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Abstract. Let X , Y be Banach spaces and S : X → Y be an invertible Lipschitz map. Let
T : X → Y be a map and there exist 1,2 ∈ [0,1) such that

‖Tx−Ty− (Sx−Sy)‖ � 1‖Sx−Sy‖+2‖Tx−Ty‖, ∀x,y ∈ X .

Then we prove that T is an invertible Lipschitz map. This is non-linear version of 26 years
old Casazza-Kalton-Christensen-van Eijndhoven perturbation. It also a non-linear version of
29 years old Soderlind-Campanato perturbation and 3 years old Barbagallo-Ernst-Thera pertur-
bation. We give applications to the theory of metric frames. The notion of Lipschitz atomic
decomposition for Banach spaces is also introduced.

1. Introduction

Let X be a Banach space and IX be the identity operator on X . Carl Neu-
mann’s classical result says that if T : X → X is a bounded linear operator such that
‖T − IX ‖ < 1, then T is invertible [38]. Following two results are consequences of
this result. They are known as Paley-Wiener theorems.

1. Sequences close to orthonormal bases in Hilbert spaces are Riesz bases [39, 51].

2. Sequences close to Schauder bases in Banach spaces are Schauder bases [4, 43].

History of Paley-Wiener theorems are nicely presented in [1, 42]. It was in the setting
of Hilbert spaces, Paley-Wiener theorem was first generalized by Pollard [41], second
generalized by Sz.-Nagy [20] and third generalized by Hilding [32]. Hilding proved the
following theorem.

THEOREM 1.1. [32] (Hilding perturbation) Let H be a Hilbert space. If a
linear operator T : H → H is such that there exists  ∈ [0,1) with

‖Th−h‖� ‖Th‖+‖h‖, ∀h ∈ H ,
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then T is bounded, invertible and

1−
1+

‖h‖ � ‖Th‖ � 1+
1−

‖h‖, ∀h ∈ H ;

1−
1+

‖h‖ � ‖T−1h‖ � 1+
1−

‖h‖, ∀h ∈ H .

It took around 50 years to strengthen Theorem 1.1 to the most generality for Ba-
nach spaces.

THEOREM 1.2. [9, 11, 48] (Casazza-Kalton-Christensen-van Eijndhoven pertur-
bation) Let X ,Y be Banach spaces and S : X → Y be a bounded invertible opera-
tor. If a linear operator T : X → Y is such that there exist 1,2 ∈ [0,1) with

‖Tx−Sx‖� 1‖Sx‖+2‖Tx‖, ∀x ∈ X ,

then T is bounded, invertible and

1−1

1+2
‖Sx‖ � ‖Tx‖ � 1+1

1−2
‖Sx‖, ∀x ∈ X ;

1−2

1+1

1
‖S‖‖y‖ � ‖T−1y‖ � 1+2

1−1
‖S−1‖‖y‖, ∀y ∈ Y .

There is a generalization of Theorem 1.2 which is due to Guo with an extra as-
sumption that T is bounded.

THEOREM 1.3. [25] Let X ,Y be Banach spaces and S : X →Y be a bounded
invertible operator. If a bounded linear operator T : X → Y is such that there exist
1 ∈ [0,1) and 2 ∈ [0,1] with

‖Tx−Sx‖� 1‖Sx‖+2‖Tx‖, ∀x ∈ X ,

then T is invertible. Further, for every  > 0 satisfying 1 > 2 −  > 0 and 1 +
‖TS−1‖ < 1 , we have

1−1− ‖TS−1‖
1+2− 

‖Sx‖ � ‖Tx‖ � 1+1 + ‖TS−1‖
1−2 + 

‖Sx‖, ∀x ∈ X ;

1−2 + 
1+1 + ‖TS−1‖

1
‖S‖‖y‖ � ‖T−1y‖ � 1+2− 

1−1− ‖TS−1‖‖S
−1‖‖y‖, ∀y ∈ Y .

Theorem 1.2 and its variants are useful in various studies such as stability of frames
for Hilbert spaces [11], stability of frames and atomic decompositions for Banach
spaces [46], stability of frames for Hilbert C*-modules [26], stability of G-frames [47],
multipliers for Hilbert spaces [45], quantum detection problem [5], continuous frames
[23], fusion frames [10], operator representations of frames (dynamics of frames) [15],
pseudo-inverses of operators [21], outer inverses of operators [50], shift-invariant spaces
[34], frame sequences [17], sampling [52] etc.
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The main objective of this paper is to generalize Theorem 1.2 for Lipschitz func-
tions between Banach spaces. We do this in Theorem 2.7. We show that our result
generalizes Soderlind-Campanato Perturbation (Theorem 3.1) and Barbagallo-Ernst-
Thera perturbation (Theorem 3.2). We then give an application to the theory of frames
for metric spaces. Further, the notion of Lipschitz atomic decomposition for Banach
spaces is introduced and a perturbation result is derived using Theorem 2.7.

2. Non-linear Casazza-Kalton-Christensen-van Eijndhoven perturbation

Let M be a metric space and X be a Banach space. Recall that a function
f : M → X is said to be Lipschitz if there exists b > 0 such that

‖ f (x)− f (y)‖ � bd(x,y), ∀x,y ∈ M .

A Lipschitz function f : M → X is said to be bi-Lipschitz if there exists a > 0 such
that

ad(x,y) � ‖ f (x)− f (y)‖, ∀x,y ∈ M .

