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BOUNDS FOR THE  –ADJACENCY ENERGY OF A GRAPH
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(Communicated by N. Elezović)

Abstract. For the adjacency matrix A(G) and diagonal matrix of the vertex degrees D(G) of
a simple graph G , the A(G) matrix is the convex combinations of D(G) and A(G) , and
is defined as A (G) = D(G) + (1−)A(G) , for 0 �  � 1 . Let 1 � 2 � . . . � n be
the eigenvalues of A(G) (which we call  -adjacency eigenvalues of the graph G ). The
generalized adjacency energy also called  -adjacency energy of the graph G is defined as

EA (G) =
n


i=1

∣∣i −d
∣∣ , where d =

2m
n

is the average vertex degree, m is the size and n is

the order of G . The  -adjacency energy of a graph G merges the theory of energy (adjacency

energy) and the signless Laplacian energy, as EA0 (G) = E (G) and 2E
A 1

2 (G) = QE(G) , where
E (G) is the energy and QE(G) is the signless Laplacian energy of G . In this paper, we obtain
some new upper and lower bounds for the generalized adjacency energy of a graph, in terms
of different graph parameters like the vertex covering number, the Zagreb index, the number of
edges, the number of vertices, etc. We characterize the extremal graphs attained these bounds.

1. Introduction

In this paper, we consider undirected, simple and finite graphs. A graph is de-
noted by G = (V (G),E(G)) , where V (G) = {v1,v2, . . . ,vn} is its vertex set and E(G)
is its edge set. The order of G is the number n = |V (G)| and its size is the number
m = |E(G)|. The set of vertices adjacent to v ∈ V (G) , denoted by N(v) , refers to the
neighborhood of v. The degree of v, denoted by dG(v) (we simply write dv if it is clear
from the context) means the cardinality of N(v) . A graph is called regular if each of
its vertices has the same degree. The adjacency matrix A(G) = (ai j) of G is a (0,1)-
square matrix of order n having (i, j)-entry is equal to 1, if vi is adjacent to v j and
equal to 0, otherwise. Let D(G) = diag(d1,d2, . . . ,dn) be the diagonal matrix of vertex
degrees di = dG(vi) , i = 1,2, . . . ,n , of G . The matrices L(G) = D(G)−A(G) and
Q(G) = D(G)+A(G) are respectively, the Laplacian and the signless Laplacian matri-
ces and their spectrum are respectively, the Laplacian spectrum and signless Laplacian
spectrum of G . These matrices are real symmetric and positive semi-definite. We take
0 = n � n−1 � . . . � 1 and 0 � qn � qn−1 � . . . � q1 to be the Laplacian spectrum
and the signless Laplacian spectrum of G , respectively. For other undefined notations
and terminology from spectral graph theory, the readers are referred to [3, 12, 15, 22].
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Nikiforov in [19], introduced the generalized adjacency matrix A(G) (called
A -matrix) of a graph G as the convex combinations of D(G) and A(G) , that is,
A(G) = D(G) + (1−)A(G) , for 0 �  � 1. Since A0(G) = A(G) , 2A 1

2
(G) =

Q(G) , A1(G) = D(G) and A(G)−A (G) = ( − )L(G) , any result regarding the
spectral properties of A -matrix, has its counterpart for each of these particular graph
matrices, and these counterparts follow immediately from a single proof. In fact, this
matrix merges and generalizes the adjacency and the signless Laplacian spectral theo-
ries of a graph to a more general setting. Since the matrix A(G) is real symmetric, all
its eigenvalues are real. Therefore, we can arrange them as 1 � 2 � · · · � n . The
largest eigenvalue 1 of A(G) is called the generalized adjacency spectral radius or
 -spectral radius or A -spectral radius of G . For  �= 1, the A -matrix of a con-
nected graph G is nonnegative and irreducible, so by the Perron-Frobenius theorem,
the spectral radius 1(G) is the unique eigenvalue and there is a unique positive unit
eigenvector X corresponding to 1(G), which is called the Perron vector of A(G).
Note that a vector X ∈ R

n is said to be positive if each of its components are positive
and nonnegative if all its components are nonnegative. Further results on the spectral
properties of the matrix A(G) can be found in [8, 16, 17] and the references therein.

