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Abstract. This paper concerns the study singular integrals along twisted surfaces of the form

{((|v|)u,(|u|)v) : (u,v) ∈ Rn ×Rm} .

We prove Lp bounds for the corresponding operators when the surfaces are defined by map-
pings more general than polynomials and convex functions, provided that the kernels are in
L(logL)2(Sn−1×Sm−1) .

1. Introduction and statement of results

For d � 2, let Rd (d = n or d = m) be the d -dimensional Euclidean space and
Sd−1 be the unit sphere in Rd equipped with normalized Lebsgue measure d . For

non-zero point y ∈ Rn (y �= 0) , we let y′ =
y
|y| ∈ Sn−1 . Let  ∈ L1(Sn−1 ×Sm−1) be

such that ∫
Sn−1

(u′, .)d(u′) =
∫

Sm−1
(.,v′)d(v′) = 0, (1.1)

and
(tx,sy) = (x,y), ∀t,s > 0. (1.2)

The classical singular integral operator on product domains associated to the function
 is defined by

S( f )(x,y) =
∫

Rn×Rm
f (x−u,y− v)

(u,v)
|u|n|v|m dudv. (1.3)

The study of the operator S began by Fefferman-Stein in [11] and Fefferman [10]. In
[11], Fefferman and Stein showed that S is bounded on Lp(Rn+m) for (1 < p < )
if  satisfies certain Lipschitz conditions. Subsequently, several authors have studied
the Lp boundedness of the operator S under various conditions on  . For further
results and background information, we refer the readers to consult [2], [8], [9], [11],
among others. In particular, in [8], Duoandikoetxea proved that S is bounded on Lp
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when  ∈ Lq(Sn−1 ×Sm−1) with q > 1. Subsequently, Fan-Guo-Pan in [9] obtained
the same Lp boundedness result but under the condition that  lies in certain Block

spaces B0,0
q (Sn−1 × Sm−1) introduced by Jiang and Lu in [12]. For

1
q

+
1
q′

= 1, a

function  lies in the space B0,0
q (Sn−1 × Sm−1) if  = 

=1 cb where {c} is a
sequence of complex numbers, b is a measurable function satisfying the properties
that supp(b) = I , ‖b‖Lq �| I |−1/q′ , and

M0,0
q (
{
c
}
) =




=1

|c |(1+ log+(|I |−1)) < .

Here, I is an interval on Sn−1 ×Sm−1 . It is well known that Block spaces enjoy the
following properties:

Lq(Sn−1×Sm−1)⊆ B0,0
q (Sn−1×Sm−1), B0,0

q (Sn−1×Sm−1) �
⋃
q>1

Lq(Sn−1×Sm−1),

and

B0,0
q2

(Sn−1×Sm−1) ⊂ B0,0
q1

(Sn−1×Sm−1) whenever 1 < q1 < q2.

For detailed information about Block spaces, we refer the readers to [12].
In [7], Al-Salman, Al-Qassem, and Pan investigated the Lp boundedness of the

operator S under the natural condition  ∈ L(logL)2(Sn−1×Sm−1) , i.e.,∫
Sn−1×Sm−1

|(u,v)| log2(2+ |(u,v)|)d(u)d(v) < . (1.4)

They proved that S is bounded on Lp (1 < p <) provided that ∈L(logL)2(Sn−1×
Sm−1) . Moreover, they showed that the Lp boundedness of S may fail if the con-
dition  ∈ L(logL)2(Sn−1 ×Sm−1) is replaced by  ∈ L(logL)2− (Sn−1 ×Sm−1) for
any given  > 0. It should be remarked here that the following inclusions hold:

L(log+ L)s(Sn−1×Sm−1) ⊂ L(log+ L)r(Sn−1×Sm−1) whenever r < s

and
Lq(Sn−1×Sm−1) � L(log+ L)r(Sn−1×Sm−1) � L1(Sn−1×Sm−1) (1.5)

whenever q > 1 and r � 1.
In his investigation of the Lp mapping properties of Marcinkiewicz functions,

Al-Salman [3] introduced the following class of mappings that are more general than
polynomials and convex functions:

DEFINITION 1.1. ([3]). A function  : [0,) → R is said to belong to the class
PC  (d) if there exist a polynomial P belongs to the class Pd of all real valued
polynomials with degree at most d and a mapping  ∈Cd+1[0,) such that

(i) (t) = P(t)+(t)
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(ii) P(0) = 0 and ( j)(0) = 0 for 0 � j � d

(iii) ( j) is positive non-decreasing on (0,) for 0 � j � d +1.

For convenience, the polynomial P satisfying the conditions (i) and (ii) above
will be denoted by P . It was pointed out in [3] that the class ∪d�0(PC  (d)) contains
the class of polynomials Pd as well as the class of convex increasing functions. Re-
cently, Al-Azriyah and Al-Salman studied singular integrals on product domains along
surfaces determined by mapping that lie in the class PC  (d) . In fact, Al-Azriyah and
Al-Salman proved the following result:

THEOREM 1.1. ([1]). Let  ∈ L(logL)2(Sn−1×Sm−1) satisfying (1.1)–(1.2) and
(1.4). If  ∈ PC  (d),  ∈ PC (b) for some d, b > 0 and  ,  ∈ R , then the
operator

T,,( f )(x,y) = p.v.
∫

Rn×Rm
f (x−(|u|)u′,y−(|v|)v′)(u′,v′)

|u|n |v|m dudv (1.6)

is bounded on Lp(Rn ×Rm) for 1 < p <  with Lp bounds independent of  , ∈ R
and the coefficients of the particular polynomials involved in the standard representa-
tions of  and  given in Definition 1.1.

The aim of this paper is to investigate the Lp boundedness of a class of singular
integral operators on product domains along twisted surfaces determined by mappings
that lie in certain PC  (d) . Let h : [0,)× [0,) → R be a measurable function. For
suitable mapping  : Rn ×Rm → Rn ×Rm of the form

(u,v) = ((|v|)u,(|u|)v) , (1.7)

where  : (0,) → R and  : (0,) → R , we consider the singular integral operator
on product domains defined by

S,h,( f )(x,y) =
∫

Rn×Rm
f ((x,y)−(u,v))

(u′,v′)
|u|n |v|m h(|u|, |v|)dudv. (1.8)

It is clear that, when (t) = (t) = c-constant and h ≡ 1, then S,h, is the clas-
sical operator S . In [6], Al-Salman proved the Lp boundedness of S,h, for
 ∈ L(logL)2(Sn−1 × Sm−1) and h ∈ L([0,)× [0,)) provided that the functions
 and  belong to the class F of smooth functions  : (0, ) → R which satisfy
(0) = 0 and the following growth conditions:

|(t)| � C1t
d and

∣∣∣ ′′
(t)
∣∣∣� C2t

d−2 (1.9)

for some d �= 0 and t ∈ (0, ), where C1 and C2 are positive constants independent of
t . It was pointed out in [6] that the operator S,h, may fail to be bounded on Lp (1 <
p < ) when (t) = t or (t) = t . In fact, it is shown in [6] that |S,( f )(x,y)| =
 if (t) = (t) = t for certain choice of f . Furthermore, as a consequence of
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the Lp boundedness of certain maximal functions, Al-Salman in [5] deduced the Lp

boundedness of S,h, when the functions  and  satisfy some growth conditions
similar to (1.9), the function  is in L(logL)(Sn−1×Sm−1), and that h is a measurable
function that satisfies

‖h‖L2(R+×R+,r−1 s−1drds) =

⎛⎝ ∫
0

∫
0

|h(r,s)|2r−1 s−1drds

⎞⎠ 1
2

� 1.

In the same paper, Al-Salman obtained the same result for  ∈ Bq
(0,0)(Sn−1 ×Sm−1)

(q > 1) .
We remark here that the classes F and ∪d�0(PC  (d)) are different. In particu-

lar, the function (t)=t2e−
1
t for t > 0 and (t)=0 for t�0 lies in ∪d�0(PC  (d))\F .

