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ON FUZZY SPECTRAL RADII FOR FUZZY BOUNDED OPERATORS

WITH APPLICATION TO FUZZY VOLTERRA OPERATOR

TUDOR BÎNZAR AND FLAVIUS PATER ∗

(Communicated by T. Burić)

Abstract. This paper’s aim is to extend and generalize the classic results regarding spectral radii
and the corresponding resolvent sets for some different classes of bounded operators acting on
fuzzy normed spaces. In this context, the fuzzy norm definition introduced giving shape to a
new topology for a fuzzy space, namely a fuzzy topology, also gives the opportunity to study the
behavior of various types of operators defined between fuzzy normed spaces, along with their
spectral properties. There are several definitions for resolvent sets and consequently, several
corresponding definitions of spectral radii that will be considered in this work, since these are
non-equivalent ways of defining such notions. Spectral radii are calculated for a fuzzy Volterra
type operator acting between fuzzy normed spaces.

1. Introduction and preliminaries

Fuzzy operator theory is a relatively new branch of well established studies of
operator theory in locally convex spaces or even in the more general topological spaces.
In this context, the new fuzzy norm definition introduced giving shape to a new topology
for a fuzzy space, namely a fuzzy topology, also gives the opportunity to study the
behavior of various types of operators defined between fuzzy normed spaces. Before
mentioning our setup, we recall ([27]) that a t -norm is a composition law � : [0,1]×
[0,1] → [0,1] associative, commutative and with 1 as neutral element, satisfying the
monotonicity condition: if a � c and b � d , where a,b,c,d ∈ [0,1] , then a�b � c�d .

In some situations we will consider the following property ([11]):
(H ) : For all  ∈ (0,1) there exists  ∈ (0,1) such that

 � � . . .�︸ ︷︷ ︸
n times

> 

for each n ∈ N,n � 2.
The (H ) property is verified for example by t -norms of Hadžić-Pap type (see

[15]). We have approached in this paper the setup of Nădăban and Dzitac ([24]) where
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194 T. BÎNZAR AND F. PATER

the fuzzy norm with respect to a continuous t -norm is defined on a vector space X
over K (K being R or C) as a function N : X × [0,) → [0,1] which satisfies:

(N1) N (u,0) = 0, for all u ∈ X ;
(N2) [N (u,t) = 1, for all t > 0 ] if and only if u = 0;

(N3) N (u,t) = N
(
u, t

| |
)

, for all u ∈ X , all t � 0, and all  ∈ K∗ ;

(N4) N (u+v,t +s)� N (u,t)�N (v,s) , for any u,v∈X , and any t,s � 0;
(N5) For any u ∈ X , N (u, ·) is left continuous and lim

t→
N (u,t) = 1.

The triple (X ,N ,�) is called fuzzy normed linear space (FNLS in short).
Few efforts have been made in the direction of developing a spectral theory for

different types of bounded operators acting on fuzzy normed linear spaces. Most of
the techniques that are working in Banach spaces no longer work in the fuzzy normed
spaces setup. Studying the problem of invariant subspaces in Banach spaces, notions
like the spectrum, the spectral radius, and the Neumann series have been used exten-
sively.

The Gelfand formula defines a spectral radius for a bounded linear operator S
acting on a Banach space: r(S) = lim

n−→
n
√
‖Sn‖ . Classic results are that the resolvent

R = ( I−S)−1 equals the Neumann series



=0

S

 +1 when | |> r(S) . Also the radius

of the spectrum |(S)| = sup{| | :  ∈ (S)} is r(S) .
From this point onward, in this direction were developed a large number of papers,

spectral theory being approached in much broader contexts, like the one of locally
convex spaces and even topological spaces and for linear operators with various types of
boundedness. These frameworks and this theory were the subjects of numerous papers
such as: ([4, 5, 9, 12, 18, 19, 21, 22, 25, 28, 29, 30, 31]).

All these works were inspirational for getting us closer to the expected results of
our context. The present paper’s purpose is to present some answers to the question
if we can have similar results in a more general framework, e.g., for different types of
bounded linear operators defined on fuzzy normed linear spaces.