The notion of energy of a graph [9] was introduced in 1978 by Ivan Gutman
and has its origin in theoretical chemistry. Let 1 � 2 � . . . � n be the adjacency
eigenvalues of a graph G . The energy of a graph G , denoted by E (G) , is defined as

E (G) =
n


i=1

|i| . For details on graph energy we refer to the book [15]. This spectrum-

based graph invariant has been much studied in both chemical and mathematical lit-
erature. Gutman [9] further proposes the study of energy in graphs with an analogue
of the energy defined with respect to other (than adjacency) matrices assigned to the
graphs. This proposal has been put into effect and extended: the energy of a graph with
respect to Laplacian matrix [10], the signless Laplacian matrix [1, 6, 23], the Randić
matrix [11] as well as the energy of a graph with respect to the distance matrix [13]
has been studied. The concept of energy was extended to digraphs and various energies
of digraphs like the energy [21] and the skew energy [2] were put forward and exten-
sively studied. This concept was generalized by Nikiforov by defining the energy of
any matrix, see [18, 20].

The Laplacian energy LE(G) of a graph G was put forward by Gutman et al.

in [10] and is defined as LE(G) =
n


i=1

∣∣∣∣i − 2m
n

∣∣∣∣ . Likewise, the signless Laplacian

energy QE(G) of G was put forward by Abreu et al. in [1] and is defined as QE(G) =
n


i=1

∣∣∣∣qi− 2m
n

∣∣∣∣ , where
2m
n

is the average degree of the graph G .

Motivated by the above works, Guo and Zhou in [8] introduced an energy like
quantity based on the matrix A(G) . Let us define the auxiliary eigenvalues si , corre-
sponding to the eigenvalues of A(G) as

si = i − 2m
n

.



BOUNDS FOR THE  -ADJACENCY ENERGY OF A GRAPH 129

The  -adjacency energy(also called generalized adjacency energy), denoted by EA (G)
of a graph G is defined as the mean deviation of the eigenvalues of A(G) , that is,

EA (G) =
n


i=1

∣∣∣∣i − 2m
n

∣∣∣∣= n


i=1

|si|. (1.1)

It can be easily verified that
n


i=1

si = 0. It is clear from the definition that EA0(G) =

E (G) , the (adjacency) energy of graph G and 2E
A 1

2 (G) = QE(G) , the signless Lapla-
cian energy of G . From this it follows that the concept of  -adjacency energy of a
graph G merges the theories of (adjacency) energy and the signless Laplacian energy
of a graph G . Therefore, it will be interesting to study the quantity EA (G) and explore
some properties like the bounds, the dependence on the structure of G and the depen-
dence on the parameter  . For some basic properties and bounds for  -adjacency
energy, we refer to [24].

The paper is organized as follows. Section 2 provides an overview of some known
results from the literature. In Section 3, we present some new upper and lower bounds
for the generalized adjacency energy of a graph, in terms of different graph parameters
like the vertex covering number, the Zagreb index, the number of edges and the number
of vertices. We characterize the extremal graphs which achieve these bounds.

2. Preliminary results

In this section, we mention some known results from the literature which will help
in obtaining the main results of this paper.

Let Mm×n(R) be the set of all m×n matrices with real entries, that is,

Mm×n(R) = {X : X = (xi j)m×n,xi j ∈ R}.

For M ∈ Mm×n(R), the Frobenius norm is defined as

‖M‖F =

√
n


i=1

n


j=1

|mi j|2 =
√

trace(MtM),

where the trace of a square matrix is defined as sum of the diagonal entries. Further, if

MMt = MtM , then ‖M‖2
F =

n


i=1

|i(M)|2 , where i is the ith eigenvalue of the matrix

M .
The Zagreb index Zg(G) of a graph G is defined as the sum of squares of vertex

degrees, that is, Zg(G) = 
u∈V (G)

d2
G(u) .

The following Lemma was obtained in [24] and gives some basic properties of the
 -adjacency matrix of the graph G .
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LEMMA 2.1. Let G be a connected graph of order n with m edges having vertex
degrees d1 � d2 � · · · � dn . Then

(1)
n


i=1

i = 2m; (2)
n


i=1

2
i = 2Zg(G)+ (1−)2‖A(G)‖2

F ;

(3)
n


i=1

s2
i = 2Zg(G)+ (1−)2‖A(G)‖2

F − 42m2

n
;

(4) (G) � 2m
n

, equality holds if and only if G is a regular graph; and

(5) (G) �
√

Zg(G)
n

, equality holds if and only if G is a regular graph.