On the other hand, the power function (t) =
√

t lies in F\∪d�0 (PC  (d)) . There-
fore, it is natural to ask if the operators S,h, in (1.8) are bounded on some Lp if the
functions  and  are in ∪d�0(PC  (d)) . Motivate by the work in [4], we introduce
the following class of functions:

DEFINITION 1.2. For b,d � 0 and  , ∈ R , we let H (d,b, ,) be the class
of all pairs (,) of functions  and  with  ∈ PC  (d) and  ∈ PC (b) such
that the corresponding polynomials P and P satisfy one of the following conditions:

(i) P(0) = P(0) = 0 and

lim
t→0

P(t)
t

= lim
t→0

P(t)
t

= 0;

(ii) deg(P)+deg(P) = 1;

(iii) deg(P) deg(P) = 0 and deg(P)+deg(P) > 1;

(iv) deg(P) = deg(P) = 1, P(0) �= 0 and P(0) �= 0;

(v) P(t) = t and deg(P) > 1 with lim
t→0

(P(t)−P(0))/t = 0 or P(t) = t and

deg(P) > 1 with lim
t→0

(P(t)−P(0))/t = 0.

Our main result is the following:

THEOREM 1.2. Suppose that  ∈ L(logL)2(Sn−1 ×Sm−1) and satisfying (1.1)–
(1.2). If (u,v) = ((|v|)u,(|u|)v) , with (,) ∈ H (d,b, ,) for d,b > 0 , then
the operator S,h, in (1.8) is bounded on Lp(Rn×Rm) for 1< p < with Lp bounds
independent of  , ∈ R and the coefficients of the particular polynomials involved in
the standard representations of  and  .
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In order to prove the above theorem, we consider a special family of maximal
functions along twisted surfaces. For (z1,z2) ∈ Sn−1 × Sm−1 and suitable functions
, : [0,) → R , we let

 (z1,z2)
, ( f )(x,y) = sup

k, j∈Z

2 j+1∫
2 j

2k+1∫
2k

| f (x−( )r z1,y−(r) z2)|drd
r

. (1.10)

It is worth mentioning that dealing with maximal functions involving twisted surfaces
is more complex than dealing with the classical maximal functions. As far as we know,

very little is known about the boundedness of  (z1,z2)
, in (1.10). Recently, Al-Salman

[4] proved the Lp boundedness of  (z1,z2)
, when  and  are polynomials that satisfy

one of the conditions (i)−(v) in the Definition 1.2. Besides that, the same author in [6]

obtained that  (z1,z2)
, is bounded on Lp for all p ∈ (1,) , provided that  ,  ∈F . In

this paper, we shall prove the following result:

THEOREM 1.3. Suppose that (u,v) = ((|v|)u,(|u|)v) , where , ∈
H (d,b, ,) for d,b > 0 and  , ∈ R . Let  (z1,z2)

, be given by (1.10). Then  (z1,z2)
,

is bounded on Lp for all 1 < p <  with Lp bounds independent of  , ∈ R and the
coefficients of the particular polynomials involved in the standard representations of 
and  .

As a consequence of Theorem 1.3, we have the following result:

THEOREM 1.4. Suppose that  ∈ L1(Sn−1 × Sm−1) satisfying (1.1)–(1.2) and
,
∈ H (d,b, ,) , for d,b � 0 . Let ,, be the maximal function

,,( f )(x,y) = sup
k, j∈Z

∣∣∣∣∣∣∣∣∣∣
∫∫

2k<|v|<2k+1

2 j<|u|<2 j+1

f ((x,y)−(u,v))
(u′,v′)
|u|n |v|m dudv

∣∣∣∣∣∣∣∣∣∣
. (1.11)

Then, there exists a constant Cp > 0 such that

‖,,( f )‖Lp(Rn×Rm) � Cp‖‖L1(Sn−1×Sm−1) ‖ f‖Lp(Rn×Rm)

for all 1 < p <  with Lp bounds independent of  , ∈ R and the coefficients of the
particular polynomials involved in the standard representations of  and  .

Historically, Al-Salman in [5] obtained the Lp boundedness of ,, where 
and  satisfy (1.9). In [4], the same author proved that ,, is bounded on Lp

(1 < p < ) provided that  and  are polynomials satisfying one of the conditions
(i)–(v) in Definition 1.2. We remark here that, in light of the relations (1.5) and the
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definition of the class H (d,b, ,) , Theorem 1.2, and Theorem 1.4 are fundamental
generalizations of Theorem 4.3 and Corollary 4.4 in [5] respectively. Furthermore,
Theorem 1.2, Theorem 1.3, and Theorem 1.4 generalize the corresponding results in
[4], [6], and [5].

This paper is organized as follows. In Section 2, we present some preliminary
lemmas. In Section 3, we will develop and prove some maximal function results. The
proofs of Theorem 1.3 and Theorem 1.4 will be presented in Section 4. Finally, the
proof of Theorem 1.2 will be presented in Section 5.

Throughout this paper, the letter C will stand for a constant that may vary at each
occurrence but it is independent of the essential variables.

2. Preliminary tools

This section is devoted to recall some known lemmas. We start by recalling the
following lemma in [1] (see also [3]):

LEMMA 2.1. ([1]). If  ∈ Cd+1[0,) and satisfies the conditions (i)–(iii) in
Definition 1.1, then

(i) (r) �  (r) for 0 �  � 1 and r > 0

(ii) (r) �  (r) for  � 1 and r > 0.

(iii) (d+1)(r) � r−d−1(r) for r > 0.

The following Proposition will play a key role in this paper:

PROPOSITION 2.2. ([6]). Let L : Rn → Rn and H : Rm → Rm be linear trans-
formations. Let {k, j : k, j ∈ Z} be a sequence of Borel measures on Rn ×Rm . Let
1,2 ∈ R and let 1 and 2 be defined by

i =

⎧⎨⎩
1, i � −1

i = 1,2.
−1, i < −1,

Suppose that for some a > 1 , , ,C > 0 , and B > 1 , the following hold for k, j ∈ Z ,
( ,) ∈ Rn ×Rm:

(i) |̂ j,k( ,)| � CB2(a2 jB a11 kB|L( )|)± 
B (a1 kB a2 2 jB|H()|)± 

B ,

(ii) ‖sup
j,k

(|| j,k| ∗ f |)‖q � CB2‖ f‖q, ∀ q ∈ (1,).

Then for 1 < p <  , there exists a positive constant Cp such that∥∥∥∥∥ k, j∈Z
 j,k ∗ f

∥∥∥∥∥
Lp(Rn×Rm)

� CpB
2‖ f‖Lp(Rn×Rm) (2.1)
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and ∥∥∥∥∥∥
(


j,k∈Z
| j,k ∗ f |2

)1/2
∥∥∥∥∥∥

Lp(Rn×Rm)

� CpB
2‖ f‖Lp(Rn×Rm) (2.2)

hold for all f in Lp(Rn ×Rm) . The constant Cp is independent of B and the linear
transformations L and H .

Finally, the following lemma was proved by Al-Salman in [4]:

LEMMA 2.3. ([4]). Let L : Rn →Rn and H : Rm →Rm be linear transformations.
Let 1,2 > −1 be such that 12 �= 1 . For (i, j) ∈ {(1,1),(1,0),(0,1),(0,0)} , let

 (i, j) = { (i, j)
t,s : t,s ∈ R} be a family of measures on Rn ×Rm . Suppose that for some

,  and C > 0 , the following hold for t,s ∈ R , ( ,) ∈ Rn×Rm :

(i) |̂ (i, j)
t,s ( ,)| � 1

(ii) |̂ (1,1)
t,s ( ,)| � C (2t 21 s|L( )|)− (2s 22 t |H()|)−

(iii) |
(
̂ (1,1)

t,s − ̂ (1,0)
t,s

)
( ,)| � C (2t 21 s|L( )|)− (2s 22 t |H()|)

(iv) |
(
̂ (1,1)

t,s − ̂ (0,1)
t,s

)
( ,)| � C (2t 21 s|L( )|) (2s 22 t |H()|)−

(v) |
(
̂ (1,1)

t,s − ̂ (0,1)
t,s − ̂ (1,0)

t,s + ̂ (0,0)
t,s

)
( ,)| � C (2t 21 s|L( )|) (2s 22 t |H()|)

(vi) |
(
̂ (1,0)

t,s − ̂ (0,0)
t,s

)
( ,)| � C (2t 21 s|L( )|)

(vii) |
(
̂ (0,1)

t,s − ̂ (0,0)
t,s

)
( ,)| � C (2s 22 t |H()|)

(viii) For(i, j) ∈ {(1,0),(0,1),(0,0)} , the maximal function

( (i, j))∗( f )(x,y) = sup
t,s

(|| (i, j)
t,s | ∗ f |(x,y))

satisfies
‖( (i, j))∗( f )‖q � C‖ f‖q (2.3)

for any 1 < q <  . Then for 1 < p <  there exists positive constant Cp such that the
maximal function

( (1,1))∗( f )(x,y) = sup
t,s

(|| (1,1)
t,s | ∗ f |(x,y)) (2.4)

satisfies
‖( (1,1))∗( f )‖p � Cp ‖ f‖p (2.5)

for all f ∈ Lp(Rn×Rn) . The constant Cp is independent of the linear transformations
L and H .