DEFINITION 2.1. [49] Let X be a Banach space.

(i) Let M be a metric space. The collection Lip(M ,X ) is defined as Lip(M ,X )
:= { f : M → X is Lipschitz}. For f ∈ Lip(M ,X ) , the Lipschitz number is
defined as

Lip( f ) := sup
x,y∈M ,x�=y

‖ f (x)− f (y)‖
d(x,y)

.

(ii) Let (M ,0) be a pointed metric space. The collection Lip0(M ,X ) is defined as
Lip0(M ,X ) := { f : M →X is Lipschitz and f (0) = 0}. For f ∈Lip0(M ,X ) ,
the Lipschitz norm is defined as

‖ f‖Lip0
:= sup

x,y∈M ,x�=y

‖ f (x)− f (y)‖
d(x,y)

.

THEOREM 2.2. [49] Let X be a Banach space.

(i) If M is a metric space, then Lip(M ,X ) is a semi-normed vector space w.r.t.
the semi-norm Lip(·) .

(ii) If (M ,0) is a pointed metric space, then Lip0(M ,X ) is a Banach space w.r.t.
the norm ‖·‖Lip0

. Further, Lip0(X ) := Lip0(X ,X ) is a unital Banach algebra.
In particular, if T ∈Lip0(X ) satisfies ‖T − IX ‖Lip0

< 1, then T is invertible and
T−1 ∈ Lip0(X ) .
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We now develop perturbation result for Lipschitz functions using various results.
Our developments are motivated from the linear version of improvement of Paley-
Wiener theorem by van Eijndhoven [48]. Since Lip0(X ) is a unital Banach algebra,
we can talk about the notion of spectrum and resolvent. In the remaining part of the
paper, the spectrum of an element T ∈ Lip0(X ) is denoted by (T ) and the resolvent
by (T ).

THEOREM 2.3. Let A be a closed non-empty subset of C , such that for any r ∈A,
there is a sequence {rn}n ⊆ A converging to r such that |rn| > |r| for any n ∈ N . Let
T be a Lipschitz operator on X with T0 = 0 . If there is  > 0 such that

‖(Tx− rx)−(Ty− ry)‖� ‖x− y‖, ∀r ∈ A,∀x,y ∈ X , (1)

then the distance between A and the spectrum of T is at least  .

Proof. The proof of this Theorem rely on the following lemma.

RESOLVENT LEMMA. Let T be an element from an unitary Banach algebra A ,
and  be a complex number lying in the resolvent set of T ; denote by dist( ,(T ))
the euclidean distance between the number  and the non-empty compact spectrum
(T ) of the operator T . Then

‖(T − IA )−1‖ � 1
dist( ,(T ))

.

The proof of Theorem 2.3 is done in two steps, each one requesting the use of the
Resolvent Lemma.

First, one proves that A and the spectrum of T are disjoints. Let us assume the
contrary, and pick r a member of A∩(T ) of the highest modulus. Then the numbers
rn are in the resolvent set of T , so (T − rnIX )−1 is a Lipschitz operator, and relation
(1) implies that

‖(T − rnIX )−1‖ = Lip0((T − rnIX )−1) � 1

.

But rn is converging to r , an element of the spectrum of T , so by the Resolvent lemma
‖(T − rnIX )−1‖ goes to the infinity, a contradiction.

The next step is to prove that the distance between the (now we know being dis-
joint) sets A and (T ) is indeed superior to  . To this end, we pick r from A ; relation
(1) implies that

‖(T − rIX )−1‖ = Lip0((T − rIX )−1) � 1

.

The Resolvent Lemma reads that

‖(T − IX )−1‖ � 1
dist( ,(T ))

;

by combining the two previous inequalities, one proves the conclusion of the Theorem
2.3. �
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THEOREM 2.4. Let X be a Banach space, T : X → X be a map, T0 = 0 and
there exist 1,2 ∈ [0,1) such that

‖Tx−Ty− (x− y)‖� 1‖x− y‖+2‖Tx−Ty‖, ∀x,y ∈ X . (2)

Then

(i) T is Lipschitz and

1−1

1+2
‖x− y‖� ‖Tx−Ty‖� 1+1

1−2
‖x− y‖, ∀x,y ∈ X . (3)

(ii) We have (
−,

1−1

1+2

)
⊆ (T ).

(iii) T is invertible and

1−2

1+1
‖x− y‖� ‖T−1x−T−1y‖ � 1+2

1−1
‖x− y‖, ∀x,y ∈ X .

(iv) We have

1−1

1+2
� ‖T‖Lip0

� 1+1

1−2
and

1−2

1+1
� ‖T−1‖Lip0

� 1+2

1−1
.

Proof. Let x,y ∈ X . Then using Inequality (2)

‖Tx−Ty‖ � ‖Tx−Ty− (x− y)‖+‖x− y‖� 1‖x− y‖+2‖Tx−Ty‖+‖x− y‖
= (1+1)‖x− y‖+2‖Tx−Ty‖

=⇒ ‖Tx−Ty‖� 1+1

1−2
‖x− y‖

and

‖x− y‖� ‖Tx−Ty− (x− y)‖+‖Tx−Ty‖� 1‖x− y‖+2‖Tx−Ty‖+‖Tx−Ty‖
= 1‖x− y‖+(1+2)‖Tx−Ty‖

=⇒ 1−1

1+2
‖x− y‖� ‖Tx−Ty‖.