From part 3 of Lemma 2.1, we have
n


i=1

s2
i = (1−)2‖A(G)‖2

F +
n


i=1

(
di − 2m

n

)2

.

Let

2S(G) := (1−)2‖A(G)‖2
F +

n


i=1

(
di − 2m

n

)2

. (2.2)

We observe that 2S(G) = (1−)2‖A(G)‖2
F if and only if G is a regular graph, other-

wise 2S(G) > (1−)2‖A(G)‖2
F . Further 2S(G) = ‖A(G)− 2m

n
In‖2

F =
n


i=1

s2
i , where

In is the identity matrix of order n.

It is well known that a graph G has two distinct eigenvalues if and only if G∼= Kn ,
where Kn represents the complete graph on n vertices. Using this fact it can be easily
proved that a graph G has two distinct  -adjacency eigenvalues, for  �= 1, if and
only if G ∼= Kn . The  -adjacency spectrum of Kn is given in next lemma, which can
be found in [19].

LEMMA 2.2. The spectrum of A(Kn) is {(n− 1),(n − 1)[n−1]} , where  [ j]

means that the algebraic multiplicity of the eigenvalue  is j .

The following Lemma can be found in [24].

LEMMA 2.3. Let G be graph of order n with m edges and let  be the number

of generalized adjacency eigenvalues of G greater than or equal to
2m

n
. Then

EA (G) = 2
( 


i=1

i− 2m
n

)
= 2 max

1�i�k

{
k


i=1

i− 2km
n

}
= 2 max

1�i�k

{
Sk, − 2km

n

}
,

where Sk, =
k


i=1

i is the sum of the k largest generalized adjacency eigenvalues of G.

A very interesting and useful Lemma due to Fulton [5] is as follows.
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LEMMA 2.4. Let A and B be two real symmetric matrices, both of order n. If k ,
1 � k � n, is a positive integer, then

k


i=1

i(A+B) �
k


i=1

i(A)+
k


i=1

i(B),

where i(X) is the ith eigenvalue of X .

The following Arithmetic-Geometric mean inequality can be found in [14].

LEMMA 2.5. If a1,a2, . . . ,an are non-negative numbers, then

n

⎡
⎣1

n

n


j=1

a j −
(

n


j=1

a j

) 1
n
⎤
⎦� n

n


j=1

a j −
(

n


j=1

√
a j

)2

� n(n−1)

⎡
⎣1

n

n


j=1

a j −
(

n


j=1

a j

) 1
n
⎤
⎦ .

Moreover, equality occurs if and only if a1 = a2 = · · · = an .

A tree of order n with a vertex of degree n−1 is denoted by K1,n−1 and is called
star. The following Lemma gives the  -adjacency spectrum of K1,n−1 .

LEMMA 2.6. [19] The A -spectrum of K1,n−1 is{
1
2

(
n±

√
2n2 +4(n−1)(1−2

)
, [n−2]

}
.

3. Bounds for the  -adjacency energy of a graph

In this section, we obtain some bounds for the  -adjacency energy, in terms of the
order n , the size m , the Zagreb index, the vertex covering number and the parameter  ,
associated with structure of the graph G . We characterize the extremal graphs attaining
these bounds.

We first obtain two upper bounds for the smallest generalized adjacency eigenval-
ues n . Using the Rayleigh quotient theorem for 0 �= X = (x1,x2, . . . ,xn)t ∈ R

n , we
have

n � XtA(G)X
XtX

.

Let vn be the vertex with minimum degree  = dn in G . Taking xn = 1 and xi = 0,
for i � n− 1, we get n � dn . Since G is a connected graph, it is easy to see that
X = (0,0, . . . ,0,1) is not an eigenvector of A(G) corresponding to eigenvalue n .
So, we have

n <  . (3.3)
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Let vi and v j be two adjacent vertices in G . Taking xi = 1, x j = −1 and xk = 0, for
k �= i, j and proceeding similarly as above we get

n � (di +d j)−2(1−)
2

. (3.4)

Equality occurs in (3.4) if and only if X = (0, . . . ,1,0, . . . ,−1,0, . . . ,0)t is an eigen-
vector of A(G) corresponding to the eigenvalue n . Suppose that such an X is
an eigenvector corresponding to the eigenvalue n . Then using the eigenequation
A(G)X = nX , we get

(i) di− (1−) = n,

(ii) d j − (1−) = −n and

(iii) (1−)
(
aik −a jk

)
= 0, for all k �= i, j .