Here, we remark that 2t in the above lemma can be replaced by (2t) where  is
convex increasing. Similarly for 2s .
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3. Introductory maximal inequalities

This section is devoted to establish some necessary maximal inequalities. We start
by establishing the following lemma:

LEMMA 3.1. Let z1 ∈ Rn and z2 ∈ Rm . For N,M � 0 , suppose that (, P) ∈
H (N,M, ,0) are such that (t) = P(t)+(t) and P(t) =

M

i=2

bi ti where M =

deg(P) � 2 . Then the maximal function

 (z1,z2)
,P

( f )(x,y) = sup
t,s∈R

2t+1∫
2t

2s+1∫
2s

| f (x−( )r z1,y−P(r) z2)|drd
r

, (3.1)

is bounded on Lp(Rn×Rm) for all 1 < p < . The Lp bounds of  (z1,z2)
,P

may depend
on the degrees of the polynomials P and P , but they are independent of  ∈ R , the
coefficients of the polynomials P, P and the points z1 and z2 .

Proof of Lemma 3.1. The proof of above lemma is based on an induction argument
on the deg(P) = M � 2. First, for M = 2, we argue in three cases as follow:

Case 1. Assume that P and P satisfy the assumption (i) in Definition 1.2. Let

P(t) =
N


i=2

ai t
i and P(t) = b2 t2.

Thus, by using the Riesz representation theorem, we define the family of measures

{ (,2)
t,s : t,s ∈ R} by setting, for any f ∈ C 

0 (Rn ×Rm) ,

∫
Rn×Rm

f (x,y)d (,2)
t,s (x,y) =

2t+1∫
2t

2s+1∫
2s

f (( )r z1 ,(b2 r2) z2)
drd
r

. (3.2)

Then

 (z1,z2)
,P

( f )(x,y) = sup
t,s

∣∣∣( (,2)
t,s ∗ f )(x,y)

∣∣∣ . (3.3)

Notice that

̂ (,2)
t,s ( ,) =

2t+1∫
2t

2s+1∫
2s

ei( ,)·(( )r z1,(b2r
2) z2) drd

r

=
2∫

1

2∫
1

ei[( ·z1)(2s  )2t r+(·z2)b2 (2t r)2 2s ] drd
r

.

(3.4)
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Also, we define the measures { (,1)
t,s : t,s ∈ R} , { (P,1)

t,s : t,s ∈ R} , and { (P,2)
t,s :

t,s ∈ R} via the Fourier transform by

̂ (P,2)
j,k ( ,) =

2∫
1

2∫
1

ei[( ·z1)P(2s  )2t r+(·z2)b2 (2t r)2 2s ] drd
r

, (3.5)

̂ (,1)
t,s ( ,) = ̂ (,2)

t,s ( ,0), (3.6)

and
̂ (P,1)

t,s ( ,) = ̂ (P,2)
t,s ( ,0). (3.7)

In addition, corresponding to the measures { (,1)
t,s } , { (P,1)

t,s } , and { (P,2)
t,s } , we

define the maximal functions ( (,1))∗ , ( (P,1))∗ , and ( (P,2))∗ by

( (,1))∗( f )(x,y) = sup
t,s

∣∣∣( (,1)
t,s ∗ f )(x,y)

∣∣∣ , (3.8)

( (P,1))∗( f )(x,y) = sup
t,s

∣∣∣( (P,1)
t,s ∗ f )(x,y)

∣∣∣ , (3.9)

and
( (P,2))∗( f )(x,y) = sup

t,s

∣∣∣( (P,2)
t,s ∗ f )(x,y)

∣∣∣ . (3.10)

Now, notice that

( (,1))∗( f )(x,y) = sup
t,s

2t+1∫
2t

2s+1∫
2s

| f (x−( )r z1,y)|d dr
 r

� sup
t,s

2s+1∫
2s

⎛⎜⎝ ( )2t+1∫
( )2t

| f (x−uz1,y)|du
u

⎞⎟⎠ d


� C (Mz1 +M−z1) f (x,y),

(3.11)

where Mz1 and M−z1 are the directional Hardy-Littlewood maximal functions in the
direction of z1 and −z1 respectively (acting on the x -variable) and C is a positive
constant. Therefore,

‖( (,1))∗( f )‖p � Cp ‖ f‖p (3.12)

for all 1 < p < . Similarly, we get

‖( (P,1))∗( f )‖p � Cp ‖ f‖p (3.13)

for all 1 < p < . On the other hand, by Theorem 1.2 in [4], we have

‖( (P,2))∗( f )‖p � Cp ‖ f‖p (3.14)

for all 1 < p <  with constant Cp independent of z1,z2 and the coefficients of the
polynomials P and P .
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Now, it is easy to show that

|̂ (,2)
t,s ( ,)|+ |̂ (,1)

t,s ( ,)|+ |̂ (P,1)
t,s ( ,)|+ |̂ (P,2)

t,s ( ,)| � C. (3.15)

Furthermore, we have∣∣∣∣ dN+1

dN+1 [( · z1)(2s  )2t r+( · z2)(b2 (2t r)2)2s ]
∣∣∣∣

= |(2t r) 2(N+1)s(N+1)(2s  )( · z1)|
� | 2t 2(N+1)s (2s  )−N−1(2s)( · z1)|
� | 2t (2s)( · z1)|. (3.16)

Thus, by Van der Corput lemma in [13], we get

|̂ (,2)
t,s ( ,)| �

2∫
1

∣∣∣∣∣∣
2∫

1

ei[( ·z1)(2s  )2t r+(·z2)(b2 (2t r)2)2s ] d


∣∣∣∣∣∣ dr
r

� C | 2t (2s)( · z1)|−
1

(N+1) .

(3.17)

On the other hand, we have∣∣∣∣ d2

dr2 [( · z1)(2s  )2t r+( · z2)(b2 (2t r)2)2s ]
∣∣∣∣ = |2b2 (2s )22t( · z2)|
� |b2 22t 2s( · z2)|.

(3.18)

Similarly, by Van der Corput lemma in [13], we obtain

|̂ (,2)
t,s ( ,)| �

2∫
1

∣∣∣∣∣∣
2∫

1

ei[( ·z1)(2s  )2t r+(·z2)b2 (2t r)2 2s ] dr
r

∣∣∣∣∣∣ d
� C |b2 22t 2s( · z2)|− 1

2 .

(3.19)

Also, we have

|̂ (,1)
t,s ( ,)| � C | 2t (2s)( · z1)|−

1
(N+1) , (3.20)

|̂ (P,2)
t,s ( ,)| � C |b2 22t 2s( · z2)|− 1

2 . (3.21)

By interpolation between the estimates (3.17) and (3.19), we get

|̂ (,2)
t,s ( ,)| � C | 2t (2s)( · z1)|−

1
2(N+1) |b2 22t 2s( · z2)|− 1

4 . (3.22)

Then, by (3.17), (3.19), (3.20), and (3.21), we get

|̂ (,2)
t,s ( ,)− ̂ (,1)

t,s ( ,)| � |̂ (,2)
t,s ( ,)|+ |̂ (,1)

t,s ( ,)|

� C | 2t (2s)( · z1)|−
1

(N+1) .
(3.23)
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Similarly

|̂ (,2)
t,s ( ,)− ̂ (P,2)

t,s ( ,)| � C
∣∣b2 22t 2s( · z2)

∣∣− 1
2 . (3.24)

In contrast, we can obtain that

|̂ (,2)
t,s ( ,)− ̂ (,1)

t,s ( ,)| =

∣∣∣∣∣∣
2t+1∫
2t

2s+1∫
2s

ei( ·z1)( )r
(
e[i(·z2)(b2 r2) ]−1

) dr
r

d


∣∣∣∣∣∣
� C

∣∣b2 22t 2s( · z2)
∣∣ .

