^* w(\delta(x))u(x) = 0.$$

By the standard regularity theory of the elliptic type, we see that $u(x) \in C(\overline{\Omega})$, and by the maximum principle, u(x) > 0 in Ω . Then u(x) clearly satisfies the inequality (5.2) for some M > 0, and hence the assertion of Theorem 3.2 is a consequence of Lemma 5.1. \Box

Proof of Lemma 5.1. Assume by contradiction that there exists a non-negative function u(x) as in Lemma 5.1. By the maximum principle, we see u(x) > 0 in Ω . Let us set

$$v_s(t) = f_{\eta_0}(t)^{1/2} G_{\eta_0}(t)^{-s}$$
 for $s > 1/2$.

Then we have $v_s(t) \in W_0^{1,2}((0,\eta_0);w)$ and $v_s(\delta(x)) \in W_0^{1,2}(\Omega_{\eta_0};w(\delta))$. We assume that η_0 is sufficiently small so that $\delta(x) \in C^2(\Omega_{\eta_0})$, and Theorem 2.1 holds in Ω_{η_0} . Since $|\nabla \delta(x)| = 1$, we have for $\delta = \delta(x)$

$$\operatorname{div}(w(\delta)\nabla(v_s(\delta))) = w(\delta)v'_s(\delta)\Delta\delta + w'(\delta)v'_s(\delta) + w(\delta)v''_s(\delta).$$

With somewhat more calculations we have

$$\begin{aligned} \operatorname{div}(w(\delta)\nabla(v_s(\delta))) &= f_{\eta_0}(\delta)^{-1/2} G_{\eta_0}(\delta)^{-s} \left(s(w)/2 + s G_{\eta_0}(\delta)^{-1} \right) \Delta \delta \\ &+ w(\delta)^{-1} f_{\eta_0}(\delta)^{-3/2} G_{\eta_0}(\delta)^{-s} \left(-1/4 + s(s+1) G_{\eta_0}(\delta)^{-2} \right). \end{aligned}$$

Since $J_{2,\lambda^*}^w = 1/4$ by Remark 3.2, we have

$$L_{M}^{w}(v_{s}(\delta)) = -w(\delta)^{-1} f_{\eta_{0}}(\delta)^{-3/2} G_{\eta_{0}}(\delta)^{-s-2} \\ \times \left\{ s(s+1) + F_{\eta_{0}}(\delta) \left(s(w)G_{\eta_{0}}(\delta)^{2}/2 + sG_{\eta_{0}}(\delta) \right) \Delta \delta - MF_{\eta_{0}}(\delta)^{2} G_{\eta_{0}}(\delta)^{2} \right\}$$

From Lemma 3.1, Remark 2.3, 1 and (3.6) it follows that

$$F_{\eta_0}(t), \ G_{\eta_0}(t)^{-1}, \ F_{\eta_0}(t)G_{\eta_0}(t), \ F_{\eta_0}(t)G_{\eta_0}(t)^2 \longrightarrow 0 \quad \text{as} \ t \to +0.$$

Therefore we have

$$L_M^w(v_s(\delta(x))) \leqslant 0$$
 in Ω_{η_0} .

Now we choose a small $\varepsilon > 0$ so that $\varepsilon v_s(\delta(x)) \leq u(x)$ on Σ_{η_0} , and set $w_s(\delta(x)) = \varepsilon v_s(\delta(x)) - u(x)$. Then $w_s^+(\delta(x)) = \max(w_s(\delta(x)), 0) \in W_0^{1,2}(\Omega_{\eta_0}; w(\delta))$, and we see that

$$L_M^w(w_s(\delta(x))) \leq 0$$
 in Ω_{η_0} .