Hence T is Lipschitz and (i) holds. Let  � 0. Then

‖Tx−Ty−(x− y)‖= ‖(1−)(x− y)− (x− y− (Tx−Ty))‖
� (1−)‖x− y‖−‖Tx−Ty− (x− y)‖
� (1−)‖x− y‖−1‖x− y‖−2‖Tx−Ty‖
= (1−−1)‖x− y‖−2‖Tx−Ty‖
� (1−−1)‖x− y‖−2‖Tx−Ty−(x− y)‖+2‖x− y‖
= (1−−1 +2)‖x− y‖−2‖Tx−Ty−(x− y)‖
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which implies

‖Tx−Ty−(x− y)‖� 1−−1 +2
1+2

‖x− y‖

=
1−1− (1−2)

1+2
‖x− y‖� 1−1

1+2
‖x− y‖.

By applying Theorem 2.3 for 1 = 0 and 1 = 1−1
1+2

we get (−, 1−1
1+2

)⊆ (T ). Since

0 ∈ (−, 1−1
1+2

) , T is invertible. Using Inequality (3) we then get

1−1

1+2
‖T−1u−T−1v‖ � ‖u− v‖� 1+1

1−2
‖T−1u−T−1v‖, ∀u,v ∈ X

which gives (iii). Finally (iv) follows from (i) and (iii). �

THEOREM 2.5. Let X , Y be Banach spaces and S∈ Lip0(X ,Y ) be invertible.
Let T : X → Y be a map, T0 = 0 and there exist 1,2 ∈ [0,1) such that

‖Tx−Ty− (Sx−Sy)‖� 1‖Sx−Sy‖+2‖Tx−Ty‖, ∀x,y ∈ X . (4)

Then

(i) T is Lipschitz and

1−1

1+2
‖Sx−Sy‖� ‖Tx−Ty‖� 1+1

1−2
‖Sx−Sy‖, ∀x,y ∈ X .

(ii) S−T is invertible for all  ∈
(
−, 1−1

1+2

)
.

(iii) T is invertible and

1−2

1+1

1
‖S‖Lip0

‖u− v‖� ‖T−1u−T−1v‖ � 1+2

1−1
‖S−1‖Lip0

‖u− v‖, ∀u,v ∈ Y .

(iv) We have

1−1

1+2
‖S‖Lip0

� ‖T‖Lip0
� 1+1

1−2
‖S‖Lip0

and

1−2

1+1

1
‖S‖Lip0

� ‖T−1‖Lip0
� 1+2

1−1
‖S−1‖Lip0

.

Proof. Define R := TS−1 . Then Inequality (4) gives

‖TS−1u−TS−1v− (SS−1u−SS−1v)‖ � 1‖SS−1u−SS−1v‖+2‖TS−1u−TS−1v‖,
∀u,v ∈ Y ,

i.e.,

‖Ru−Rv− (u− v)‖� 1‖u− v‖+2‖Ru−Rv‖, ∀u,v ∈ Y .

By applying Theorem 2.4 to R we get the following.
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(i) R is Lipschitz hence T is Lipschitz. Further,

1−1

1+2
‖Sx−Sy‖� ‖R(Sx)−R(Sy)‖� 1+1

1−2
‖Sx−Sy‖, ∀x,y ∈ X .

But ‖R(Sx)−R(Sy)‖= ‖Tx−Ty‖ , ∀x,y ∈ X .

(ii) IX −R is invertible for all  ∈
(
−, 1−1

1+2

)
. Since S is invertible we then have

S−T is invertible for all  ∈
(
−, 1−1

1+2

)
.

(iii) R is invertible hence T is invertible. Further,

1−2

1+1

1
‖S‖Lip0

‖u− v‖� 1
‖S‖Lip0

‖R−1u−R−1v‖ � ‖S−1(R−1u)−S−1(R−1v)‖

= ‖T−1u−T−1v‖ � ‖S−1‖Lip0
‖R−1u−R−1v‖

� 1+2

1−1
‖S−1‖Lip0

‖u− v‖, ∀u,v ∈ Y .

(iv) This follows easily from (i) and (iii). �

Our next task is to derive the results by removing the condition T0 = 0.

THEOREM 2.6. Let X be a Banach space, T : X → X be a map and there
exist 1,2 ∈ [0,1) such that

‖Tx−Ty− (x− y)‖� 1‖x− y‖+2‖Tx−Ty‖, ∀x,y ∈ X .

Then

(i) T is Lipschitz and

1−1

1+2
‖x− y‖� ‖Tx−Ty‖� 1+1

1−2
‖x− y‖, ∀x,y ∈ X .

(ii) IX −T is invertible for all  ∈
(
−, 1−1

1+2

)
.

(iii) T is invertible and

1−2

1+1
‖x− y‖� ‖T−1x−T−1y‖ � 1+2

1−1
‖x− y‖, ∀x,y ∈ X .

(iv) We have

1−1

1+2
� Lip(T ) � 1+1

1−2
and

1−2

1+1
� Lip(T−1) � 1+2

1−1
.
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Proof. Define

T̃ x := Tx−T0, ∀x ∈ X .