(3.25)
By combining (3.25) and the trivial estimate

|̂ (,2)
t,s ( ,)− ̂ (,1)

t,s ( ,)| � C,

we get

|̂ (,2)
t,s ( ,)− ̂ (,1)

t,s ( ,)| � C
∣∣b2 22t 2s ( · z2)

∣∣ 1
2 . (3.26)

By the same procedure as in (3.25)–(3.26), we get

|̂ (,2)
t,s ( ,)− ̂ (P,2)

t,s ( ,)| � C
∣∣ 2t (2s+1)( · z1)

∣∣ 1
2 . (3.27)

Thus, by (3.23)–(3.24) and (3.26)–(3.27), we obtain

|̂ (,2)
t,s ( ,)− ̂ (,1)

t,s ( ,)| � C
∣∣ 2t (2s)( · z1)

∣∣− 1
2(N+1)

∣∣b2 22t 2s ( · z2)
∣∣ 1

4 ,
(3.28)

|̂ (,2)
t,s ( ,)− ̂ (P,2)

t,s ( ,)| � C
∣∣ 2t (2s+1)( · z1)

∣∣ 1
4
∣∣b2 22t 2s ( · z2)

∣∣− 1
4 . (3.29)

Also, we can show that

|̂ (,2)
t,s ( ,)− ̂ (P,2)

t,s ( ,)− ̂ (,1)
t,s ( ,)+ ̂ (P,1)

t,s ( ,)|

=

∣∣∣∣∣∣
2t+1∫
2t

2s+1∫
2s

(
ei( ·z1)( )r − ei( ·z1)P( )r

)(
ei(·z2)(b2 r2) −1

) dr
r

d


∣∣∣∣∣∣
�

2t+1∫
2t

2s+1∫
2s

∣∣∣(ei( ·z1)( )r −1
)∣∣∣ ∣∣∣(ei(·z2)(b2 r2) −1

)∣∣∣ dr
r

d


� C
∣∣ 2t (2s+1)( · z1)

∣∣ ∣∣b2 22t 2s ( · z2)
∣∣ .

(3.30)

By combining the estimate (3.30) and the trivial estimate

|̂ (,2)
t,s ( ,)− ̂ (P,2)

t,s ( ,)− ̂ (,1)
t,s ( ,)+ ̂ (P,1)

t,s ( ,)| � C,

we get

|̂ (,2)
t,s ( ,)− ̂ (P,2)

t,s ( ,)− ̂ (,1)
t,s ( ,)+ ̂ (P,1)

t,s ( ,)|

� C
∣∣ 2t (2s+1)( · z1)

∣∣ 1
4
∣∣b2 22t 2s ( · z2)

∣∣ 1
4 .

(3.31)
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The following two estimates are straight-forward

|̂ (,1)
t,s − ̂ (P,1)

t,s ( ,)| � C
∣∣ 2t (2s+1)( · z1)

∣∣ 1
4 , (3.32)

|̂ (P,2)
t,s − ̂ (P,1)

t,s ( ,)| � C
∣∣b2 22t 2s ( · z2)

∣∣ 1
4 . (3.33)

Thus, by (3.12)–(3.14), (3.22), (3.28), (3.29), (3.31)–(3.33), and Lemma 2.3 and the
remark that follows its statement, we obtain the Lp boundedness of the inequality (3.3)
with Lp bounds independent of  ∈ R , the coefficients of the polynomials P,P and
the points z1 and z2 . The proof is complete under assumption (i) . Now, we move to
the proof under condition (iii) .

Case 2. Assume that P and P satisfy the Condition (iii) in Definition 1.2. Let
P(t) = c-constant and P(t) = b2 t2 . We define the same families of measures as in

(3.2)–(3.10) in the Case 1. But here we replace P(t) =
N

i=2

bi ti by P(t) = c-constant.

Thus, as in (3.11), we can prove that

‖( (,1))∗( f )‖p � Cp ‖ f‖p (3.34)

for all 1 < p < . Similarly, we get

‖( (P,1))∗( f )‖p � Cp ‖ f‖p (3.35)

for all 1 < p < . Also, we have

( (P,2))∗( f )(x,y) = sup
t,s

2t+1∫
2t

2s+1∫
2s

| f (x− cr z1,y− (b2 r)2  z2)|d dr
 r

� sup
t,s

2t+1∫
2t

⎛⎜⎝ (b2 r)2 2s+1∫
(b2 r)2 2s

| f (x− cr z1,y−uz2)|du
u

⎞⎟⎠ dr
r

� M(1)
z1 ◦ (M(2)

z2 +M(2)
−z2) f (x,y),

(3.36)

where M(1)
z1 is the directional Hardy-Littlewood maximal functions in the direction of

z1 (acting on the x -variable) and Mz1 and M−z1 are as in (3.11). Hence,

‖( (P,2))∗( f )‖p � Cp ‖ f‖p (3.37)

for all 1 < p <  with constant Cp independent of z1,z2 and the coefficients of the
polynomials P and P .

On the other hand, we can show that

|̂ (,2)
t,s ( ,)|+ |̂ (,1)

t,s ( ,)|+ |̂ (P,1)
t,s ( ,)|+ |̂ (P,2)

t,s ( ,)| � C, (3.38)

|̂ (,2)
t,s ( ,)| � C | 2t (2s)( · z1)|− 1

4 |b2 22t 2s( · z2)|− 1
4 , (3.39)
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|̂ (,2)
t,s ( ,)− ̂ (,1)

t,s ( ,)| � C
∣∣ 2t (2s)( · z1)

∣∣− 1
4
∣∣b2 22t 2s ( · z2)

∣∣ 1
4 , (3.40)

|̂ (,2)
t,s ( ,)− ̂ (P,2)

t,s ( ,)| � C
∣∣ 2t (2s+1)( · z1)

∣∣ 1
4
∣∣b2 22t 2s ( · z2)

∣∣− 1
4 , (3.41)

|̂ (,2)
t,s ( ,)− ̂ (P,2)

t,s ( ,)− ̂ (,1)
t,s ( ,)+ ̂ (P,1)

t,s ( ,)|

� C
∣∣ 2t (2s+1)( · z1)

∣∣ 1
4
∣∣b2 22t 2s ( · z2)

∣∣ 1
4 ,

(3.42)

|̂ (,1)
t,s − ̂ (P,1)

t,s ( ,)| � C
∣∣ 2t (2s+1)( · z1)

∣∣ 1
4 , (3.43)

|̂ (P,2)
t,s − ̂ (P,1)

t,s ( ,)| � C
∣∣b2 22t 2s ( · z2)

∣∣ 1
4 . (3.44)

Thus, by (3.34)–(3.37), (3.38)–(3.44), and Lemma 2.3, we obtain the Lp boundedness
of the inequality (3.3) with Lp bounds independent of  ∈ R , the coefficients of the
polynomials P,P and the points z1 and z2 . This completes the proof of Case 2.

Case 3. Assume that P and P satisfy the Condition (v) in Definition 1.2. Let
P(t) = t and P(t) = b2 t2 . We define the similar families of measures as in (3.2)–
(3.10) in the Case 1, with P(t) = t . As in (3.11), we have

‖( (,1))∗( f )‖p � Cp ‖ f‖p (3.45)

for all 1 < p < . Similarly, we get

‖( (P,1))∗( f )‖p � Cp ‖ f‖p (3.46)

for all 1 < p < . Now, by Lemma 3.2 in [4], we get

‖( (P,2))∗( f )‖p � Cp ‖ f‖p (3.47)

for all 1 < p <  with constant Cp independent of z1,z2 and the coefficients of the
polynomials P and P . Also, we can prove that

|̂ (,2)
t,s ( ,)|+ |̂ (,1)

t,s ( ,)|+ |̂ (P,1)
t,s ( ,)|+ |̂ (P,2)

t,s ( ,)| � C, (3.48)

|̂ (,2)
t,s ( ,)| � C | 2t (2s)( · z1)|− 1

4 |b2 22t 2s( · z2)|− 1
4 , (3.49)

|̂ (,2)
t,s ( ,)− ̂ (,1)

t,s ( ,)| � C
∣∣ 2t (2s)( · z1)

∣∣− 1
4
∣∣b2 22t 2s ( · z2)

∣∣ 1
4 , (3.50)

|̂ (,2)
t,s ( ,)− ̂ (P,2)

t,s ( ,)| � C
∣∣ 2t (2s+1)( · z1)

∣∣ 1
4
∣∣b2 22t 2s ( · z2)

∣∣− 1
4 , (3.51)

|̂ (,2)
t,s ( ,)− ̂ (P,2)

t,s ( ,)− ̂ (,1)
t,s ( ,)+ ̂ (P,1)

t,s ( ,)|

� C
∣∣ 2t (2s+1)( · z1)

∣∣ 1
4
∣∣b2 22t 2s ( · z2)

∣∣ 1
4 ,

(3.52)

|̂ (,1)
t,s − ̂ (P,1)

t,s ( ,)| � C
∣∣ 2t (2s+1)( · z1)

∣∣ 1
4 , (3.53)

|̂ (P,2)
t,s − ̂ (P,1)

t,s ( ,)| � C
∣∣b2 22t 2s ( · z2)

∣∣ 1
4 . (3.54)
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Then, we can follow the same procedure as in previous cases. We omit details. This
concludes the third case.

