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GENERALIZED WEIGHTED HARDY’S
INEQUALITIES WITH COMPACT PERTURBATIONS

HIROSHI ANDO AND TOSHIO HORIUCHI

(Communicated by T. Buric)

Abstract. Let Q be a bounded domain of RV (N > 1) with boundary of class C?. In the present
paper we shall study a variational problem relating the weighted Hardy inequalities with sharp
missing terms established in [8]. As weights we treat non-doubling functions of the distance
O(x) = dist(x,dQ) to the boundary JQ.

1. Introduction

Let W(R.) be a class of functions

{w(t) € C'(Ry) :w(r) > O’rETow(t) = a for some a € [0,0] }

with Ry = (0,e0). For 1 < p < oo, as weights of Hardy’s inequalities we adopt func-
tions W, (1) = w(t)?~! with w(r) € P(R+)UQ(R+), where

P(Ry) = {w(t) e W(Ry): w(t)"' ¢ L'((0,n)) for some n > 0},
O(R.) = {w(r) € W(R, ) : wlt)™ € L1((0,m)) for any 1 > 0},

—~

(1.1)

Clearly W(R4+) = P(R:)UQ(R4) and P(R1)NQ(R4) = 0. (For the precise defini-
tions see the section 2. See also [8], [9].) A positive continuous function w(z) on Ry
is said to be a doubling weight if there exists a positive number C such that we have

C'w(t) <w(2r) <Cw(r)  forall r€Ry. (1.2)

When w(z) does not possess this property, w(z) is said to be a non-doubling weight in
the present paper. In one-dimensional case we typically treat a weight function w(r)
that may vanish or blow up in infinite order such as e V" or ¢!/ at t = 0. In such
cases the limit of ratio w(r)/w(2¢) as t — +0 may become 0 or +eo, and hence they
are regarded as non-doubling weights according to our notion.
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In [8], we have established N -dimensional Hardy inequalities with non-doubling
weights being functions of the distance & (x) = dist(x,dQ) to the boundary dQ, where
Q is a bounded domain of class C? in R . In this paper we shall study a variational
problem relating to those new inequalities.

We prepare more notations to describe our results. Let 1 < p < eo. For W,(1) =
w(t)P~1 with w(r) € W(R), we define a weight function W,(8(x)) on Q by

Wp(8(x)) = (Wpo8)(x).

By LP(€;W,(6)) we denote the space of Lebesgue measurable functions with weight
W,(8(x)), for which

1/p
el = (], Ju W (B0 ar) < o a3

WO1 P(Q;W,(8)) is given by the completion of C;°(Q) with respect to the norm defined
by

leellyy e @, 5y = 1VElllr @y () + lull i@, ))- (1.4)
Then, Wol’p(Q;Wp((S)) becomes a Banach space with the norm || - HW"”(Q'W )" Under

o Wp

these preparation we recall the weighted Hardy inequalities in [8]. (See Theorem 2.1
and its corollary in Section 2.) In particular for w(z) € Q(R;), we have a simple
inequality as Corollary 2.1, which is a generalization of classical Hardy’s inequality:

/QWM( W, (8 (x)) dx > /‘ F‘pw ) 4 (1.5)
yl

0

for u(x) € WOl P(Q;W,(8)), where 19 is a sufficiently small positive number, Y is some
positive constant and Fy, (¢) is a positive function defined in Definition 2.3. In particular
if w(t) =1, then Fy,(t) =1 (0 <t < np) and (1.5) becomes a well-known Hardy’s
inequality, which is valid for a bounded domain Q of R" with Lipschitz boundary
(cf. [41, [6], [10], [11]). Further if Q is convex, then y = A, := (1 —1/p)? holds for
arbitrary 1 < p < oo (see [11]).

In the present paper we consider the following variational problem relating the
general Hardy’s inequalities established in [8]. For A € R, W, (1) =w(#)?~! and w(t) €
Wi (R4) (C W(RY)), the following variational problem (1.6) can be associated with
(1.5):

SV, = inf Yo (u 1.6
P W@, (3))\ (o) 0 e
where
Jo [Vu(x)|PW, (8 (x)) dx — A Jg [u(x)|"W) (8 (x)) dx
Jo [u(x)[PW,(8(x))/ Fno (8 (x))Pdx '
Here W4 (Ry) = PA(R1)UQ4(Ry) is a subclass of W(R.) defined by Definition 2.6
and 7o is a sufficiently small positive number such that the Hardy inequalities in The-
orem 2.1 and Corollary 2.1 are valid. Note that J ;V o gives the best constant in (1.5), the
function A — J; 5 is non-increasing on R and J; 5 e as A — oo,

2 () = (17)
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When p =2 and w(r) = 1, this variational problem (1.6) was originally studied
in [4]. Then, the problem (1.6) was intensively studied in [2] in the case that 1 < p < oo
and w(r) =1*/(P=1) € 0, (R;) with @ < 1 —1/p. In this paper we further investigate
the variational problem (1.6) with non-doubling weight functions w(r) € Wx(Ry) and
we make clear the attainability of the infimum J)¥, as Theorem 3.1 and Theorem 3.2.

This paper is organized in the following way: In Subsection 2.1 we introduce
a class of weight functions W(R.) and two subclasses P(Ry) and Q(R;) together
with so-called Hardy functions, which are crucial in this paper. Further a notion of
admissibilities for P(R;) and Q(R.) is introduced. In Subsection 2.2, we recall the
weighted Hardy’s inequalities in [8] which are crucial in this work. In Section 3, the
main results are described. Theorem 3.1 and Theorem 3.2 are established in Section 4
and Section 5 respectively.

2. Preliminaries

2.1. Weight functions

First we introduce a class of weight functions according to [8] which is crucial in
this paper.

DEFINITION 2.1. Let us set Ry = (0,00) and

W(R,) = {w(t) € C'(R}) s w(t) > 0, liT()W(t) =aforsomea € [0,00]}.  (2.1)
11—
In the next we define two subclasses of W(R.).