Then T̃0 = 0 and

‖T̃ x− T̃y− (x− y)‖= ‖Tx−Ty− (x− y)‖� 1‖x− y‖+2‖Tx−Ty‖
= 1‖x− y‖+2‖T̃ x− T̃y‖, ∀x,y ∈ X .

Applying Theorem 2.4 and using the fact that ‘a map is bijective if and only if its
translate is bijective’, proof is complete. �

THEOREM 2.7. Let X , Y be Banach spaces and S ∈ Lip(X ,Y ) be invertible.
Let T : X → Y be a map and there exist 1,2 ∈ [0,1) such that

‖Tx−Ty− (Sx−Sy)‖� 1‖Sx−Sy‖+2‖Tx−Ty‖, ∀x,y ∈ X .

Then

(i) T is Lipschitz and

1−1

1+2
‖Sx−Sy‖� ‖Tx−Ty‖� 1+1

1−2
‖Sx−Sy‖, ∀x,y ∈ X .

(ii) S−T is invertible for all  ∈
(
−, 1−1

1+2

)
.

(iii) T is invertible and

1−2

1+1

1
Lip(S)

‖u− v‖� ‖T−1u−T−1v‖ � 1+2

1−1
Lip(S−1)‖u− v‖, ∀u,v ∈ Y .

(iv) We have

1−1

1+2
Lip(S) � Lip(T ) � 1+1

1−2
Lip(S) and

1−2

1+1

1
Lip(S)

� Lip(T−1) � 1+2

1−1
Lip(S−1).

Proof. Define R := TS−1 and the proof is similar to proof of Theorem 2.5. �
Following two corollaries are motivated from [32].

COROLLARY 2.8. Let p � 1 . Let X , Y be Banach spaces and S ∈
Lip(X ,Y ) be invertible. Let T : X → Y be a map and there exist 1,2 ∈ [0,1)
such that

‖Tx−Ty− (Sx−Sy)‖� ((1‖Sx−Sy‖)p+(2‖Tx−Ty‖)p)
1
p , ∀x,y ∈ X . (5)

Then
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(i) T is Lipschitz and

1−1

1+2
‖Sx−Sy‖� ‖Tx−Ty‖� 1+1

1−2
‖Sx−Sy‖, ∀x,y ∈ X .

(ii) S−T is invertible for all  ∈
(
−, 1−1

1+2

)
.

(iii) T is invertible and

1−2

1+1

1
Lip(S)

‖u− v‖� ‖T−1u−T−1v‖ � 1+2

1−1
Lip(S−1)‖u− v‖,

∀u,v ∈ Y .

(iv) We have

1−1

1+2
Lip(S) � Lip(T ) � 1+1

1−2
Lip(S) and

1−2

1+1

1
Lip(S)

� Lip(T−1) � 1+2

1−1
Lip(S−1).

Proof. Note that if r,s � 0, then

(rp + sp)
1
p � r+ s if p � 1.

Hence Inequality (5) gives

‖Tx−Ty− (Sx−Sy)‖� ((1‖Sx−Sy‖)p +(2‖Tx−Ty‖)p)
1
p

� 1‖Sx−Sy‖+2‖Tx−Ty‖, ∀x,y ∈ X .

Result follows by applying Theorem 2.7. �

COROLLARY 2.9. Let 0 < p < 1 . Let X , Y be Banach spaces and S ∈
Lip(X ,Y ) be invertible. Let T : X →Y be a map and there exist 1,2 ∈

[
0,21− 1

p

)
such that

‖Tx−Ty− (Sx−Sy)‖� ((1‖Sx−Sy‖)p+(2‖Tx−Ty‖)p)
1
p , ∀x,y ∈ X .

Then

(i) T is Lipschitz and

1−2
1
p−11

1+2
1
p−12

‖Sx−Sy‖� ‖Tx−Ty‖� 1+2
1
p−11

1−2
1
p−12

‖Sx−Sy‖, ∀x,y ∈ X .
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(ii) S−T is invertible for all  ∈
(
−, 1−2

1
p−11

1+2
1
p−12

)
.

(iii) T is invertible and

1−2
1
p−12

1+2
1
p−11

1
Lip(S)

‖u− v‖� ‖T−1u−T−1v‖ � 1+2
1
p−12

1−2
1
p−11

Lip(S−1)‖u− v‖,

∀u,v ∈ Y .

(iv) We have

1−2
1
p−11

1+2
1
p−12

Lip(S) � Lip(T ) � 1+2
1
p−11

1−2
1
p−12

Lip(S) and

1−2
1
p−12

1+2
1
p−11

1
Lip(S)

� Lip(T−1) � 1+2
1
p−12

1−2
1
p−11

Lip(S−1).

Proof. Note that if r,s � 0, then

(rp + sp)
1
p � 2

1
p−1(r+ s) if p < 1.

Hence Inequality (5) gives

‖Tx−Ty− (Sx−Sy)‖� ((1‖Sx−Sy‖)p+(2‖Tx−Ty‖)p)
1
p

� 2
1
p−11‖Sx−Sy‖+2

1
p−12‖Tx−Ty‖, ∀x,y ∈ X .

Result follows by applying Theorem 2.7. �

Next we generalize Corollary 1 in [11].

COROLLARY 2.10. Let X , Y be Banach spaces and S∈ Lip(X ,Y ) be invert-
ible. Let T : X → Y be a Lipschitz map and there exists  ∈ [0,1) such that

‖Tx−Ty− (Sx−Sy)‖� ‖Sx−Sy‖+‖Tx−Ty‖, ∀x,y ∈ X .