Next, assume that the Lp boundedness of  (z1,z2)
,P

in (3.1) holds for all polynomials
P with degree less than or equal M−1 � 1. Let

P(t) =
M


i=2

bi t
i and P(M)

 (t) =
M−1


i=2

bi t
i.

In light of the conditions on P , we shall prove the Lp boundedness of  (z1,z2)
,P

in (3.1)
under the assumption (i) , (iii) , and (v) in Definition 1.2. We start by assuming that
P and P satisfy the Condition (i) in Definition 1.2. Let

P(t) =
N


i=2

ai t
i.

We define the family of measures { (,M)
t,s , (,M−1)

t,s , (P,M)
t,s , (P,M−1)

t,s : t,s ∈ R} via
the Fourier transform by

̂ (,M)
t,s ( ,) =

2∫
1

2∫
1

ei[( ·z1)(2s  )2t r+(·z2)P(2t r)2s ] drd
r

, (3.55)

̂ (,M−1)
t,s ( ,) =

2∫
1

2∫
1

ei[( ·z1)(2s  )2t r+(·z2)P
(M)
 (2t r)2s ] drd

r
, (3.56)

̂ (P,M)
t,s ( ,) =

2∫
1

2∫
1

ei[( ·z1)P(2s  )2t r+(·z2)P(2t r)2s ] drd
r

, (3.57)

and

̂ (P,M−1)
t,s ( ,) =

2∫
1

2∫
1

ei[( ·z1)P(2s  )2t r+(·z2)P(M)
 (2t r)2s ] drd

r
. (3.58)

Then, the maximal function  (z1,z2)
,P

is given by

 (z1,z2)
,P

( f )(x,y) = sup
t,s

∣∣∣( (,M)
t,s ∗ f )(x,y)

∣∣∣ . (3.59)

Now, let ( (,M−1))∗ , ( (P,M−1))∗ , and ( (P,M))∗ be the maximal functions given
by

( (,M−1))∗( f )(x,y) = sup
t,s

∣∣∣( (,M−1)
t,s ∗ f )(x,y)

∣∣∣ , (3.60)

( (P,M))∗( f )(x,y) = sup
t,s

∣∣∣( (P,M)
t,s ∗ f )(x,y)

∣∣∣ , (3.61)
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and

( (P,M−1))∗( f )(x,y) = sup
t,s

∣∣∣( (P,M−1)
t,s ∗ f )(x,y)

∣∣∣ . (3.62)

By induction assumption, we observe that

‖( (,M−1))∗( f )‖p � Cp ‖ f‖p (3.63)

for all 1 < p < .
Furthermore, by Theorem 1.2 in [4], we obtain that

‖( (P,M))∗( f )‖p � Cp ‖ f‖p. (3.64)

Similarly, we get

‖( (P,M−1))∗( f )‖p � Cp ‖ f‖p (3.65)

for all 1 < p < with constant Cp independent of the points z1 and z2 and the coeffi-
cients of the polynomials P and P .

Also, it is easy to see that for all (l,r) ∈ {(,M),(,M − 1),(P,M),(P,M −
1)} , we have

|̂ (l,r)
t,s ( ,)| � C. (3.66)

Now, by the properties of  in Lemma 2.1, we can obtain that∣∣∣∣ dN+1

dN+1 [( · z1)(2s  )2t r+( · z2)P(2t r)2s ]
∣∣∣∣� C | 2t (2s)( · z1)|. (3.67)

On the other hand, we have∣∣∣∣ dM

drM [( · z1)(2s  )2t r+( · z2)P(2t r)2s ]
∣∣∣∣� C |bM M! 2s 2Mt ( · z2)|. (3.68)

By (3.67), (3.68), and Van der Corput lemma in [13], we get

|̂ (,M)
t,s ( ,)| � C | 2t (2s)( · z1)|− 1

N+1 , (3.69)

|̂ (,M)
t,s ( ,)| � C |bM M! 2s 2Mt ( · z2)|− 1

M , (3.70)

and
|̂ (,M−1)

t,s ( ,)| � C | 2t (2s)( · z1)|− 1
N+1 , (3.71)

|̂ (P,M)
t,s ( ,)| � C |bM M! 2s 2Mt ( · z2)|− 1

M . (3.72)

By (3.66), (3.69), and (3.70), we have

|̂ (,M)
t,s ( ,)| � C | 2t (2s)( · z1)|−

1
2(N+1) |bM M! 2s 2Mt ( · z2)|− 1

2M . (3.73)
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Also, we have

|̂ (,M)
t,s ( ,)− ̂ (,M−1)

t,s ( ,)|

=

∣∣∣∣∣
2t+1∫
2t

2s+1∫
2s

ei( ·z1)( )r ei(·z2)PM
(r)
(
e[i(·z2)bM rM  ] −1

) dr
r

d


∣∣∣∣∣
� C

∣∣bM 2Mt 2s ( · z2)
∣∣ .

(3.74)

By interpolation between (3.74) and the trivial estimate

|̂ (,M)
t,s ( ,)− ̂ (,M−1)

t,s ( ,)| � C,

we obtain that

|̂ (,M)
t,s ( ,)− ̂ (,M−1)

t,s ( ,)| � C
∣∣bM 2Mt 2s ( · z2)

∣∣ 1
M . (3.75)

Similarly, we can get that

|̂ (,M)
t,s ( ,)− ̂ (P,M)

t,s ( ,)| � C
∣∣ 2t (2s+1)( · z1)

∣∣ 1
N+1 . (3.76)

By (3.69)–(3.72) and (3.75)–(3.76), we obtain

|̂ (,M)
t,s ( ,)− ̂ (,M−1)

t,s ( ,)|

� C | 2t (2s)( · z1)|−
1

2(N+1)
∣∣bM 2Mt 2s ( · z2)

∣∣ 1
2M ,

(3.77)

and
|̂ (,M)

t,s ( ,)− ̂ (P,M)
t,s ( ,)|

� C | 2t (2s+1)( · z1)|
1

2(N+1) |bM M! 2s 2Mt ( · z2)|−
1

2(M) .
(3.78)

By the same procedure as in (3.31), we get

|̂ (,M)
t,s ( ,)− ̂ (P,M)

t,s ( ,)− ̂ (,M−1)
t,s ( ,)+ ̂ (P,M−1)

t,s ( ,)|

� C
∣∣ 2t (2s+1)( · z1)

∣∣ 1
2(N+1)

∣∣bM 2Mt 2s ( · z2)
∣∣ 1

2M .
(3.79)

Also, we have

|̂ (,M−1)
t,s ( ,)− ̂ (P,M−1)

t,s ( ,)| � C
∣∣ 2t (2s+1)( · z1)

∣∣ 1
2(N+1) , (3.80)

|̂ (P,M)
t,s ( ,)− ̂ (P,M−1)

t,s ( ,)| � C
∣∣bM 2Mt 2s ( · z2)

∣∣ 1
2M . (3.81)

Finally, by (3.63)–(3.65), (3.73), (3.77)–(3.81), and Lemma 2.3 and the remark

that follows its statement, we establish the Lp boundedness for  (z1,z2)
,P

. The proof un-
der Assumption (i) is complete. The proof under the assumptions (iii) and (v) follow
by similar argument with minor modification. We omit the details. This completes the
proof. �
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4. Proofs of Theorems 1.3 and 1.4

In this section, we shall present the proofs of Theorems 1.3 and 1.4. We will carry
out the proof of Theorem 1.3 by a double induction argument along with Lemma 2.3.