With the purpose of having these notions valid also in a fuzzy normed spaces
context, we extended within our framework some of these results given in the context
of locally convex spaces. We managed to go even further by generalizing these results
to the context of fuzzy normed spaces endowed with an almost arbitrary t -norm. There
are several ways authors defined the fuzzy normed spaces setup (see [10], [16], [26])
and, as a natural preoccupation, elements of spectral theory in fuzzy normed spaces and
fuzzy Hilbert spaces emerged (see [1, 3, 6]).

Since there are some different classes of bounded operators that should be taken
into account, several definitions of resolvent sets and consequently, several correspond-
ing definitions of spectral radii will be considered, since these are non-equivalent ways
of defining such notions.

The main results are presented in this paper in three separate sections. The first
section is dedicated to proving some properties for a special class of operators acting
on fuzzy normed linear spaces, like the neighborhood locally fuzzy bounded operators
first introduced in ([8]) and also bringing forward the existent connections between this
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class of operators and the class of continuous ones.
The second section is devoted to defining several types of spectral radii and the

corresponding resolvent sets and to prove theorems that show the relations between
these radii and characterizations of them. Also, results involving spectral considerations
that are true in a Banach spaces setting are proved in this more general setting following
in most cases some laborious techniques.

As it is well known, the Volterra operator is compact, acts on Hilbert spaces and
its spectrum consists of a single point  = 0. Most of its applications are encountered
in studying the solutions of ordinary differential equations, especially issues connected
with the boundary values for such equations. A great deal of inverse problems can
be transformed into Volterra type equations, which are largely used in mathematical
physics. This is the reason we approached the study of such an operator in the third
section of this paper, where is presented the calculus of several types of fuzzy spectral
radii for a Volterra type operator acting on fuzzy normed linear spaces.

In ([24]) it is shown that X endowed with a fuzzy norm N is a topological
metrizable vector space with respect to the topology TN given by the fundamental
system of neighborhoods:

S (u,,s) = {v ∈ X : N (u− v,s) > 1− }.
The definition of the convergence of a sequence (zn) in a FNLS (X ,N ,�) is

natural and it is used by all the researchers. Thus, a sequence (zn) is convergent to
z ∈ X , denoted by lim

n→
zn = z or zn → z , if lim

n→
N (zn − z,s) = 1, for all s > 0.

We recall ([13]) that (zn) ⊂ X is a fuzzy Cauchy sequence if (zn) is a Cauchy
sequence in TN .

A (X ,N ,�) FNLS is called fuzzy complete if any fuzzy Cauchy sequence is
fuzzy convergent.

2. Properties of various types of bounded operators acting on
fuzzy normed spaces

In this part, we recall the definition of the class of neighborhood locally fuzzy
bounded operators (NLFB(X )) , as was introduced in ([8]), we point out the con-
nection with the class of fuzzy continuous operators (FC(X )) and we show that
NLFB(X ) is a complex algebra.

DEFINITION 1. ([8]) Let (X ,N ,�) be a FNLS and T : X → X a linear op-
erator. We call T neighborhood locally fuzzy bounded if there exist 0 ∈ (0,1) and
s0 > 0 such that for all  ∈ (0,1) , it exists s > 0 with the property that all u ∈ X
which verify N (u,s0) > 0 , have also the property N (Tu,s) >  .

Denote the class of all neighborhood locally fuzzy bounded operators on X by
NLFB(X ) .

Recall ([23]) that the linear operator T : X → X , where (X ,N ,�) is FNLS
is fuzzy continuous if (∀) ∈ (0,1) , (∃) ∈ (0,1) , (∃)M > 0 such that (∀)t > 0,
(∀)x ∈ X with N (x,t) >  ⇒ N (Tx,M t) >  .
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Also, T is fuzzy continuous if (∀) ∈ (0,1) , (∀)s ∈ (0,1) , (∃) ,s ∈ (0,1) ,
(∃) ,s > 0 such that (∀)x ∈ X : N (x, ,s) >  ,s ⇒ N (Tx,s) >  .

We denote by FC(X ) the class of fuzzy continuous operators acting on X . The
connection between these two classes of operators is given in the next proposition.