Then T is invertible and

Lip(T−1) � 2
1−

Lip(S−1).

Proof. Define R := TS−1 . Then

‖Ru−Rv− (u− v)‖� ‖u− v‖+‖Ru−Rv‖, ∀u,v ∈ Y .
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Note that Lip(R) �= 0. Let

0 <  < min

{
1,

1−
Lip(R)

}
.

Define 1 :=  − Lip(R) and 2 := 1−  . Then 1,2 ∈ [0,1) and

‖Ru−Rv− (u− v)‖� ‖u− v‖+‖Ru−Rv‖
� ‖u− v‖+‖Ru−Rv‖+ (Lip(R)‖u− v‖−‖Ru−Rv‖)
= ( + Lip(R))‖u− v‖+(1− )‖Ru−Rv‖, ∀u,v ∈ Y .

By applying Theorem 2.6 we get that R is Lipschitz, invertible and

Lip(R−1) � 2− 
1− ( + Lip(R))

.

Since  can be made arbitrarily small, we must have

Lip(R−1) � 2
1−

.

Substituting the expression of R gives

1
Lip(S−1)

Lip(T−1) � Lip(ST−1) = Lip(R−1) � 2
1−

. �

We finally derive the following non-linear version of Theorem 1.3.

THEOREM 2.11. Let X , Y be Banach spaces and S ∈ Lip(X ,Y ) be invert-
ible. Let T : X → Y be a Lipschitz map and there exist 1 ∈ [0,1) and 2 ∈ [0,1]
such that

‖Tx−Ty− (Sx−Sy)‖� 1‖Sx−Sy‖+2‖Tx−Ty‖, ∀x,y ∈ X .

Then T is Lipschitz invertible. Further, for every  > 0 satisfying 1 > 2−  > 0 and
1 + Lip(TS−1) < 1 , we have

(i)

1−1− Lip(TS−1)
1+2− 

‖Sx−Sy‖� ‖Tx−Ty‖� 1+1 + Lip(TS−1)
1−2 + 

‖Sx−Sy‖,
∀x,y ∈ X .

(ii) S−T is invertible for all  ∈
(
−, 1−1−Lip(TS−1)

1+2−
)

.

(iii) T is invertible and

1−2 + 
1+1 + Lip(TS−1)

1
Lip(S)

‖u− v‖� ‖T−1u−T−1v‖

� 1+2− 
1−1− Lip(TS−1)

Lip(S−1)‖u− v‖, ∀u,v ∈ Y .
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(iv) We have

1−1− Lip(TS−1)
1+2− 

Lip(S) � Lip(T ) � 1+1 + Lip(TS−1)
1−2 + 

Lip(S) and

1−2 + 
1+1 + Lip(TS−1)

1
Lip(S)

� Lip(T−1) � 1+2− 
1−1− Lip(TS−1)

Lip(S−1).

Proof. Define R := TS−1 . Then for every  > 0 satisfying 1 > 2 −  > 0 and
1 + Lip(TS−1) < 1,

‖Ru−Rv− (u− v)‖� 1‖u− v‖+2‖Ru−Rv‖
= 1‖u− v‖+(2− )‖Ru−Rv‖+ ‖Ru−Rv‖
� 1‖u− v‖+(2− )‖Ru−Rv‖+ Lip(R)‖u− v‖
= (1 + Lip(R))‖u− v‖+(2− )‖Ru−Rv‖, ∀u,v ∈ Y .

Remaining parts of the proof is similar to the proof of Theorem 2.5. �
It is an easy observation that the constant 1 in Theorem 2.11 can not be strength-

ened. We are therefore left with the following open problem.

QUESTION 2.12. Can the constant 2 be strengthened further in Theorem 2.11?

3. Applications

Our first two applications of Theorem 2.7 are easy proofs of Soderlind-Campanato
perturbation and Barbagallo-Ernst-Thera perturbation.

THEOREM 3.1. [6, 44] (Soderlind-Campanato perturbation) Let X be a real
Banach space, A : X → X be a map and there exist  > 0,0 �  < 1 such that

‖Ax−Ay− (x− y)‖� ‖x− y‖, ∀x,y ∈ X .

Then A is Lipschitz, invertible and Lip(A−1) � 
1− .

Proof. Set T = A and 1 =  in Theorem 2.7. Then 1
 Lip(A−1) = Lip(T−1) �

1
1−1

= 1
1− . �

THEOREM 3.2. [3] (Barbagallo-Ernst-Thera perturbation) Let X be a real Ba-
nach space, A : X → X be a map and there exist  > 0,0 �  < 1 such that

‖Ax−Ay− (x−y)‖� ‖Ax−Ay‖, ∀x,y ∈ X . (6)

Then

(i) If  < 1/2, then A is Lipschitz, invertible and Lip(A−1) � 1−
(1−2 ) .
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(ii) If X is a Hilbert space, then A is Lipschitz, invertible and Lip(A−1) � 1+
 .

Proof. Set T = 1
 A and 2 =  in Theorem 2.7. Then

(i) Lip(A−1) = 1+2 = 1+ � 1−
1−2 .