Proof of Theorem 1.3. To prove Theorem 1.3, we start by using double induction
on the degrees d = deg(P) and b = deg(P) . First, for d = 2 and b arbitrary, the

Lp boundedness of  (z1,z2)
, is satisfied by Lemma 3.1. Similarly, for b = 2 and d

arbitrary. Next, we assume that the Lp bounds (1 < p <) for  (z1,z2)
, holds for all 

with degree of P less than d +1 and P of any degree. Furthermore, we assume the
Lp boundedness also holds for all  with degree of P less than b+1 and  of any
degree. Thus , we assume that deg() = d +1 and deg() = b+1. Let

(t) = P(t)+1(t) and (t) = P(t)+2(t) (4.1)

where

P(t) =
d+1


i=2

ai t
i and P(t) =

b+1


i=2

ci t
i. (4.2)

For t,s ∈ R , we define the family of measures { (d+1,b+1)
t,s : t,s ∈ R} , { (d+1,b)

t,s : t,s ∈
R} , { (d,b+1)

t,s : t,s ∈ R} , and { (d,b)
t,s : t,s ∈ R} by

∫ ∫
Rn×Rm

f (x,y)d (d+1,b+1)
t,s (x,y) =

2t+1∫
2t

2s+1∫
2s

f (( )r z1 ,(r) z2)
drd
r

, (4.3)

∫ ∫
Rn×Rm

f (x,y)d (d+1,b)
t,s (x,y) =

2t+1∫
2t

2s+1∫
2s

f (( )r z1 ,P(r) z2)
drd
r

, (4.4)

∫ ∫
Rn×Rm

f (x,y)d (d,b+1)
t,s (x,y) =

2t+1∫
2t

2s+1∫
2s

f (P( )r z1,(r) z2)
drd
r

, (4.5)

and

∫ ∫
Rn×Rm

f (x,y)d (d,b)
t,s (x,y) =

2t+1∫
2t

2s+1∫
2s

f (P( )r z1,P(r) z2)
drd
r

. (4.6)

Now, let
( (i,r))∗( f )(x,y) = sup

t,s

∣∣∣( (i,r)
t,s ∗ f )(x,y)

∣∣∣ , (4.7)

where i = d,d +1, r = b,b+1. Then

 (z1,z2)
, ( f )(x,y) = sup

t,s

∣∣∣( (d+1,b+1)
t,s ∗ f )(x,y)

∣∣∣ . (4.8)
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For (i,r) ∈ {(d +1,b),(d,b+1),(d,b)} , induction assumption implies that

‖( (i,r))∗( f )‖p � Cp‖ f‖p (4.9)

for all 1 < p <  . Now, we move to obtain the Fourier estimates of the measures
{ (d+1,b+1)

t,s : t,s∈Z} , { (d+1,b)
t,s : t,s∈R} , { (d,b+1)

t,s : t,s∈R} , and { (d,b)
t,s : t,s∈R} .

Notice that

̂ (d+1,b+1)
t,s ( ,) =

2∫
1

2∫
1

ei[( ·z1)(2s  )2t r+(·z2)(2t r)2s ] drd
r

, (4.10)

̂ (d+1,b)
t,s ( ,) =

2∫
1

2∫
1

ei[( ·z1)(2s  )2t r+(·z2)P(2t r)2s ] drd
r

, (4.11)

̂ (d,b+1)
t,s ( ,) =

2∫
1

2∫
1

ei[( ·z1)P(2s  )2t r+(·z2)(2t r)2s ] drd
r

, (4.12)

and

̂ (d,b)
t,s ( ,) =

2∫
1

2∫
1

ei[( ·z1)P(2s  )2t r+(·z2)P(2t r)2s ] drd
r

. (4.13)

We can easily show that

|̂ (d+1,b+1)
t,s |+ |̂ (d,b+1)

t,s |+ |̂ (d+1,b)
t,s |+ |̂ (d,b)

t,s | � C. (4.14)

By similar argument as that led to (3.67), we get∣∣∣∣ dd+1

d d+1 [( · z1)(2s  )2t r+( · z2)(2t r)2s ]
∣∣∣∣� C | 2t 1(2s)( · z1)|, (4.15)

and∣∣∣∣ db+1

drb+1 [( · z1)(2s  )2t r+( · z2)(2t r)2s ]
∣∣∣∣� C | 2s2(2t)( · z2)|. (4.16)

Hence, by similar procedure as in the proof of Lemma 3.1, we can obtain

|̂ (d+1,b+1)
t,s ( ,)|

� C | 2t 1(2s)( · z1)|−
1

2(d+1) | 2s2(2t)( · z2)|−
1

2(b+1) ,
(4.17)

|̂ (d+1,b+1)
t,s ( ,)− ̂ (d+1,b)

t,s ( ,)|

� C | 2t 1(2s)( · z1)|−
1

2(d+1) | 2s2(2t+1)( · z2)|
1

2(b+1) ,
(4.18)
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|̂ (d+1,b+1)
t,s ( ,)− ̂ (d,b+1)

t,s ( ,)|

� C | 2t 1(2s+1)( · z1)|
1

2(d+1) | 2s2(2t)( · z2)|−
1

2(b+1) ,
(4.19)

|̂ (d+1,b+1)
t,s ( ,)− ̂ (d,b+1)

t,s ( ,)− ̂ (d+1,b)
t,s ( ,)+ ̂ (d,b)

t,s ( ,)|

� C | 2t 1(2s+1)( · z1)|
1

2(d+1) | 2s2(2t+1)( · z2)|
1

2(b+1) ,
(4.20)

|̂ (d+1,b)
t,s ( ,)− ̂ (d,b)

t,s ( ,)| � C | 2t 1(2s+1)( · z1)|
1

2(d+1) , (4.21)

|̂ (d,b+1)
t,s ( ,)− ̂ (d,b)

t,s ( ,)| � C | 2s2(2t+1)( · z2)|
1

2(b+1) . (4.22)

Finally, by (4.9), (4.14), (4.17)–(4.22) and Lemma 2.3 along with the remark that fol-
lows its statement, the proof is complete. �

Proof of Theorem 1.4. The proof of Theorem 1.4 based on Minkowski’s inequality
and Theorem 1.3 with z1 and z2 are replaced by u′ and v′ respectively. Notice

,,( f )(x,y)

� sup
t,s∈R

∫
Sn−1

∫
Sm−1

|(u′,v′)|
2t+1∫
2t

2s+1∫
2s

| f (( )ru′,(r)v′)|drd
r

d(u′)d(v′)

� C
∫

Sn−1

∫
Sm−1

|(u′,v′)|  (u′,v′)
, ( f )(x,y)d(u′)d(v′).

Thus,
‖,,( f )‖Lp � C‖‖L1 ‖ (u′,v′)

, ‖Lp

� Cp ‖‖L1 ‖ f‖Lp

for all 1 < p < and Cp > 0. This ends the proof of Theorem 1.4. �

5. Proof of Theorem 1.2

This section is devoted to present the proof of Theorem 1.2.

Proof of Theorem 1.2. For d,b � 0, assume that ,,  are as in the statement
of Theorem 1.2. We decompose the function  as in [7]. Let { :  ∈ N∪{0}} be a
sequence of numbers and { :  ∈N∪{0}} be a sequence of functions on Sn−1×Sm−1

such that ∫
Sn−1

(u′, .)d(u′) =
∫

Sm−1
(.,v′)d(v′) = 0, (5.1)

(tx,sy) = (x,y), ∀t,s > 0, (5.2)

‖‖1 � 4, ‖‖2 � 4(w )2, (5.3)

(x,y) =



=0

 (x,y), (5.4)
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=0

( +1)2 � ‖‖L(logL)2(Sn−1×Sm−1), (5.5)

where 0 = 1 and w = 2+1 . By (5.4), we get

T,( f ) =



=0

 T ,( f )(x,y), (5.6)

where

T , f =
∫

Rn×Rm
f (x−(|v|)u′,y−(|u|)v′)(u′,v′)

|u|n |v|m dudv.

Thus, by (5.5) and (5.6), we only need to prove that

‖T , f‖p � Cp( +1)2‖ f‖p. (5.7)

For , ∈ H (d,b, ,) , let P,P be two polynomials satisfying one of the condi-
tions (i)− (iv) in Definition 1.2 such that

(t) = P(t)+11(t) and (t) = P(t)+2(t) (5.8)

where

P(t) =
d


i=2

ai t
i and P(t) =

b


i=2

ci t
i. (5.9)

For 2 � l � d and 2 � s � b , let

Pl
(t) =

l


i=2

ai t
i and Ps

(t) =
s


i=2

ci t
i. (5.10)

Notice that, we are the convinced that

P1
(t) = P1

(t) = 0.