The equations (i) and (ii) imply that di = d j and (iii) implies that aik = a jk , for all
k �= i, j . This gives that for a connected graph G equality occurs in (3.4) if and only
if there exist adjacent vertices vi and v j in G , such that di = d j and vi and v j are
adjacent to all other vertices of G . That is, if and only if G is of the form K2 ∨H ,
where H is a graph on n−2 vertices. Note that join of two graphs G1 = (V1,E1) and
G2 = (V2,E2) is the graph G = G1∨G2 having vertex set V (G) =V1∪V2 and edge set
E(G) consisting of all the edges in G1 and G2 together with edges joining each vertex
of G1 with every vertex of G2 .

The following theorem gives a lower bound for the  -adjacency of a graph, in
terms of the number of edges, the number of vertices and the minimum degree.

THEOREM 3.1. Let G be a connected graph of order n with m edges and let
 ∈ (0,1) . Let di and d j be respectively the degrees of the adjacent vertices vi and v j

in G. If A(G) is non-singular, then EA (G) � 4m
n

−
(
di + d j − 2(1−)

)
, with

equality if and only if  = n−1 and G is of the form K2 ∨H , where H is a graph on

n−2 vertices. If A(G) is singular, then EA (G) � 4m
n

, with equality if and only if

 = n−1 .

Proof. From the Lemma 2.3 and the fact that 1 +2 + · · ·+n = 2m , we have

EA (G) = 2 max
1�i�k

{
k


i=1

i(G)− 2im
n

}

= 2 max
1�i�k

{
2m−

n


i=k+1

i(G)− 2mk
n

}

= 2 max
1�i�k

{
2m

n
(n− k)−

n


i=k+1

i(G)

}

� 4m
n

(n− (n−1))−2n(G).
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If A(G) is singular, then n = 0 and the result follows in this case. If A(G) is
non-singular, then using the inequality (3.4) the results follows. It is clear that equality
occurs in this case if and only if  = n− 1 and 2n = (di + d j)− 2(1−) . Now,
using the discussion before this theorem, it follows that equality occurs in this case if
and only if  = n− 1 and G is of the form K2 ∨H , where H is a graph on n− 2
vertices. This completes the proof. �

A subset S of the vertex set V (G) is said to be a covering set of G if every edge
of G is incident to at least one vertex in S . A covering set with minimum cardinality
among all covering sets is called the minimum covering set of G and its cardinality,
denoted by  = (G) , is called vertex covering number of the graph G . The following
result gives an upper bound for the generalized adjacency energy of a graph, in terms
of the vertex covering number and the number of edges.

THEOREM 3.2. Let G be a connected graph of order n � 2 and m edges having
vertex covering number  . Let  be the number of generalized adjacency eigenvalues

which are greater than or equal to
2m

n
.

(i) If  � 0.5 , then

EA (G) � (m− )+2()+2
(
− 2m

n

)
,

where

() =
1
2




i=1

√
2(mi +1)2 +4mi(1−2).

(ii) If  > 0.5 , then

EA (G) � 2(m− )+2
(
− 2m

n

)
.

Further, if G ∼= K1,n−1 , then equality occurs in both (i) and (ii).

Proof. Let G be a connected graph with vertex set V (G) = {v1,v2, . . . ,vn} and
edge set E(G) = {e1,e2, . . . ,em} . Let  be the vertex covering number and C be a
minimum vertex covering set of G . Without loss of generality let C = {v1,v2, . . . ,v} .

Let G1,G2, . . . ,G be the spanning subgraphs of G corresponding to the vertices
v1,v2, . . . ,v of C , having vertex set same as G and edge sets defined as follows.

E(Gi) = {vivt : vt ∈ N(vi)\ {v1,v2, . . . ,vi−1}}, i = 1,2, . . . ,.

For i = 1,2, . . . ,, let mi = |E(Gi)| . It is clear that E(G) = E(G1)∪E(G2)∪ ·· · ∪
E(G) and Gi = K1,mi ∪ (n−mi −1)K1 , for all i = 1,2, . . . , . Further, it is easy to see
that the generalized adjacency matrix A(G) of G can be decomposed as

A(G) = A(G1)+A(G2)+ · · ·+A(G). (3.5)
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By Lemma 2.6, the generalized adjacency spectrum of Gi = K1,mi ∪ (n−mi−1)K1 is{
1
2

(
(mi +1)±

√
2(mi +1)2 +4mi(1−2)

)
, [mi−1],0[n−mi−1]

}
.