(ii) Lip(A−1) = 1+2 = 1+ . �

We now give applications to the theory of frames. Paley-Wiener theorem for
orthonormal basis in Hilbert spaces inspired the study of perturbation of frames for
Hilbert spaces. This was first derived by Christensen in his two papers [12, 13]. This
motivated the perturbation of frames and atomic decompositions for Banach spaces
[16]. Crucial result used in all these perturbation results is the Neumann series. Later,
using Theorem 1.2, Casazza and Christensen [11] improved the results obtained in pa-
per [13]. Using Theorem 1.2 Stoeva made a systematic study of perturbations of frames
for Banach spaces [46]. For the sake of completeness, we note that Theorem 1.2 was
used in the study of perturbations of frames for Hilbert C*-modules [26].

Large body of work on frames for Hilbert spaces (see [14, 22, 27, 28]) lead to the
well developed theory of frames (known as Banach frames and Xd -frames) for Banach
spaces (see [7, 8, 18, 24]) lead to the beginning of frames for metric spaces (known as
metric frames) [35].

For stating these definitions we need the definition of BK-space (Banach scalar
valued sequence space or Banach co-ordinate space).

DEFINITION 3.3. [2] A sequence space Md is said to be a BK-space if all
the coordinate functionals are continuous, i.e., whenever {xn}n is a sequence in Md

converging to x ∈ Md , then each coordinate of xn converges to each coordinate of x .

DEFINITION 3.4. [35] Let M be a metric space and Md be an associated BK-
space. Let { fn}n be a collection in Lip(M ,K) (where K = R or C) and S : Md →M .
If:

(i) { fn(x)}n ∈ Md , for each x ∈ M ,

(ii) There exist positive a,b such that ad(x,y) � ‖{ fn(x)− fn(y)}n‖Md � bd(x,y) ,
∀x,y ∈ M ,

(iii) S is Lipschitz and S({ fn(x)}n) = x , for each x ∈ M ,

then we say that ({ fn}n,S) is a metric frame for M with respect to Md . We say
constant a as lower frame bound and constant b as upper frame bound.

As noted in [35], we observe that if ({ fn}n,S) is a metric frame for M w.r.t. Md ,
then Definition 3.4 tells that the analysis map

 f : M 
 x �→  f x := { fn(x)}n ∈ Md

is well-defined and bi-Lipschitz. Further, S f = IM . Now we improve Theorem 4
in [11] to metric frames for Banach spaces.
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THEOREM 3.5. Let ({ fn}n,S) be a metric frame with lower frame bound a and
upper frame bound b for a Banach space X w.r.t. Md . Let T : Md → X be a
Lipschitz map and suppose that there exist 1,2, � 0 such that max{2,1 +b}<
1 and

‖S{cn}n−S{dn}n− (T{cn}n−T{dn}n)‖
� 1‖S{cn}n−S{dn}n‖+2‖T{cn}n−T{dn}n‖

+ ‖{cn−dn}n‖, ∀{cn}n,{dn}n ∈ Md . (7)

Then there exists a collection {gn}n in Lip(X ,K) such that ({gn}n,T ) is a metric
frame for X with lower and upper frame bounds

a(1−2)
1+1 + b

,
b(1+2)

1− (1 + b)

respectively.

Proof. Given x,y ∈ X , by taking {cn}n as  f x and {dn}n as  f y in Inequality
(7) we get

‖S f x−S f y− (T f x−T f y)
‖ � 1‖S f x−S f y‖+2‖T f x−T f y‖+ ‖ f x− f y‖, ∀x,y ∈ X .

But S f x = x,∀x ∈ X and hence

‖x− y− (T f x−T f y)‖ � 1‖x− y‖+2‖T f x−T f y‖+ ‖ f x− f y‖
� (1 + Lip( f ))‖x− y‖+2‖T f x−T f y‖
� (1 + b)‖x− y‖+2‖T f x−T f y‖, ∀x,y ∈ X .

Theorem 2.7 now says that the map T f is Lipschitz invertible and

1−2

1+1 + b
� Lip(T f )−1 � 1+2

1− (1 + b)
.

Define gn := fn(T f )−1 for all n∈ N . Then gn is Lipschitz for all n , {gn(x)}n ∈Md ,
for each x ∈ M and

‖{gn(x)−gn(y)}n‖ = ‖{ fn((T f )−1(x))− fn((T f )−1(y))}n‖
� b‖(T f )−1(x)− (T f )−1(y)‖

� b
1+2

1− (1 + b)
‖x− y‖, ∀x,y ∈ X ,

a
1−2

1+1 + b
‖x− y‖� a‖(T f )−1(x))− (T f )−1(y)‖

� ‖{ fn((T f )−1(x))− fn((T f )−1(y))}n‖
= ‖{gn(x)−gn(y)}n‖, ∀x,y ∈ X
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which establish lower and upper frame bounds. Further,

T{gn(x)}n = T{ fn(T f )−1(x)}n = T f ((T f )−1(x)) = x, ∀x ∈ X .

Therefore ({gn}n,T ) is a metric frame for X . �

We now give another application of Theorem 2.7. For this purpose, we introduce
the notion of non-linear atomic decompositions.