For  ∈ N∪{0} and j,k ∈ Z , let { (d+1,b+1)
, j,k : j,k ∈ Z} be the family of measures

defined by∫
Rn×Rm

f (x,y)d (d+1,b+1)
, j,k (x,y) =

∫∫
wj
<|v|<wj+1


wk
<|u|<wk+1



f ((|v|)u′,(|u|)v′)
(u′,v′)
|u|n |v|m dudv.

(5.11)
Also, we define the family of measures { (l,s)

, j,k : 1 � l � d, 1 � s � b} by

∫
Rn×Rm

f (x,y)d (l,s)
, j,k(x,y) =

∫∫
wj
<|v|<wj+1


wk
<|u|<wk+1



f (Pl
(|v|)u′,Ps

(|u|)v′)
(u′,v′)
|u|n |v|m dudv.

(5.12)
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By (5.11) and (5.12), we have

T ,( f )(x,y) = 
j,k∈Z

 (d+1,b+1)
, j,k ∗ f (x,y). (5.13)

The maximal function corresponding the measures  (d+1,b+1)
, j,k is given by

( (d+1,b+1)
 )∗( f )(x,y) = sup

j,k

∣∣∣| (d+1,b+1)
, j,k | ∗ f (x,y)

∣∣∣ . (5.14)

Thus, by Theorem 1.3 and the first inequality in (5.3), we get

‖( (d+1,b+1)
 )∗( f )‖p � Cp ( +1)2‖ f‖p (5.15)

for all 1 < p < with constant Cp independent of  .
Now, notice that

̂ (d+1,b+1)
, j,k ( ,) =

∫∫
wj
<|v|<wj+1


wk
<|u|<wk+1



ei( ,)((|v|)u′,(|u|)v′)(u′,v′)
|u|n |v|m dudv, (5.16)

and that

̂ (l,s)
, j,k( ,) =

∫∫
wj
<|v|<wj+1


wk
<|u|<wk+1



ei( ,)(Pl
(|v|)u′,Ps

(|u|)v′)(u′,v′)
|u|n |v|m dudv, (5.17)

for 1 � l � d and 1 � s � b . Notice that

̂ (d+1,1)
, j,k = ̂ (1,b+1)

, j,k = 0.

It is clear that

|̂ (d+1,b+1)
, j,k |+ |̂ (d+1,b)

, j,k |+ |̂ (d,b+1)
, j,k |+ |̂ (d,b)

, j,k | � C. (5.18)

Next∣∣∣̂ (d+1,b+1)
, j,k ( ,)

∣∣∣
�
∫

Sn−1×Sm−1
|(u′,v′)|

∣∣∣∣∣∣
w∫
1

w∫
1

ei[( ·u′)(wk
  )wj

 r+(·v′)(wj
 r)wk

  ] drd
r

∣∣∣∣∣∣ d(u′)d(v′).

By similar argument as that led to (4.17) with z1 and z2 replaced by u′ and v′ respec-
tively, and Hölder’s inequality, we get∣∣∣̂ (d+1,b+1)

, j,k ( ,)
∣∣∣

� C ( +1)2‖‖Lq

×
(∫

Sn−1×Sm−1
|Ad 1(wk

 )( ·u′)|− 1
(d+1) |Bb2(w

j
 )( · v′)|− 1

(b+1) d(u′)d(v′)
) 1

q′

(5.19)
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where Ad =  wj
 and Bb = wk

 . Hence, by (5.3) with q′ = 2, we obtain∣∣∣̂ (d+1,b+1)
, j,k ( ,)

∣∣∣
� C ( +1)2 4(w )2

×
(∫

Sn−1×Sm−1
|Ad 1(wk

 )( ·u′)|− 1
(d+1) |Bb2(w

j
 )( · v′)|− 1

(b+1) d(u′)d(v′)
) 1

2

� C ( +1)2 4(w )2 Gd,b |Ad 1(wk
 ) |−

1
2(d+1) |Bb2(w

j
 ) |−

1
2(b+1)

� C ( +1)2 4(w )2 |Ad 1(wk
 ) |−

1
2(d+1) |Bb2(w

j
 ) |−

1
2(b+1) ,

(5.20)
where

Gd,b =
(∫

Sn−1×Sm−1

∣∣ ′ ·u′∣∣− 1
d+1

∣∣ ′ · v′∣∣− 1
b+1 d(u′)d(v′)

) 1
2

= sup
 ′∈Sn−1

(∫
Sn−1

∣∣ ′ ·u′∣∣− 1
d+1 d(u′)

) 1
2

sup
 ′∈Sm−1

(∫
Sm−1

∣∣ ′ · v′∣∣− 1
b+1 d(v′)

) 1
2

< .

On the other hand, it can be shown that∣∣∣̂ (d+1,b+1)
, j,k ( ,)

∣∣∣� C ( +1)2‖‖1 � C ( +1)2, (5.21)

where the last inequality obtained by (5.3). Notice that

(
4(w )2) 1

+1 � C. (5.22)

Finally, by interpolation between (5.20) and (5.21) with 0 <  =
1

4( +1)
< 1, we get

∣∣∣̂ (d+1,b+1)
, j,k ( ,)

∣∣∣
� C ( +1)2 | wj

 1(wk
 ) |−

1
8(+1)(d+1) | wk

 2(w
j
 ) |−

1
8(+1)(b+1) .

(5.23)

Next, ∣∣∣̂ (d+1,b+1)
, j,k ( ,)− ̂ (d,b+1)

, j,k ( ,)
∣∣∣

=

∣∣∣∣∣
∫

Sn−1×Sm−1

∫ wj+1


wj


wk+1
∫

wk


 (u′,v′)e−i(r) (·v′)

×
(
e−i( )r ( .u′)− e−iP( )r ( .u′)

) dr
r

d


d(u′)d(v′)

∣∣∣∣∣.
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Then, by Fubini’s Theorem, the fact that wj
 <  < wj+1

 , and 1 is increasing , we get∣∣∣̂ (d+1,b+1)
, j,k ( ,)− ̂ (d,b+1)

, j,k ( ,)
∣∣∣

�
∣∣∣ wj+1

 1(wk+1
 )

∣∣∣∫
Sn−1

wk+1
∫

wk


∣∣∣∣∣∣∣
∫

Sm−1

wj+1
∫

wj


(u′,v′)e−i(r) (·v′)d(v′)
dr
r

∣∣∣∣∣∣∣
d


d(u′)

� ln(w )
∣∣∣ wj+1

 1(wk+1
 )

∣∣∣∫
Sn−1

∫
Sm−1

∣∣ (u′,v′)
∣∣L, j,( ,v′)d(u′)d(v′),

(5.24)
where

L, j,( ,v′) =

∣∣∣∣∣∣∣
wj+1
∫

wj


e−i(r) (·v′) dr
r

∣∣∣∣∣∣∣ .
Therefore, by (4.16) and Van der Corput lemma in [13], we get

L, j,( ,v′) � |wk
 2(w

j
 )( · v′)|− 1

(b+1) . (5.25)

Also, L, j, satisfies
L, j,( ,v′) � C ( +1). (5.26)

By interpolation between (5.25) and (5.26) with 0 <  =
1
q′

< 1, we get

L, j,( ,v′) � C ( +1) |wk
 2(w

j
 )( · v′)|−

1
q′(b+1) . (5.27)

Thus, by (5.24), (5.27), Hölder’s inequality and the fact that

sup
 ′∈Sm−1

(∫
Sm−1

∣∣ ′ · v′∣∣− 1
b+1 d(v′)

) 1
q′

<, (5.28)

we obtain∣∣∣̂ (d+1,b+1)
, j,k ( ,)− ̂ (d,b+1)

, j,k ( ,)
∣∣∣

� C ( +1)2‖‖Lq

∣∣∣ wj+1
 1(wk+1

 )
∣∣∣ | wk

 2(w
j
 ) |−

1
q′(b+1) .