DEFINITION 2.2. Let us set
P(Ry) = {w(t) e W(Ry) : w(r) ¢ L((0,n)) forsome n >0},  (2.2)
ORy) = {w(t) e W(R,): w(t)~' € L'((0,n)) for any n > 0}. (2.3)
Here we give fundamental examples:

EXAMPLE 2.1.
. tcPRy)ifa>1and t* € QRy) if a < 1.
2. e " e P(Ry) and e/ € Q(RY).
3. For a € R, 1% /" € P(R}) and %'/ € Q(R}).

REMARK 2.1.
I. W(R:)=PR;)UQ(R;) and P(R:)NQO(R+) =0 hold.

2. If w(t)~' ¢ L'((0,7n)) for some n >0, then w(t)~' ¢ L'((0,n)) forany n > 0.
Similarly if w(z)~! € L'((0,n)) for some 1 >0, then w(t)~! € L'((0,n)) for
any n > 0.
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3. If w(r) € P(Ry), then lim,_,ow(f) = 0. Hence by setting w(0) =0, w(t) is
uniquely extended to a continuous function on [0,e=). On the other hand if w(z) €
O(R.), then possibly lim,_, ;ow(t) = +-oo.

In the next we define functions such as F;(r) and Gy(r) in order to introduce
variants of the Hardy potential like Fy, (6 (x))~” in (1.5).

DEFINITION 2.3. Let u >0 and 1 > 0. For w(r) € W(Ry), we define the fol-
lowings:

1. When w(t) € P(R4),

iy (sw,42) = {w(t) (w+ frwis) " ds) if re (0,m), o
w(n)u if 1>,
Golt,10) = {Zﬂt” st IO,
2. When w(r) € Q(R4),
Fy(t;w) = {:Etgﬁgyffi@lﬁs ii i ; (:7)”")’ (2.6)
Gt ) = {ZH}" s TIS0n. g

3. Fy(t;w,u) and Fy(t;w) are abbreviated as Fy(r). Gy (t;w, 1) is abbreviated as
Gn ().

4. For w(r) € P(Ry) or Q(R4), we define

W,(t) = w(t)P~ 1. (2.8)

REMARK 2.2. In the definition (2.5), one can replace Gy (t;w, ) with the more

general G (13w, 0, W) = ' + [ Fy (s;wy ) " ds if 1 € (0,1), G (tywyu, ') =/ if
t > 1 with ' > 0. However, for simplicity this paper uses (2.5).

Here we give fundamental examples:

EXAMPLE 2.2. Let w(t) =1* for oo € R.

1. When o> 1, Fy(t) =t/(ac—1) and Gy () = u+(a—1)log(n/t) forr € (0,n)
provided that u =n'"%/(a—1).

2. When a =1, F,(t) =t(u+log(n/t)) and Gy (1) = u—logu+log (u+log(n/t))
fort € (0,n).
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3. When a <1, Fy(t) =t/(1 —a) and Gy(t) = u+ (1 —a)log(n/t) for t €
0,7m).

By using integration by parts we see the followings:

EXAMPLE 2.3.

1. When either w(r) = ¢!/ € P(R}) or w(t) = e'/" € Q(R,), we have Fy(r) =
O(t?) as t — +0.

2. Moreover, if w(t) = exp(£¢~%) with o > 0, then Fy(t) = O(t**!) as t — +0.
In fact, it holds that lim,_ 1o Fy (t) /1% =1/ a.

In a similar way we define the following:

DEFINITION 2.4. Let u >0 and 1 > 0. For w(r) € W(Ry), we define the fol-
lowings:

1. When w(r) € P(Ry),

_ CJu [Mw(s) s if e (0,m),
fn(t,w,u)—{“ 15, (2.9)
2. When w(r) € Q(Ry),
N low) s if 1€ (0,m),
Jutean) = {fon w(s)"tds if t>n. (2.10)
3. fy(t;w,u) and fy (r;w) are abbreviated as fy (7).
REMARK 2.3.
1. We note that for r € (0,1)
4 log fn(1) = —Fy()™! if w(t) € P(Ry),
Dlog f(t) = Fy(t) ™" if w(t) € O(Ry),
2.11)

4108 Gy (1) = = (Fy ()G (1)),
HGy() ' = (Fy()G(1))™" i w(t) € W(RY).
By Definition 2.3, Definition 2.4 and (2.11), we see that Fy (¢ ) ¢ L (( ))
t

lim, 0 G(r) = o and (Fy ()G (1))~ & LI((0.)). but (Fy ()G (1)?) !
LY((0,m)).

2. If w(r) € W(R,), then we have liminf, o Fy () = liminf,_ o Fy (r)Gy(r) =0
from 1.
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EXAMPLE 2.4. If either w(r) =2e~ /" € P(R) or w(t) =1%¢'/" € Q(R.), then
Fy(t) = O0(t*) and Gy(t) = O(1/t) as t — +0.

Now we introduce two admissibilities for P(R;) and Q(R).

DEFINITION 2.5.

1. A function w(r) € P(Ry) is said to be admissible if there exist positive numbers
n and K such that we have

n
/ w(s) lds < KIVE for t€(0,n). (2.12)
t

2. A function w(r) € Q(R) is said to be admissible if there exist positive numbers
n and K such that we have

! -1 —K/\t
w(s) ds>e for 1€ (0,m). (2.13)
0

DEFINITION 2.6. By P4(R.:) and Q4(Ry) we denote the set of all admissible
functions in P(R;) and Q(R. ) respectively. We set

Wa(Ry) =Pa(Ry)UQs(Ry). (2.14)

REMARK 2.4. If w(r) € W4(Ry), then there exist positive numbers 1 and K
such that we have

ViGy(t) <K  for t€(0,7m). (2.15)

For the detail, see Proposition 2.1 in [8].