DEFINITION 3.6. Let X be a Banach space X and Md be a BK-space. Let
{ fn}n be a sequence in Lip(X ,K) and {n}n to be a sequence in X If:

(i) { fn(x)}n ∈ Md , for each x ∈ X ,

(ii) There exist positive a,b such that

a‖x− y‖� ‖{ fn(x)− fn(y)}n‖Md � b‖x− y‖, ∀x,y ∈ X ,

(iii) x = 
n=1 fn(x)n , for each x ∈ X ,

then we say that ({ fn}n,{n}n) is a Lipschitz atomic decomposition for X with respect
to Md . We say constant a as lower Lipschitz atomic bound and constant b as upper
Lipschitz atomic bound.

In [8] it is proved that not every Banach space admits an atomic decomposition.
Motivated from this, we ask the following open problem.

QUESTION 3.7. Classify Banach spaces which admit Lipschitz atomic decompo-
sitions.

Following proposition gives various examples of Lipschitz atomic decomposi-
tions.

PROPOSITION 3.8. Let ({gn}n,{n}n) be an atomic decomposition for a Banach
space Y w.r.t. BK-space Md . Let X be a Banach space and let A : X → Y be a
bi-Lipschitz map such that there exists a linear map A : Y → X satisfying BA = IX .
Then ({ fn := gnA}n,{n := Bn}n) is a Lipschitz atomic decomposition X w.r.t. Md .
In particular, if a Banach space admits a Schauder basis, then it admits a Lipschitz
atomic decomposition.

Particular case of Proposition 3.8 gives the following example.

EXAMPLE 3.9. Let ({gn}n,{n}n) be an atomic decomposition for a Banach
space X w.r.t. a BK-space Md . Let T : X → X be any bi-Lipschitz map. De-
fine A : X 
 x �→ (x,Tx) ∈ X ⊕X and B : X ⊕X 
 (x,y) �→ x ∈ X . Then A is
bi-Lipschitz, B is linear and satisfies BA = IX . Hence ({ fn := gnA}n,{n := Bn}n)
is a Lipschitz atomic decomposition for X w.r.t. Md .
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At this point it seems that it is best to develop some theory of Lipschitz atomic
decompositions before giving an application of Theorem 2.7.

Proposition 2.3 in [8] shows that under certain conditions, there is a close relation-
ship between Banach frames and atomic decompositions. Following is the non-linear
version of that result.

PROPOSITION 3.10. Let X be a Banach space and Md be a BK-space. Let
{ fn}n be a sequence in Lip(X ,K) and S : Md →X be a bounded linear operator. If
the standard unit vectors {en}n form a Schauder basis for Md , then the following are
equivalent.

(i) ({ fn}n,S) is a metric frame for X .

(ii) ({ fn}n,{Sen}n) is a Lipschitz atomic decomposition for X w.r.t. Md .

Proof. We set n = Sen,∀n ∈ N and see that




n=1

fn(x)n =



n=1

fn(x)Sen = S

(



n=1

fn(x)en

)
= S ({ fn(x)}n) , ∀x ∈ X . �

Well established dilation theory of frames for Hilbert spaces says that frames are
images of Riesz bases under projections [19, 28, 33]. This result has been extended
to frames and atomic decompositions for Banach spaces [8, 29–31, 36]. In the next
theorem we derive a dilation result for Lipschitz atomic decompositions. We need a
proposition to use in the theorem.

PROPOSITION 3.11. [37] A sequence {n}n in a Banach space X is a Schauder
basis for X if and only if the following three conditions hold.

(i) n �= 0 for all n .

(ii) There exists b > 0 such that for every sequence {ak}k of scalars and every pair
of natural numbers n < m, we have∥∥∥∥∥

n


k=1

akk

∥∥∥∥∥� b

∥∥∥∥∥
m


k=1

akk

∥∥∥∥∥ .

(iii) span{n}n = X .

THEOREM 3.12. Let ({ fn}n,{n}n) be a Lipschitz atomic decomposition for a
Banach space X w.r.t. Md . Then there is a Banach space Z with a Schauder basis
{n}n , an injective map  : X → Z and a map P : Z → Z satisfying P(Z ) = X ,
P2 = P and Pn = n,∀n ∈ N .
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Proof. We generalize the idea of proof of Theorem 2.6 in [8] (which is motivated
from the arguments in [40]) to non-linear setting. Let c00 be the vector space of scalar
sequences with only finitely many non-zero terms. Let {en}n be the standard unit
vectors in c00 .

Case (i) : n �= 0, for all n . We define a norm on c00 as follows. Let {an}n ∈ c00 .
Define ∥∥∥∥∥




n=1

anen

∥∥∥∥∥ := max
n

∥∥∥∥∥
n


k=1

akk

∥∥∥∥∥ . (8)

Proposition 3.11 then tells that {en}n is a Schauder basis for the completion of c00 , call
as Z w.r.t. just defined norm. Define

 : X 
 x �→ x :=



n=1

fn(x)en ∈ Z .

From the first condition of the definition of Lipschitz atomic decomposition, from Def-
inition 8 and from the construction of Z , it follows that  is well-defined. From the
third condition of definition of atomic decomposition,  is injective. We next define

 : Z 




n=1

anen �→ 

(



n=1

anen

)
:=




n=1

ann ∈ X .

By verifying  is bounded linear on dense subset c00 of Z , we see that  is bounded
on Z . Then

x = 

(



n=1

fn(x)en

)
=




n=1

fn(x)n = x, ∀x ∈ X . (9)

So if we define P :=  , then P2 = =  = P . Equation (9) tells that P(Z ) =
X . We next see that Pen = en = n , ∀n . Thus we can take n = en , for all n to
get the result.