It is easy to see that (mi + 1)±
√
2(mi +1)2 +4mi(1−2) < 0 for  >

1
2

and

(mi +1)±
√
2(mi +1)2 +4mi(1−2) � 0 for  � 1

2
. Using Lemma 2.4, we have

Sk,(Gi) � 1
2

(
(mi +1)+

√
2(mi +1)2 +4mi(1−2)

)
+(k−1)

for  � 1
2

and

Sk,(Gi) � (mi +1)+ (k−2)

for  >
1
2

, where i = 1,2, . . . , . Now, for  � 1
2

, applying Lemma 2.4 to equation

(3.5), we get

Sk,(G) � Sk,(G1)+Sk,(G2)+ · · · +Sk,(G)

�



i=1

(
(mi +1)+

√
2(mi +1)2 +4mi(1−2)

2
+(k−1)

)

=
m
2

+ ()+ 
(
k− 1

2

)
(3.6)

where () =
1
2




i=1

√
2(mi +1)2 +4mi(1−2) . Similarly, for  >

1
2

, we get

Sk,(G) � 
(
m+ (k−1)

)
. (3.7)

Lastly, using the Lemma 2.3 together with inequalities (3.6) and (3.7), we get

EA (G) = 2
(
S ,(G)− 2m

n

)
� m+2()+2

(
 − 1

2

)
− 4m

n

= (m− )+2()+2
(
− 2m

n

)

for  � 0.5 and

EA (G) = 2
(
S ,(G)− 2m

n

)
� 2m+2( −1)− 4m

n

= 2(m− )+2
(
− 2m

n

)
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for  > 0.5. From the equation (3.5) and the Lemma 2.3, it is clear that if G∼= K1,n−1 ,
then equality occurs. This completes the proof. �

Using Cauchy-Schwarz’s inequality to () , we get

() =
1
2




i=1

√
2(mi +1)2 +4mi(1−2)

� 1
2

√





i=1

(
2(mi +1)2 +4mi(1−2)

)

=
1
2

√
2




i=1

(mi +1)2 +4m(1−2).

This inequality together with the part (i) of Theorem 3.2 gives the following upper
bound for the generalized adjacency energy for  � 0.5.

COROLLARY 3.3. Let G be a connected graph of order n � 2 and m edges hav-
ing vertex covering number  and let  � 0.5 . Let  be the number of generalized

adjacency eigenvalues of G which are greater than or equal to
2m

n
. Then

EA (G) � (m− )+

√
2




i=1

(mi +1)2 +4m(1−2)+2
(
− 2m

n

)
.

Moreover, if G ∼= K1,n−1 , then equality occurs.

Taking  = 0 in Corollary 3.3 and using the fact EA0(G) = E (G) , we obtain the
following upper bound for energy of a graph, which was obtained in [7].

COROLLARY 3.4. Let G be a connected graph of order n � 2 and m edges hav-
ing vertex covering number  . Then

E(G) � 2
√
m.

Moreover, if G ∼= K1,n−1 , then equality occurs.

We note that for a connected graph having maximum degree  and vertex covering
number  , we always have m �  . This fact together with Corollary 3.4 gives that the
upper bound given by Wang and Ma [25] for the energy follows from the upper bound
given by Theorem 2.2 in [7].

The following result gives upper and lower bounds for the generalized adjacency
energy in terms of order n , the parameter ‖A(G)‖2

F and the determinant of the gener-
alized adjacency matrix A(G) .
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THEOREM 3.5. Let G be a connected graph of order n � 3 with m edges having
Zagreb index Zg(G) and maximum degree  . Then

EA (G) � − 2m
n

+

√
(n−2)

(
1− (1−)2 4m2

n2

)
+(n−1)

(
(1−)

2m
n

) −2
n−1 2

and

EA (G) � (1−)
2m
n

+

√
1 −

(
− 2m

n

)2
+(n−1)(n−2)

(
− 2m

n

) −2
n−1 2,

where 1 =2Zg(G)+(1−)2‖A(G)‖2
F −

42m2

n
and 2 =

∣∣∣det
(
A(G)− 2m

n
I
)∣∣∣ 2

n−1
.