Here we give typical examples:

EXAMPLE 2.5. ¢ /' ¢ Py(R,), ¢!/ ¢ Qa(R}), but e 1/Vi € Py(R,), e'/Vi €
Oa(Ry).

Verifications:

e 1" ¢ Py(R) : Forsmall £ > 0, we have [Te!/Sds > [*e!/Sds > 1"/, But
this contradicts to (2.12) for any K > 0.

e Ve Py(Ry): Since e'/V5 <el/Vi(t <5 <), wehave [el/VSds < me'/VE
< eK/V1 for some K > 1.

e /"¢ 0a(Ry): For 0< s <t,wehave [je~'/Sds <te™!/'. But this contradicts
to (2.13) for any K > 0.

e Vie Qu(Ry) : For 1/2 < s <t, we have Joe Vsds > ff/ze’l/‘ﬁds >

(1/2)e V21 > e KIV for some K > /2.
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2.2. Weighted Hardy’s inequalities

We define a switching function.

DEFINITION 2.7. (Switching function) For w(r) € W(Ry) = P(Ry)UQ(R4)

we set
() = -1 if w(r) e P(Ry),
() {1 it w(t) € OR,). (2.16)

Let Q be a bounded domain of class C? in RY. Let §(x) = dist(x,dQ). For
each small n >0, Q, and X, denote a tubular neighborhood of JQ and J(Q\ Qy)
respectively, namely

Qp={xeQ:8(x)<n} and X, ={xeQ:5(x)=n}. (2.17)

In [8] we established a series of weighted Hardy’s inequalities with sharp remain-
ders. In particular, we have the following inequality from Theorem 3.3 in [8] by noting
that Fy) (1) < Fy,(t) for n € (0,m0] and 7 € (0,7).

THEOREM 2.1. Assume that Q is a bounded domain of class C* in RN . Assume
that 1 < p < oo and w(t) € Wy(Ry.). Assume that u > 0 and 1 is a sufficiently small
positive number. Then, for n € (0,10] there exist positive numbers C =C(w,p,n, 1)
and L' = L' (w,p,n, ) such that for u(x) € Wol’p(Q;Wp((S)) we have

(19 = a8 Y w30
0, Fao (3007

[Py (5(2) ,
- ¢ Q Iy (5(x))pGpn (6(x))? dx+s(w)L /Zn |u(x)["Wp(n)doy, (2.18)

where doy denotes surface elements on Xy, .

Similarly we have the following inequality from Corollary 3.3 in [8].

COROLLARY 2.1. Assume that Q is a bounded domain of class C* in RV . As-
sume that 1 < p < oo and w(t) € Wa(Ry). Assume that u > 0 and no is a suffi-
ciently small positive number. Then, for n € (0,n9] there exist positive numbers
y=vy(w,p,n,u) and L' = L'(w,p,n,u) such that for u(x) € WOI"p(Q;Wp((‘S)) we
have

()l ,
(1w =y 2565 Y who = s | Wy (n) oy 219

where doy denotes surface elements on Xy, .

REMARK 2.5. InTheorem 3.3 and Corollary 3.3 in [8], it was assumed that u(x) €
WO1 P(Q;W,(8)) NC(Q). However, since we have the inequalities (2.18) and (2.19) for
u(x) € C(Q), by Lemma 4.5 and Remark 4.1 as stated later, we see that the inequal-
ities (2.18) and (2.19) hold for u(x) € WOl P(Q;W,(8)). Therefore we have Theorem
2.1 and Corollary 2.1.
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REMARK 2.6. These inequalities are closely related to the weighted Hardy-Sobo-
lev inequalities with sharp remainder terms (cf. [1], [3], [4], [5], [7], [©], [12]).

3. Main results

Let ng be a sufficiently small positive number such that the Hardy’s inequalities
in Theorem 2.1 and Corollary 2.1 are valid. Let w(t) € W(R..) and W, (t) = w(z)?~!
with 1 < p < eo. Moreover, we assume that

w/(t) >0 forall € (0,m9) or w(t)<0 forall ¢ € (0,1). (3.1)

Then we have the following.

LEMMA 3.1. Assume that w(t) € W(R.) satisfies (3.1). Then it holds that

Jim Fy, (1) = 0. (3.2)

In particular, Fy,(t) is bounded in R .

The proof of Lemma 3.1 is stated at the end of this section.
For A € R, let us recall the variational problem associated with (1.5):

I = inf x5 (1), (3-3)
P ewtr @)y

where
_ Ja Vu)[PWp(8(x))dx — A Jq |u(x)|PWy(8(x)) dx

Zp2 () Ja ) PW, (3(0))/ Fiy (3(x))Pdx

Our main result is the following:

THEOREM 3.1. Assume that Q is a bounded domain of class C* in RV . Assume
that 1 < p < oo and w(t) € Wa(Ry) satisfies (3.1). Then, there exists a constant
A* € R such that:

1. If A < A%, then J;),/l =Ap. If A > A%, then JX)L <Ap.

1\”
A= (1_;> | (3.4

Here

Moreover, it holds that:

2. If A < A*, then the infimum Ty, in (3.3) is not attained.

3. If A > A*, then the infimum Ty, in (3.3) is attained.

In particular we have the following inequality:
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COROLLARY 3.1. Under the same assumptions as in Theorem 3.1, there exists a
constant A € R such that for u(x) € W()l’p(Q;Wp(S))

/ Vi)W, (8 (x)) dx

>A / [ anW ) 4 —|—)L/ () [PW, (8 (x)) d. (3.5)

O
REMARK 3.1.

1. For the case of w(t) =1 and A = 0, the value of the infimum J;,o in (3.3) and
its attainability are studied in [10].

2. For the case of w(t) =1 and p =2, it is shown that the infimum J} ; in (3.3) is
attained if and only if A > A*. See [4]. If p #22 and A = A*, then it is an open
problem whether the infimum J;V 5 in (3.3) is achieved.