(5.29)

On the other hand, we have∣∣∣̂ (d+1,b+1)
, j,k ( ,)− ̂ (d,b+1)

, j,k ( ,)
∣∣∣� C ( +1)2‖‖L1 . (5.30)

Finally, by (5.3), (5.22), and interpolation between (5.29) and (5.30), we get∣∣∣̂ (d+1,b+1)
, j,k ( ,)− ̂ (d,b+1)

, j,k ( ,)
∣∣∣

� C ( +1)2
∣∣∣ wj+1

 1(wk+1
 )

∣∣∣ 1
4(+1) | wk

 2(w
j
 ) |−

1
8(+1)(b+1) .

(5.31)
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Similarly, we obtain that∣∣∣̂ (d+1,b+1)
, j,k ( ,)− ̂ (d+1,b)

, j,k ( ,)
∣∣∣

� C ( +1)2
∣∣∣ wk+1

 2(w
j+1
 )

∣∣∣ 1
4(+1) | wj

 1(wk
 ) |−

1
8(+1)(d+1) .

(5.32)

By similar steps as in (3.30)–(3.31), we can obtain that∣∣∣̂ (d+1,b+1)
, j,k ( ,)− ̂ (d,b+1)

, j,k ( ,)− ̂ (d+1,b)
, j,k ( ,)+ ̂ (d,b)

, j,k ( ,)
∣∣∣

� C ( +1)2
∣∣∣ wj+1

 1(wk+1
 )

∣∣∣ 1
4(+1)

∣∣∣wk+1
 2(w

j+1
 )

∣∣∣ 1
4(+1)

.

(5.33)

In addition, we have∣∣∣̂ (d+1,b)
, j,k ( ,)− ̂ (d,b)

, j,k ( ,)
∣∣∣

�
∫

Sn−1×Sm−1

wj+1
∫

wj


wk+1
∫

wk


| (u′,v′)|
∣∣∣e−i1( )r ( ·u′)−1

∣∣∣ dr
r

d


d(u′)d(v′).

By the properties of 1 and wk
 <  < wk+1

 , we get∣∣∣̂ (d+1,b)
, j,k ( ,)− ̂ (d,b)

, j,k ( ,)
∣∣∣� C ( +1)2‖‖L1 | wj+1

 1(wk+1
 ) |. (5.34)

Also, we have ∣∣∣̂ (d+1,b)
, j,k ( ,)− ̂ (d,b)

, j,k ( ,)
∣∣∣� C ( +1)2‖‖L1 . (5.35)

Finally, by (5.3) and interpolation between (5.34) and (5.35), we get∣∣∣̂ (d+1,b)
, j,k ( ,)− ̂ (d,b)

, j,k ( ,)
∣∣∣� C ( +1)2 | wj+1

 1(wk+1
 ) | 1

4(+1) . (5.36)

Similarly, we have∣∣∣̂ (d,b+1)
, j,k ( ,)− ̂ (d,b)

, j,k ( ,)
∣∣∣� C ( +1)2 | wk+1

 2(w
j+1
 ) | 1

4(+1) . (5.37)

Now, by similar argument as that led to (5.17) we can prove the following:

|̂ (l,s)
, j,k( ,)| � C ( +1)2|al wj

 w
l k
 l! |− 1

8 l (+1) |cs w
k
 w

s j
 s! |− 1

8 s(+1) , (5.38)

|̂ (l,s)
, j,k( ,)−̂ (l−1,s)

, j,k ( ,)|�C (+1)2 |al w
j+1
 wl (k+1)

  | 1
8 l (+1) |cs w

k
 w

s j
 s! |− 1

8 s(+1) ,
(5.39)

|̂ (l,s)
, j,k( ,)−̂ (l,s−1)

, j,k ( ,)|�C (+1)2 |al wj
 w

l k
 l! |− 1

8 l (+1) |cs w
k+1
 ws( j+1)

  | 1
8 s(+1) ,

(5.40)
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|̂ (l,s)
, j,k( ,)− ̂ (l−1,s)

, j,k ( ,)− ̂ (l,s−1)
, j,k ( ,)+ ̂ (l,s)

, j,k( ,)|

� C ( +1)2 |al wj+1
 wl (k+1)

  | 1
4 l (+1) |cs wk+1

 ws( j+1)
  | 1

4 s(+1) ,
(5.41)

|̂ (l,s−1)
, j,k − ̂ (l−1,s−1)

, j,k ( ,)| � C ( +1)2 |al wj+1
 wl (k+1)

  | 1
4 l (+1) , (5.42)

|̂ (l−1,s)
, j,k − ̂ (l−1,s−1)

, j,k ( ,)| � C ( +1)2 |cs w
k+1
 ws( j+1)

  | 1
4 s(+1) . (5.43)

Now, we choose and fix a function (t) ∈ C
0 (R) such that (t) ≡ 1 for |t| � 1

2
and (t) ≡ 0 for |t| � 1. For j,k ∈ Z , let (̂(l)

j,k)( ) = (̂(l))(|wj
 w

l k
 al  |2) and

(̂ (s)
j,k )() = (̂ (s))(|wk

 ws j
 cs |2). Thus, for 1 � l � d + 1 and 1 � s � b + 1, we

define the family of measures { (l,s)
, j,k : j, k ∈ Z} by

̂ (l,s)
, j,k( ,) = ̂ (l,s)

, j,k( ,) 
l<r�d+1

(̂(r)
j,k )| |) 

s<m�b+1
(̂ (m)

j,k )| |)
−̂ (l−1,s)

, j,k ( ,) 
l−1<r�d+1

(̂(r)
j,k )| |) 

s<m�b+1
(̂ (m)

j,k )| |)
−̂ (l,s−1)

, j,k ( ,) 
l<r�d+1

(̂(r)
j,k )| |) 

s−1<m�b+1
(̂ (s)

j,k )| |)
+̂ (l−1,s−1)

, j,k ( ,) 
l−1<r�d+1

(̂(r)
j,k )| |) 

s−1<m�b+1
(̂ (s)

j,k )| |)

(5.44)

where we use the convention 
i∈ /0

Ai = 1. By the definition of , j,k , we can show that

‖ (l,s)
, j,k‖ � C ( +1)2 (5.45)

and

|̂ (l,s)
, j,k( ,)| � C ( +1)2|A,l Ll( )|± 1

8 l (+1) |B,s Hs()|± 1
8 s(+1) , (5.46)

where

Ll( ) =

{
  , l = d +1

al  , l �= d +1
,

Hs() =

{
  , s = b+1

cs , s �= b+1
,

A,l =

{
wj
 1(wk

 ), l = d +1

Cwj
 w

l k
 , l �= d +1

and

B,s =

{
wk
 2(w

j
 ), l = b+1

Cwk
 w

s j
 , l �= b+1.
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Also, we can observe that

d+1


l=1

b+1


s=1

 (l,s)
, j,k =  (d+1,b+1)

, j,k .

Thus,

T ,( f )(x,y) = 
j,k∈Z

d+1


l=1

b+1


s=1

 (l,s)
, j,k ∗ f

=
d+1


l=1

b+1


s=1

(


j,k∈Z
 (l,s)
, j,k ∗ f

)
.

(5.47)

Therefore, we have

‖T ,( f )‖p �
d+1


l=1

b+1


s=1

‖T (l,s)
 , f‖p, (5.48)

where
T (l,s)
 , f (x,y) = 

j,k∈Z
 (l,s)
, j,k ∗ f .

On the other hand, let

( (l,s)
 )∗( f ) = sup

j,k

∣∣∣( (l,s)
, j,k ∗ f )(x,y)

∣∣∣ .
Thus, by Theorem 1.4 and (5.3), we have

‖( (l,s)
 )∗( f )‖p � C ( +1)2 ‖ f‖p, (5.49)

for all 1 < p < with a constant Cp independent of  .
Hence, by (5.46), (5.49), and Proposition 2.2 with 1 = l , 2 = s , and 1 = 2 = 1,

we obtain ∥∥∥T (l,s)
 , f

∥∥∥
p
=

∥∥∥∥∥ j,k∈Z
 (l,s)
, j,k ∗ f

∥∥∥∥∥
p

� Cp ( +1)2‖ f‖p. (5.50)

Therefore, by (5.13), (5.47), (5.48), and (5.50), we get

∥∥T , f
∥∥

p =

∥∥∥∥∥ j,k∈Z
 (d+1,b+1)

, j,k ∗ f

∥∥∥∥∥
p

� Cp ( +1)2‖ f‖p. (5.51)

where Cp > 0 is a constant independent of  . Finally, by (5.5), (5.48), and (5.51), the
proof of Theorem 1.2 is complete. �
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