Equality occurs in both inequalities if and only if G ∼= Kn or G is a -regular graph
with three distinct generalized adjacency eigenvalues, 1 =  and the other two eigen-

values with absolute value

√
2Zg(G)+ (1−)2‖A(G)‖2

F

n−1
.

Proof. Replacing n by n− 1 and setting a j = |s j|2, for j = 2, . . . ,n in Lemma
2.5, we have

 � (n−1)
n


j=2

|s j|2−
(

n


j=2

|s j|
)2

� (n−2),

that is,

 � (n−1)
n


j=2

|s j|2−
(
EA (G)−|s1|

)2 � (n−2), (3.8)

where

 = (n−1)

⎡
⎣ 1

n−1

n


j=2

|s j|2 −
(

n


j=2

|s j|2
) 1

n−1
⎤
⎦

=
n


j=2

|s j|2− (n−1)

(
n


j=2

|s j|
) 2

n−1

=
n


j=2

|s j|2− (n−1)

|s1| 2
n−1

∣∣∣det
(
A(G)− 2m

n
I
)∣∣∣ 2

n−1
.

Using (iii) of Lemma 2.1 and the value of  , it follows from the left inequality of (3.8)
that (

EA (G)−|s1|
)2

� (n−2)
n


j=2

|s j|2 +
(n−1)

|s1| 2
n−1

∣∣∣det
(
A(G)− 2m

n
I
)∣∣∣ 2

n−1
,
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that is,

EA (G) � s1 +

√
(n−2)(1− s2

1)+ (n−1)s
−2
n−1
1

∣∣∣det
(
A(G)− 2m

n
I
)∣∣∣ 2

n−1
, (3.9)

where 1 = 2Zg(G) + (1−)2‖A(G)‖2
F − 42m2

n
and s1 � 0. Now, by part (iv)

of Lemma 2.1, we have 1 � 2m
n

, giving that s1 � (1−)
2m
n

. Also, using the fact

A(G) is a non-negative irreducible matrix (as G is connected ), it follows that 1 �  ,
where  is the maximum degree. Note that equality occurs in this last inequality if and

only if G is a regular graph. This gives that s1 = 1 − 2m
n

� − 2m
n

. Using the

inequalities s1 � (1−)
2m
n

and s1 � − 2m
n

in (3.9), we get the first inequality.

Again, using the value of  , it follows from the right inequality of (3.8) that

(
EA (G)−|s1|

)2
�

n


j=2

|s j|2 +(n−1)(n−2)|s1| −2
n−1

∣∣∣det
(
A(G)− 2m

n
I
)∣∣∣ 2

n−1
,

that is,

EA (G) � s1 +

√
1− s2

1 +(n−1)(n−2)s
−2
n−1
1

∣∣∣det
(
A(G)− 2m

n
I
)∣∣∣ 2

n−1
. (3.10)

Now, using the inequalities s1 � (1−)
2m
n

and s1 � − 2m
n

in (3.10) we get the

second inequality.
Equality occurs in the first inequality if and only if equality occurs in Lemma 2.5,

s1 = (1−)
2m
n

and s1 = − 2m
n

. From Lemma 2.1, it is clear that s1 = (1−)
2m
n

and s1 = − 2m
n

if and only if G is a -regular graph. Also, equality occurs in

Lemma 2.5 if and only if |s2|2 = |s3|2 = · · · = |sn|2 , that is, if and only if |s2| = |s3| =
· · · = |sn| , as i are real numbers. The following cases arise.

Case 1. If G is a -regular graph with s2 = s3 = · · ·= sn , then 2 = 3 = · · ·= n

giving that G is a connected graph with two distinct generalized adjacency eigenvalues.
Using Lemma 2.2, it follows that G ∼= Kn in this case.

Case 2. On the other hand if G is a -regular graph with at least one si differ-
ent from s1 , then |s2| = |s3|= · · · = |sn| gives there exist a positive integer k , such that
s2 = · · ·= sk and sk+1 = · · ·= sn . That is, 2 = · · ·=k =  and k+1 = · · ·= n =− .