3. For the case of w(t) =1P/(P~1) ¢ 0,(R,) with a < 1 —1/p, Theorem 3.1 is
shown in [2].

4. In the assertion 3 of Theorem 3.1, the minimizer u(x) € WO1 P(Q;W,(8)) for the
variational problem (3.3) is a non-trivial weak solution of the following Euler-
Lagrange equation:

W, ()
P Fyo(8)P

When p =2 and A = A* hold, we have the following that is rather precise.

—div (Wp(8)|Vul? 2Vie) = AW, (8)|ul?~2u =1, uP2u in 2'(Q).

THEOREM 3.2. In addition to the assumption of Theorem 3.1, we assume that
p=2and A =A*. Let Ny > 0 be a sufficiently small number as in Theorem 2.1.
Moreover we assume that

lim Fy, (t)Gy, (t)* = 0. (3.6)

t—+0

Then, J2 A is not achieved.

REMARK 3.2. By Theorem 3.1, J)', . = = 1/4 holds.

EXAMPLE 3.1. Let w(r) = t*?/(P=1) for o € R. Then W, (1) = t%. If o >
1—1/p,then w(t) € PA(Ry),if oo < 1— l/p then w(r) € QA(R+) Clearly (3.1) is
valid. We have that as t — +0

_Jow) for o #£1—1/p,
Fmlt) = {O(tlog (1/1)) for a=1-1/p,

G (1) = O(log(1/1)) for a #1—1/p,
0 O(loglog(1/1)) for aa=1—1/p.
Therefore (3.6) holds.



112 H. ANDO AND T. HORIUCHI

EXAMPLE 3.2. Let either w(t) = e '/Vi € Py(R.) or w(t) = e'/V' € Q4(R}).
Then (3.1) and (3.6) hold. In fact, we have that as t — 40

Fao(t) =0(*%), Gyo(t) = 0(t™'12), Fyy(1)Go(1)* = O(¢'?).
Here we give the proof of Lemma 3.1.

Proof of Lemma 3.1. First we assume that w(z) € P(Ry). Let € be any number
satisfying 0 < € < 21. For 0 <t < /2 we have that

Fyy () = w(t) (u + /g 72 w(s)—lds) +w(r) /, 2 (s)Vds. 3.7)

Since w(t)~! ¢ L1((0,n0)), it follows that lim, ,  ow(t) = 0 from the Definition 2.1,
and hence w(z) is non-decreasing in (0,70] by (3.1). Then we have

€/2 €/2
w(t)/t P () ds < w(t)/t w(t)~ds = ;—t < ; (3.8)

By lim,_, . ow(t) =0, there exists a § > 0 such that for 0 <t <

€
2(u+ 877/02 w(s)~'ds)

w(t) < (3.9)

From (3.7), (3.8) and (3.9) it follows that for 0 < < min{e/2,5}
£ €
F — —_ =
o (1) < 5 + 5 =5

which shows (3.2). Secondly we assume that w(r) € Q(R4). If w/(r) >0 for 7 €
(0,Mm), then lim,_, . ow(t) = a < oo, and so

1
Fy (0) :w(t)/ w(s) 'ds—0 as i — 40
0
by w(t) € L'((0,m0)). If w'(t) < 0 for ¢t € (0,19), then we see that for ¢ € (0,19]

Fyy (1) :w(z)/otw(s)—lds<w(z)/0tw(t)—1ds:z,

which implies (3.2). It concludes the proof. []
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4. Proof of Theorem 3.1

In this section, we give the proof of Theorem 3.1.

4.1. Upper bound of JX 3

113

First, we prove the assertion 1 of Theorem 3.1. As test functions we adopt for

e>0and 0<n<ny/2

g (£)1Fs0)e=1/p 0<t<n),
ue(t) = < fro(m)HWEVr2n —1)/n (n <t <2nm),
0 (2n <1< o).

‘We note that

(1+s(w)e—1/p) fn (1) e Ps(w) fw(r) (0 <z <),
e (1) = § —fno (M) HME=1/P (n <t<2n),
0 (2n <t < no).

‘We have

/On|ufg(t)|pr(t)dt:<1—%+s )/f,,0 wep- 1W()dz

= (1 — % +s(w)g) M

pE
In a similar way

/n Jue (1 V’W /f wept L Fap ()
0 Fyy (1) o w(t) PE

4.1)

(4.2)

(4.3)

4.4)

Noting that fy, (£)**)¢P is bounded by the definitions of s(w) and fy, (), it follows

from Lemma 3.1 that

el wa e = [ gy 0w

— [ Fan 07 0P < 4o

Hence we have

s(w)e
/0271 |uy ()|PWy (1) dt = (1 — ll? —l—s(w)e)l7 Joo () +C(g,m),

PE

[ W), S
0

Fﬂo() B pe

p—1 w)e
[ e wyords = [ 0 -+ ),

D(g,m),

(4.5)
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where C(e,n), D(g,n) and E(g,n) are given by

2n
Cle.m) = fun (M-I r [ w0,
n

s(w)ep— n (277 _t)pW (t)
D) = foo(m)? 0! [T

soept [T @0 =0)"W, (1)
O B

and they remain bounded as € — +0. Therefore we see that

Jo ™ lud (6)|PW, (1) e
S [t (6)|PWy () / Fig (1 )Pt

— A, as &€—+0, (4.6)

and we also have

o e (1)[PW, (1) dt
Jo ™ e (1) [PWy (1) / Fyo (1)Pdlt

As a result we have the following lemma.

as € — 0. 4.7

LEMMA 4.1. Let 1 <p <eeo, 0 <1 < No/2 and w(t) € W(R,). Forany k >0,
there exists a function h(t) € Wol’p((O,Zn);Wp) such that

ST (0P W, (1) di
S ()| PW,p (1) Fg ()Pt

Ap+K. (4.8)