Case (ii) : n = 0, for some n . Let J = {n : n �= 0} . We now apply case (i) to
the collection {an}n∈J . Let  , Z ,  and P be as in the case (i). Without affecting the
definition of atomic decomposition, we can take fn = 0 for all n ∈ Jc . Now consider
the space Z ⊕ �2(Jc) and let {n}n∈Jc be an orthonormal basis for �2(Jc) . Define
Q : Z ⊕ �2(Jc) 
 z⊕y �→Q(z⊕y) := Pz⊕0 ∈Z ⊕ �2(Jc) . Now the space Z ⊕ �2(Jc)
has Schauder basis {n ⊕ 0,0⊕m}n∈J,m∈Jc and Q satisfy the conclusions. Thus we
can take n = en , for all n ∈ J and n = n , for all n ∈ Jc to get the result. �

We leave the further study of Lipschitz atomic decomposition to future work and
end the paper with an application of Theorem 2.7.

THEOREM 3.13. Let ({ fn}n,{n}n) be a Lipschitz atomic decomposition with
lower Lipschitz atomic bound a and upper Lipschitz atomic bound b for X w.r.t.
Md . Let {n}n be a collection in X and suppose that there exist 1,2, � 0 such
that the following conditions hold.
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(i) For each x ∈ X , the series 
n=1 fn(x)n converges in X .

(ii) max{2,1 + b}< 1 and

(iii)

∥∥∥∥∥



n=1

(cn−dn)(n −n)

∥∥∥∥∥� 1

∥∥∥∥∥



n=1

(cn −dn)n

∥∥∥∥∥+2

∥∥∥∥∥



n=1

(cn −dn)n

∥∥∥∥∥
+ ‖{cn−dn}n‖, ∀{cn}n,{dn}n ∈ Md. (10)

Then there exists a collection {gn}n in Lip(X ,K) such that ({gn}n,{n}n) is a Lips-
chitz atomic decomposition for X with lower and upper Lipschitz atomic bounds

a(1−2)
1+1 + b

,
b(1+2)

1− (1 + b)

respectively.

Proof. From the first condition we get that the map T : X 
 x �→ 
n=1 fn(x)n ∈

X is well-defined. Now using Inequality (10),

‖x− y− (Tx−Ty)‖=

∥∥∥∥∥



n=1

( fn(x)− fn(y))n −



n=1

( fn(x)− fn(y))n

∥∥∥∥∥
=

∥∥∥∥∥



n=1

( fn(x)− fn(y))(n −n)

∥∥∥∥∥
� 1

∥∥∥∥∥



n=1

( fn(x)− fn(y))n

∥∥∥∥∥+2

∥∥∥∥∥



n=1

( fn(x)− fn(y))n

∥∥∥∥∥
+ ‖{ fn(x)− fn(y)}n‖

= 1 ‖x− y‖+2‖Tx−Ty‖+ ‖{ fn(x)− fn(y)}n‖
� (1 + b)‖x− y‖+2‖Tx−Ty‖ , ∀x,y ∈ X .

Theorem 2.7 then says that T is Lipschitz, invertible and

1−2

1+1 + b
� Lip(T )−1 � 1+2

1− (1 + b)
.

Define gn := fnT−1 , ∀n ∈ N . Then {gn(x)}n ∈ Md , for each x ∈ X and

‖{gn(x)−gn(y)}n‖ = ‖{ fn(T−1x)− fn(T−1y)}n‖n � b‖T−1x−T−1y‖

� b
1+2

1− (1 + b)
‖x− y‖, ∀x,y ∈ X ,
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a
1−2

1+1 + b
‖x− y‖� a‖T−1x−T−1y‖ � ‖{ fn(T−1x)− fn(T−1y)}n‖

= ‖{gn(x)−gn(y)}n‖, ∀x,y ∈ X .

Finally




n=1

gn(x)n =



n=1

fn(T−1x)n = T (T−1x) = x, ∀x ∈ X . �

We conclude the paper with the following remarks.

REMARK 3.14. So far in the literature, there are three ways to prove Theorem 1.2
one given in [9], another in [48] and yet another in [11]. As we mentioned earlier, we
have done the non-linear version of arguments used in [48]. We hope that arguments
used in [9] and [11] can be generalized to give different proofs of Theorem 2.7.
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Analysis, Birkhäuser/Springer, [Cham], second edition, 2016.
[15] OLE CHRISTENSEN AND MARZIEH HASANNASAB, Operator representations of frames: bounded-

ness, duality, and stability, Integral Equations Operator Theory, 88 (4): 483–499, 2017.
[16] OLE CHRISTENSEN AND CHRISTOPHER HEIL, Perturbations of Banach frames and atomic decom-

positions, Math. Nachr., 185: 33–47, 1997.
[17] OLE CHRISTENSEN, CHRIS LENNARD AND CHRISTINE LEWIS, Perturbation of frames for a sub-

space of a Hilbert space, Rocky Mountain J. Math., 30 (4): 1237–1249, 2000.
[18] OLE CHRISTENSEN AND DIANA T. STOEVA, p-frames in separable Banach spaces, Adv. Comput.

Math., 18 (2–4): 117–126, 2003.
[19] WOJCIECH CZAJA, Remarks on Naimark’s duality, Proc. Amer. Math. Soc., 136 (3): 867–871, 2008.
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