Hence we have for $\delta = \delta(x)$

$$\int_{\Omega_{\eta_0}} \left(|\nabla w_s^+(\delta)|^2 w(\delta) - \frac{w(\delta)w_s^+(\delta)^2}{4F_{\eta_0}(\delta)^2} + Mw(\delta)w_s^+(\delta)^2 \right) dx \leq 0.$$

But, by Theorem 2.1, we have

$$\int_{\Omega_{\eta_0}} \left(|\nabla w_s^+(\delta(x))|^2 w(\delta(x)) - \frac{w(\delta(x))w_s^+(\delta(x))^2}{4F_{\eta_0}(\delta(x))^2} \right) dx \ge 0.$$

Therefore we have $w_s^+(\delta(x)) = 0$ in Ω_{η_0} , and so $\varepsilon v_s(\delta(x)) \leq u(x)$ in Ω_{η_0} for any s > 1/2. By letting $s \to 1/2$, $\varepsilon f_{\eta_0}(\delta(x))^{1/2} G_{\eta_0}(\delta(x))^{-1/2} \leq u(x)$ holds in Ω_{η_0} . Namely

$$\frac{u(x)^2 w(\delta(x))}{F_{\eta_0}(\delta(x))^2} \geqslant \varepsilon^2 \frac{1}{F_{\eta_0}(\delta(x))G_{\eta_0}(\delta(x))} \quad \text{in } \ \Omega_{\eta_0}.$$

Since it holds that $(F_{\eta_0}(\delta(x))G_{\eta_0}(\delta(x)))^{-1} \notin L^1(\Omega_{\eta_0})$ by Remark 2.3, 1, we have that $u(x) \notin L^2(\Omega_{\eta_0}; w(\delta)/F_{\eta_0}(\delta)^2)$. This together with Hardy's inequality (2.18) contradicts to that $u(x) \in W_0^{1,2}(\Omega; w(\delta))$. \Box

REFERENCES

- H. ANDO, T. HORIUCHI, Missing terms in the weighted Hardy-Sobolev inequalities and its application, Kyoto J. Math., vol. 52, no. 4 (2012), 759–796.
- [2] H. ANDO, T. HORIUCHI, Weighted Hardy's inequalities and the variational problem with compact perturbations, Mathematical Journal of Ibaraki University, vol. 52 (2020), 15–26.
- [3] H. ANDO, T. HORIUCHI, E. NAKAI, Weighted Hardy inequalities with infinitely many sharp missing terms, Mathematical Journal of Ibaraki University, vol. 46 (2014), 9–30.
- [4] H. BREZIS, M. MARCUS, *Hardy's inequalities revisited*, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^e série, tome 25, no. 1–2 (1997), 217–237.

- [5] Z. CHEN, Y. SHEN, Sharp Hardy-Sobolev inequalities with general weights and remainder terms, Journal of inequalities and applications, (2009), Article ID 419845, 24 pages, doi:10.1155/2009/419845.
- [6] E. B. DAVIS, The Hardy constant, Quart. J. Math. Oxford, (2) vol. 46 (1995), 417-431.
- [7] A. DETALLA, T. HORIUCHI, H. ANDO, Missing terms in Hardy-Sobolev inequalities and its application, Far East Journal of Mathematical Sciences, vol. 14, no. 3 (2004), 333–359.
- [8] T. HORIUCHI, Hardy's inequalities with non-doubling weights and sharp remainders, Scientiae Mathematicae Japonicae, 85, no. 2 (2023), 125–147; Scientiae Mathematicae Japonicae, in Edition Electronica, e-2022-2.
- [9] X. LIU, T. HORIUCHI, H. ANDO, One dimensional weighted Hardy's inequalities and application, Journal of Mathematical Inequalities, vol. 14 (2020), no. 4, 1203–1222.
- [10] M. MARCUS, V. J. MIZEL, Y. PINCHOVER, On the best constant for Hardy's inequality in \mathbb{R}^n , Trans. Amer. Math. Soc., vol. **350**, no. 8 (1998), 3237–3255.
- [11] T. MATSKEWICH, P. E. SOBOLEVSKII, *The best possible constant in a generalized Hardy's inequality* for convex domains in \mathbb{R}^n , Nonlinear Analysis TMA, vol. **28** (1997), 1601–1610.
- [12] V. G. MAZ'JA, Soboloev spaces (2nd edition), Springer, (2011).

(Received May 29, 2022)

Hiroshi Ando Department of Mathematics Faculty of Science, Ibaraki University Mito, Ibaraki, 310-8512, Japan e-mail: hiroshi.ando.math@vc.ibaraki.ac.jp

Toshio Horiuchi Department of Mathematics Faculty of Science, Ibaraki University Mito, Ibaraki, 310-8512, Japan e-mail: toshio.horiuchi.math@vc.ibaraki.ac.jp