Proof. By L”((0,1);W,) we denote the space of Lebesgue measurable functions
with weight W, (z), for which

1/p
lelscomny = ( [ TOPwy0yar) <-4

WO1 ?((0,m);W,) is given by the completion of Cg((0,n)) with respect to the norm
defined by
el o,y = 14 e comany) + Nelloomyany -
Then Wol’ ((0,m);W},) becomes a Banach space with the norm || - ||, (0 m)W,)
Wp

Let us set h(t) = ug(¢) for a sufficiently small € > 0. Then h( ) satisfies the
estimate (4.8). It suffices to check that h(z) € Wol’p((O,Zn);Wp). If w(t) € O(Ry),
then lim, ., ;o fn, () = 0 and lim,_ ;o g (t) =lim, o fy, (£)'+*(")€=1/P = 0. Therefore
h(t) is clearly approximated by test functions in C°((0,27)).

If w(z) € P(R.), then we employ the following lemma:
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LEMMA 4.2. Assume that 1 < p < e and w(t) € P(R}). For € >0, n >0 and
No > 0 satisfying 0 < n < No/2, let us set

fﬂo(g)_fﬂo(t)
fﬂo(g)_fno(n)

Then, as € — 40, @z — 1 in LP((0,2n);W,) and @, — 0 in LP((0,21);W,).

Pe(t) = 0(0<t<e); (e<r<m); 1(n<t<2n). (49

Proof. Since lim, ¢ fy,(t) = oo, clearly @.(r) — 1 in L”((0,2n);W,) as € —
+0, and [ |@L(6)[PW,(¢)dt = (fo(€) — fno (M) "7 — 0 as & — +0. Then we see
the assertion. [J

End of the proof of Lemma 4.1. For 0 <€ < n, we set hg(t) = @z(t)h(r), where
@z(t) is defined by (4.9) with € = €. Then supphg(r) C [€,2n]. By virtue of Lemma
4.2, we also see that hz(t) — h(t) in WHP((0,21);W,) as € — +0. In fact, noting that
HL(1) = @L(1)h(t) + @g(1)R (1) , we have

2n
e = @) 1w o)
<6 ([ a-ormorwoar [ oo no,oa)

with some constant C, > 0 depending only on p. The first term obviously goes to 0
as € — +0. As for the second, noting that s(w) = —1 and 0 < € < 1, we have

2n , n ,
| oW di = [kl Iy 1)
B 1 /‘77 fno(t)pflers(W)E
~ (fne(B) = fao ()P Je w(t)
L (@70 — fy ()
p(l—=¢)  (fno(&) = fu(m)?
Since lim;_ 4 fi, (1) = e, we see that f02" |9 (t)|P|h(2)[PW,(1)dt — O as € — +0.

Since hg ( ) is clearly approximated by test functions in C°((0,27)), the assertion
h(r) € W, P((0,21);W,,) follows. [J

dt

LEMMA 4.3. Let Q be a bounded domain of class C* in RN. Let 1 < p < o and
w(t) € W(Ry). Then it holds that

JX L SA (4.10)
forall A €R.
Proof. For each small n >0, by Q; we denote a tubular neighborhood of 0Q;

Qp = {xe Q1 8(x) = dist(x,0Q) < n}. @.11)
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Since the boundary 9Q is of class C?, there exists an 19 > 0 such that for any n €
(0,m0) and every x € Qy we have a unique point o(x) € JQ satisfying §(x) = |[x —
o(x)|. The mapping
Qy 3x—(8(x),0(x)) = (1,0) € (0,n) x 0Q
is a C? diffeomorphism, and its inverse is given by
(0,Mm)x9Q> (t,0) —x(t,0) =0+1t-n(o) € Qy,
where n(o) is the inward unit normal to dQ at o € Q. For each 7 € (0,1), the

mapping
Q30— 0(0)=x(t,0) X ={x€Q:0(x) =1}

is also a C? diffeomorphism of dQ onto X, and its Jacobian satisfies
Jaco; (o) — 1| < et forany o € 0Q, (4.12)
where ¢ is a positive constant depending only on 719, dQ and the choice of local

coordinates. Since n(o) is orthogonal to %, at o;(0) = 0 +1-n(0) € %, it follows
that for every integrable function v(x) in Qy

/Qn v(x)dx = /n dt /Z, v(op)doy

—/ dt/ x(t,0))|Jac oy (0)|do, (4.13)

where do and do; denote surface elements on dQ and X, respectively. Hence (4.13)
together with (4.12) implies that for every integrable function v(x) in Q,

A%l—dﬁhégv@moﬂuogiénwgwh (4.14)
</On(l+ct)dt/()g\v(x(t,a))|dcr. .15

Let k >0, and let n € (0,n9). Take h(t) € W, VP ((0,m):W, ») be a function satis-
fying (4.8) with replacing 21 by n for simplicity. Deﬁne

_ Jh(6(x)) if xeQy,
u(x)_{o it xeQ\Q,. (4.16)

Then we have suppu C Qy,. Since |Vu(x)| = [/ (5(x))| for x € Qy by |[VO(x)| =1, it
follows from (4.15) that

I VU@ Wo(300)dx < (1-+em) 0 [worwoa, @
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which implies u(x) € WO1 P(Q;W,(68)) by Lemma4.1. On the other hand, by (4.14) and
(4.16) we have that

W, (8(x)) (1)
A Il RS> (1= em)o [ no Fm o (4.18)

By combining (4.17), (4.18) and trivial estimate

/Q ()P (3(0)dv < (sup F,,O(t))p/Q ()P e®D) )

0<t<n Fn0(5(x))l’
we obtain that

Lten  Jo W (@)W (e)de
L=cn [g 1h(0)|[PW (1) / Fyo (1)

This together with Lemma 4.1 implies that

W P
205 () < o7 1A sup Ay )

0<r<n

W I+cn p
Ba S e (Ap 1)+ 1A sup F(1)) (4.20)

0<r<n

Letting n — +0 and Kk — +0 in (4.20), then (4.10) follows from Lemma 3.1. Therefore
it concludes the proof. [l

LEMMA 4.4. Let Q be a bounded domain of class C* in RN. Let 1 < p < o and
w(t) € Wa(Ry). Then there exists a A € R such that Jon=Np.