Since,
n


j=2

2
j = 2Zg(G) + (1−)2‖A(G)‖2

F , it follows that equality occurs in this

case if G is a connected -regular graph with three distinct generalized adjacency
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eigenvalues, namely, the eigenvalue 1 = 1 and the other two eigenvalues with ab-

solute value

√
2Zg(G)+ (1−)2‖A(G)‖2

F

n−1
. Similarly, we can discuss the equality

case for second inequality.
Conversely, it is easy to see that equality occurs in each of the inequalities for the

mentioned cases. This completes the proof. �

Proceeding similar as in Theorem 3.5 and using part (v) of Lemma 2.1 we obtain
the following result.

THEOREM 3.6. Let G be a connected graph of order n � 3 with m edges having
Zagreb index Zg(G) and maximum degree  . Then

EA (G)

� −2m
n

+

√
(n−2)

(
1−

(√Zg(G)
n

−2m
n

)2)
+(n−1)

(√Zg(G)
n

−2m
n

) −2
n−1 2

and

EA (G) �
√

Zg(G)
n

− 2m
n

+

√
1−

(
− 2m

n

)2
+(n−1)(n−2)

(
− 2m

n

) −2
n−1 2,

where 1 =2Zg(G)+(1−)2‖A(G)‖2
F −

42m2

n
and 2 =

∣∣∣det
(
A(G)− 2m

n
I
)∣∣∣ 2

n−1
.

Equality occurs in both the inequalities if and only if G∼= Kn or G is a -regular graph
with three distinct generalized adjacency eigenvalues, 1 =  and the other two eigen-

values with absolute value

√
2Zg(G)+ (1−)2‖A(G)‖2

F

n−1
.

The following result gives an upper bound for the generalized adjacency energy in
terms of vertex degrees and the energy of a graph.

THEOREM 3.7. Let G be a connected graph of order n � 3 with m edges and
vertex degrees d1,d2, . . . ,dn. Let  be the number of generalized adjacency eigenvalues

of G which are greater than or equal to
2m

n
. Then

EA (G) � (1−)E (G)+



i=1

(
di− 2m

n

)
.

Equality occurs if G is a regular graph.

Proof. Applying Lemma 2.4 to

A(G) = D(G)+ (1−)A(G)
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we get

k


i=1

i(G) � 
k


i=1

di +(1−)
k


i=1

i, (3.11)

where i(G) are the adjacency eigenvalues of G . Let  be the number of generalized

adjacency eigenvalues of G which are greater than or equal to
2m

n
, then 1 �  � n .

From the definition of energy, we have

E (G) = 2 max
1� j�n

k


i=1

i(G) � 2



i=1

i(G)

This together with inequality 3.11 gives

2



i=1

i(G) � 2



i=1

di +2(1−)



i=1

i(G)

2



i=1

i − 4m
n

� 2



i=1

di +(1−)E(G)− 4m
n

.

Thus, using Lemma 2.3, it follows that

EA (G) � (1−)E (G)+2



i=1

(
di − 2m

n

)
.

If G is regular graph then it is clear that equality occurs. �

4. Conclusion

In this paper our aim was to present some new upper and lower bounds for the gen-
eralized adjacency energy of a graph, in terms of different graph structural parameters.
Formally, we presented bounds connected the generalized adjacency energy with the
vertex degrees, the Zagreb index (a well-known topological index), the vertex covering
number, the number of vertices and the number of edges of a graph.

The importance of our results is that for  = 0, we obtain the corresponding re-
sults for the energy (adjacency energy) and for  = 0.5, we obtain the corresponding
results for the signless Laplacian energy of a graph, giving that the results obtained in
this paper present generalizations and extensions of the corresponding results obtained
for the energy and the signless Laplacian energy. Further, in the language of Linear
Algebra, the generalized adjacency energy of a graph G represents the trace norm of

the matrix A(G)− 2m
n

In . Trace norm of a general matrix is an interesting and im-

portant concept in Matrix Theory and has been extensively studied for graph matrices.
This gives another motivation for the study of the generalized adjacency energy and its
importance from Matrix Theory point of view.
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Although, we have presented some upper and lower bounds for the generalized ad-
jacency energy connecting it with different graph parameters associated with the struc-
ture of the graph, there are many other graph parameters like the clique number, the
independence number, the chromatic number, the domination number, etc or the topo-
logical indices like, the second Zagreb index, the Randić index, etc, whose connection
with the generalized adjacency energy will be an interesting research problem for future
research.
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