Proof. Let ng > 0 be a sufficiently small number as in Theorem 2.1. Take and fix
any u(x) € W, ”(Q;W,(8))\ {0}. Then, for n € (0,n]

[ o)
F"]

0

_/Q” F’lo(éfx))p d+/§z\9n Fno(5€x))p . .21

Since there exists a positive number C,, independent of u(x) such that

Wp(8(x))
/Q o \u(x)\pmd <Gy / o, W3, 422)

by using Hardy’s inequality (2.18) we have

A [ Fn”W Daes [ VU)W (B sl / lu(o)l Wy () do

0

+ALCy /Q o W30 (4.23)
n

In order to control the integrand on the surface X, we prepare the following:
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LEMMA 4.5. Let Q be a bounded domain of class C> in RY. Let 1 < p < o
and w(t) € W(RL). Assume that 1o is a sufficiently small positive number and 1 €
(0,M0/3). Then, for any € > 0 there exists a positive number Cg y such that we have

Sor any u(x) € WOI"p(Q;Wp((‘S))
< ell[Vaull,

—— (424)

(Q30\ QW (8)) L” (Qan \Qn:Wp(8))”

Here we denote by Q_n the closure of Qy .
REMARK 4.1. By Rellich’s theorem and Hardy type inequality, we see that the

imbedding WOl P(Q;W,(8)) — LP(Q;W,(8)) is compact. Therefore, by this lemma
we see that a trace operator WO1 P(Q;W,(8)) — LP(Z;W,(8)) is also compact.

Proof. For 1 € (0,maxcq 8(x)/3), let WhP(Qay \ Qp:W,(8)) be given by the
completion of C*(Q3, \ &) with respect to the norm defined by

el g gy () = VUl oy g (8)) F 1o (s @y (6))-

Since W, (8(x)) >0 in Q3 \ Qp, WP (Q31 \ Qp; W, (8)) is well-defined and becomes
a Banach space with the norm || - HW"”(%n\m:Wp((S)) .
Hence the inequality (4.24) follows from the standard theory for a trace operator
WP (Qsn \ Qs W, (8)) — LP (Zy3 Wp(8))-

Here we give a simple proof of it. We use the following cut-off function y(x) € C*(Q)
such that w(x) > 0 and

- 1 (X € Q) ),
Vi) = {o (xe g\ng3,,). (425)

We retain the notations in the proof of Lemma 4.3. Take and fix a u(x) € WOl P(Q;W,(8))
and assume u(x) > 0. Then,

L wnywymdon = [ utx(n,0))Wy(n)liaccy (o) do

— [ o [ 5 e, 0Pt )W) e (o) a

— [0 [ 5 et ) sl )W) B (o)

/ / % (w(x(t,0))W, (1) Jac 6, (o)) dt
=L+Db.

Note that x(¢,0),W,(t),Jaco;(0) € C! int € (n,3n) and

x)Pdx = do Jaco; dt.
/ [0 [ el
93,,\Q,, 9Q
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Then, we have for some Cy > 0 independent of u(x)
BI<Cy [ u) W3 ()dx
Q3n\Qp

As for I, for any € > 0 there is a positive number C, independent of u(x) and 1 such

that we have
|| < 8/ |Vu(x)|”Wp(5(x))dx+Cg/ u(x)’W,(8(x)) dx.
Q35 \Qn Q3n\Qn

Therefore we obtain (4.24). It concludes the proof of Lemma 4.5. [
End of the proof of Lemma 4.4. From (4.23) and Lemma 4.5, it follows that

VP30

3n

|u(x)[PW, (8 (x)) \”W (x))
>A / F MGy /Q o 1O W (309 d

Ul

- <8/Q3n\9n |Vu(x)|1’Wp(6(x))dx+Cg7n/ i u(x)”Wp(cS(x))dx) )

3n
and so

| Vw6 oydx+Le [ [Vulo) W (8(x) dx

n 31 \*en

|u(x)[PWp (8 (x)) /
>A,,/Q Fm)(a—z;))pdx—(ch,ﬁA,,c,,)/Q\Qn ()P W, (8 (x)) dx.

Now we set L'e =1 and C' = — (L'Ce y +A,Cp ) <0, and we have the desired estimate:

|u(x)[PWp (8 (x)) \”W )) ,
/Q\vu( )W, (8(x))dx > A / . dx —|—C/Q|u(x)|pr(5(x))dx,

0
which implies that
s () = Ap
for A < C'. Consequently, it holds that J* oA > A, for A <C'. This together with (4.10)
implies the desired conclusion. It completes the proof of Lemma4.4. [

Proof of the assertion 1 of Theorem 3.1. By Lemma 4.4 and hm,l_ﬂx,J P iaial
the set {A e R:J" A=A p} is non-empty and upper bounded. Hence the sup{)L eR:
Ty, =Ap} exists ﬁmtely Put

AT =sup{A eR: T}, =Ap}. (4.26)

Since the function A +— Jl’f 5 1s non-increasing on R, it follows from Lemma 4.3 and
Lemma 4.4 that J7'; = A, for A < A" and J7, <A, for A > A*. Since J7', is

clearly Lipschitz continuous on R with respect to A, we have the equality J;V i =Np.
Therefore the assertion 1 of Theorem 3.1 is valid. [J
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4.2. J;V 5 is not attained when A <A®
Next, we prove the assertion 2 of Theorem 3.1.

Proof of the assertion 2 of Theorem 3.1. Suppose that for some A < A* the in-
fimum J7'; in (3.3) is attained at an element u € W()17p(Q;Wp(5)) \ {0}. Then, by the
assertion 1 of Theorem 3.1, we have that

AW =12, = A, (4.27)
and for A < A < A*
X w) 2T = A, (4.28)

From (4.27) and (4.28) it follows tﬁat
(F=2) [ [0 W, (8 (0))dx <.
Since A — A > 0, we conclude that
[ ) 7w, (8 ) dx = o,

which contradicts u # 0 in WO1 P(Q;W,(8)). Therefore it completes the proof. [

4.3. Attainability of J);, when A>A*

At last, we prove the assertion 3 of Theorem 3.1. Let 1y be sufficiently small as in
Theorem 2.1 and let 1 € (0,M]. Let {u;} be a minimizing sequence for the variational
problem (3.3) normalized so that

() [PW, (8 (x))
/Q Fm@—&))pdx—l for all k. (4.29)

Since {u;} is bounded in WO1 P(Q;W,(8)), by taking a suitable subsequence, we may
assume that there exists a u € WOl P(Q;W,(8)) such that

Vi AV in (LP(QsW,(8))Y, (4.30)
w S s in LP(QuW,(8)/Fyy (5)7), (4.31)
we—u in LP(Q:W,(8)) (4.32)
and
we— uin LP(S,:W,(8)) (4.33)

by Remark 4.1. Under these preparation we establish the properties of concentration
and compactness for the minimizing sequence, respectively.
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PROPOSITION 4.1. Let Q be a bounded domain of class C* in RN . Let 1 < p <
oo and w(t) € Wa(Ry). Let A € R. Let {u} be a minimizing sequence for (3.3)
satisfying (4.29) and (4.30) ~ (4.33) with u = 0. Then it holds that

Vup — 0 in (L (Q;W,(8)))N (4.34)

loc

and
JX)L =Ap. (4.35)

Proof. Let ng > 0 be a sufficiently small number as in Theorem 2.1 and let 1 €
(0,m0]. By Hardy’s inequality (2.18) and (4.29) we have that

PR ZCIL AT

|lug (X)|PW, (8 (x)) /
b Fy@ly /z [e(o0) "Wy (1) doy

g (x)[PW, (8 (x)) )
:AP<1 _/Q\Qn Fm(é—&))pdx> +s(w)L /Zn k() [PW,(0) doy,

> A,

and so

iyt =y (1= [ IS ) st [ (o) Wy ()

—|—/ \Vuk(x)|pr(5(x))dx—)L/ |lur (x)|P W, (8 (x)) dx. (4.36)
Q\Qy Q
Since there exists a positive number Cy, independent of u; such that

/ |k () [P Wp (8 (x))
o\Q,  Fpy(8(x))?

it follows from (4.32) with u« = O that

, () PW,(8(x))
lim /Q\Qn %(5—&))1?61)6—0

Hence, letting k — oo in (4.36), by (4.37), (4.32) and (4.33) with u = 0, we obtain that

ax < Cy [ )Wy (8())dx.

(4.37)

k—oo

0 < limsu Vur (x)|PW,(8(x))dx <JV, —A,.
msup [ (V) Wy (80 <)~ Ay

Since Jz‘f/l — A, <0 by Lemma 4.3, we conclude that Jz‘f/l —A,=0and

lim |V (x)|PW,(8(x))dx = 0. (4.38)
koo JO\Qy

These show (4.34) and (4.35). Consequently it completes the proof. [
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PROPOSITION 4.2. Let Q be a bounded domain of class C* in RN . Let 1 < p <
oo, w(t) € Wa(Ry) and A € R. Let {uy} be a minimizing sequence for (3.3) satisfying
(4.29) and (4.30) ~ (4.33) with u# 0. Then it holds that

s = min(Ay, 27, (u)). (4.39)
In addition, if J} ; < A, then it holds that
o = Xpa (1), (4.40)

namely u is a minimizer for (3.3), and
w —uin Wy P (Q;W,(8)). (4.41)
Proof. Let ng > 0 be a sufficiently small number as in Theorem 2.1 and let 1 €

(0,M0]. Then we have (4.36) by the same arguments as in the proof of Proposition 4.1.
Since there exists a positive number Cy, independent of u; such that

i (3) — () [P W (5(x)
/Q\Qn Fstr S Cn [ ) W (30)a

(4.32) implies that

. w@PWGW) [ kP E0)
,};n;/g\gn Fon(005))? d"‘/mn N

Since it follows from (4.30) that Vuy — Vu weakly in (LP(Q\ Qp;W,(5)))", by
weakly lower semi-continuity of the L” -norm, we see that

p
. . p i i o
pwind [ V0 Wy 300> (i 1Vl 1
S p I
= H |Vl/t| ”Lp(g\g,, Wp(9))

= [, PO @43

Hence, by letting k — o in (4.36), from (4.32), (4.33), (4.42) and (4.43) it follows that

B [u(x) "W (8 (x) / )P
Iz Ay (1 /Q\Qn TR a) R lu(o)|PW, (1) doy
[ VWS () dr— A [ )P Wy(8(x) (4.44)
Q\Q, Q
If w(t) € Q(Ry), then s(w) = 1, hence we can omit the integrand on the surface X, .

On the other hand if w(z) € P(R4), then lim,_ oW, (¢) = lim,_.ow(#)?~! = 0. Thus,
letting n — +0 in (4.44), we obtain that

L=A, (1—/ () Fno x))dx>

—|—/|Vu )W, (8 (x)) dx — /1/\ W, (S())dx.  (445)
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Since it holds that

0</\ WpOX) o piming [ M@PWeO&) oy 46

Fyy (8(x))P ko Ja o Fyg(8(x))P

by u # 0, (4.29), (4.31) and weakly lower semi-continuity of the L”-norm, we have
from (4.45) and (4.46) that

()W) Ju(x) "W, (8()) IPW ))
G R o e N A et
>mm( P Zpa (1)) (4.47)

This together with Lemma 4.3 implies (4.39). Moreover, by (4.39) and (4.47), we
conclude that

_ (560 (56
( / Fo (8 )"’ka / Fn (8 dx. (4.48)

In addition, if Jl‘ji < Ap,then J* oA =Xy /1( u) by (4.39), and so, it follows from (4.48)
and (4.29) that

|u(x)[PW,(8(x)) |pW )) L | (x)[PW, (8 (x)) 5
/ e hy 1= im Q—Fn0(5(1;))f’ dx. (4.49)

(4.31) and (4.49) imply that
g — u in LP(Q,W,(5)/Fy,(5)7). (4.50)

Further, by (4.29), (4.32), (4.40) and (4.49), we obtain that

LIV W (6 (0 = 255 )+ A [ )W (5(0))
— a0+ [ [u@) W60 dv = [ 1VuCol W (506 .
This together with (4.30) implies that
Vg — Vu in (LP(Q;W,(8)))". (4.51)

(4.51) and (4.32) show (4.41). Consequently it completes the proof. [

Proof of the assertion 3 of Theorem 3.1. Let A > A*. Then JW < A, by the
assertion 1 of Theorem 3.1. Let {u;} be a minimizing sequence for (3 3) satisfying
(4.29) ~ (4.33). Then we see that u # 0 by Proposition 4.1. Therefore, by applying
Proposition 4.2, we conclude that ¥, (u) =J", , namely u is a minimizer for (3.3). It

P, 2
finishes the proof. [
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5. Proof of Theorem 3.2

For M > 0 and w(r) € W(R), we define the following operator:
w(8(x))u(x)
Fiy (8(x))?

Our proof of Theorem 3.2 is relied on the maximum principle and the following non-
existence result on the operator L}, :

Ly (u(x)) = —div(w(8(x))Vu(x)) = J ;.- +Mw(S(x))u(x). (5.1

LEMMA 5.1. Let Q be a bounded domain of class C* in RY. Assume that w(t) €
Wa(Ry) and w(t) satisfies the condition (3.6). If u(x) is a non-negative function in
WOI"z(Q;w((S)) NC(Q) and satisfies the inequality

Ly(u(x) >0  in Q (5.2)
in the sense of distributions for some positive number M, then u(x) = 0.

Admitting this lemma for the moment, we prove Theorem 3.2.

Proof of Theorem 3.2. If the infimum JY,. in (3.3) is achieved by a function

u(x) then it is also achieved by |u(x)|. Therefore there exists u(x) € WO1 2(Q:w(8)),
u(x) > 0 such that

—div(w(S(x))Vu(x)) = Jy .« % —A*'w(8(x))u(x) =0.

By the standard regularity theory of the elliptic type, we see that u(x) € C(Q), and by
the maximum principle, u(x) > 0 in Q. Then u(x) clearly satisfies the inequality (5.2)
for some M > 0, and hence the assertion of Theorem 3.2 is a consequence of Lemma
5.1. 0O

Proof of Lemma 5.1. Assume by contradiction that there exists a non-negative
function u(x) as in Lemma 5.1. By the maximum principle, we see u(x) > 0 in Q. Let

us set
V(1) = fro ()2Gpo ()™ for s> 1/2.

Then we have v(t) € WOI’Z((O,nO);w) and vs(6(x)) € W()172(£2n0;w(5)). We assume
that 7o is sufficiently small so that §(x) € C*(Qy,), and Theorem 2.1 holds in Q.
Since |[V8(x)| =1, we have for § = 6 (x)

diviw(8)V(v5(0))) = w(5)v§(6)A6 +w’(5)v§(5) +w(6)v§’(5).
With somewhat more calculations we have

div(w(8)V (v5(8))) = fny (8) /3Gy (8) ™ (s(w) /2 + 3Gy (8) ) A
+w(8) " g (8) 722Gy (8)* (—1/4+ (s +1)Giy(8) 2).



HARDY’S INEQUALITIES WITH COMPACT PERTURBATIONS 125

Since J;" =1 /4 by Remark 3.2, we have

Ly (v(8)) = —w(8) ™" fny (8) /Gy (8) 2
x {8(s4 1)+ Fyo(8) (s(w) Gy (8)* 2+ sGy (8)) AS — MFy(8)° Gy (8)* }.

From Lemma 3.1, Remark 2.3, 1 and (3.6) it follows that
Fapy (1), Gno(’)_lv Fopy (1) Gy (1), Fno(t)Gno(t)z —0 as1—+0.

Therefore we have
Ly (v(8() <0 in Qpy.

Now we choose a small € > 0 so that €vs(6(x)) < u(x) on Zy,, and set w(d(x)) =
€vs(8(x)) —u(x). Then wi (8(x)) = max (wy(8(x)),0) € Wy (Qyy;w(8)), and we see
that

Ly(we(8(x) <0 in Q.

Hence we have for 6 = §(x)

w(8)wi(8)?
/Q <|ij_(5)|2w(5)—%—FMW((S)W:(SY) dx <0.

But, by Theorem 2.1, we have

WO ()i (3(x)°
[, (1w oo - “GRR S a0

Therefore we have w, (8(x)) =0 in Qy,, and so €vs(5(x)) < u(x) in Qp, forany s >
1/2. By letting s — 1/2, €y, (8(x))"/2Gy, (8(x))~"/? < u(x) holds in Q. Namely

u(x)?w(d(x)) _ &2 1
Fao(8(x))2 7 Fyo(8(x)) Gy (8 ()
Since it holds that (Fy,(8(x))Gy, (8 (x )))_1 ¢ L'(Qy,) by Remark 2.3, 1, we have that
2

u(x) ¢ L*(Qyy;w(5) /Fn0(5) ). This together with Hardy’s inequality (2.18) contra-
dicts to that u(x) € ( ;w(d)). O

in Q.
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