PROPOSITION 1. In a FNLS (X ,N ,�) , the following inclusion holds:

NLFB(X ) � FC(X ).

Proof. Let T ∈ NLFB(X ) and  ∈ (0,1) . From the hypothesis, (∃)0 ∈ (0,1) ,
(∃)t0 > 0, (∃)s > 0 such that (∀)v ∈ X with N (v, t0) > 0 we have N (Tv,s) >

 . For  = 0 ∈ (0,1) and M =
s
t0

, we deduce that (∀)u ∈ X , (∀)t > 0 with

N (u, t) >  , that is N

(
t0
t
u,t0

)
> 0 we have N

(
T

(
t0
t
u

)
,s

)
>  . Hence

N

(
Tu,

ts
t0

)
= N (Tu,M t) >  . Therefore T ∈ FC(X ) . �

The inclusion is strict because the operator I : X →X , Iu = u , where (X ,N ,∧)
is the fuzzy normed linear space from ([7] Theorem 10), is fuzzy continuous but it is
not neighborhood locally fuzzy bounded.

With the purpose of giving conditions for equality to hold in Proposition 1, we
introduce the following definition:

DEFINITION 2. Let (X ,N ,�) be a FNLS . The space X is called locally fuzzy
bounded if (∃)0 ∈ (0,1) , (∃)t0 > 0 such that (∀) ∈ (0,1) , (∃)t > 0, (∀)u ∈ X :
N (u, t0) > 0 ⇒ N (u,t ) >  .

REMARK 1. X is locally fuzzy bounded iff I ∈ NLFB(X ) .

Next, a characterization on the occurrence of the equality between the above men-
tioned classes of operators is presented.

THEOREM 1. Let (X ,N ,�) be a FNLS and T : X → X a linear operator.
Then X is locally fuzzy bounded iff NLFB(X ) = FC(X ) .

Proof. “⇒” Suppose that X is locally fuzzy bounded. According to Proposition
1, it remains to prove that FC(X ) ⊆ NLFB(X ) . Consider T ∈ FC(X ) and  ∈
(0,1) . Then, (∀)s > 0, (∃) ,s ∈ (0,1) , (∃)u ,s > 0 such that (∀)v∈X : N (v,u ,s) >
 ,s ⇒ N (Tv,s) >  . For s = 1 we deduce (∃) ∈ (0,1),(∃)u > 0 such that
(∀)v∈X : N (v,u)> ⇒N (Tv,1)> . From the hypothesis, for  =  ∈ (0,1) ,
it results (∃)0 ∈ (0,1) , (∃)t0 > 0, (∃)t > 0 such that (∀)x ∈ X : N (x, t0) > 0

⇒ N (x, t) >  . Hence (∃)0 ∈ (0,1) , (∃)t0 > 0 such that (∀) ∈ (0,1) , (∃)s =
t
u

> 0 such that (∀)x ∈ X : N (x,t0) > 0 ⇒ N

(
u
t

x,u

)
= N (x,t ) >  ,

whence N

(
T (

u
t

x),1
)

= N (Tx,s ) >  . Therefore T ∈ NLFB(X) .
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“⇐” I ∈ FC(X ) = NLFB(X ) ⇒ X is locally fuzzy bounded. �

The following two propositions establish some algebraic properties of operators
from NLFB(X) .

PROPOSITION 2. Let (X ,N ,�) be a FNLS. If T ∈FC(X ) and S∈NLFB(X ) ,
then TS ∈ NLFB(X ) .

Proof. Since S ∈ NLFB(X ) , (∃)0 ∈ (0,1) , (∃)t0 > 0 such that (∀) ∈ (0,1) ,
(∃)s > 0, (∀)u∈ X with N (u,t0) > 0 ⇒ N (Su,s ) >  . From T ∈ FC(X ) , it
results (∀) ∈ (0,1) , (∃) ∈ (0,1) , (∃)M > 0 such that (∀)v ∈ X , (∀)t > 0 with
N (v,t) >  ⇒ N (Tv,M t) >  (�) .

Consider  ∈ (0,1) . Then, for  =  ∈ (0,1) , (∃)s > 0 such that (∀)u ∈
X : N (u, t0) > 0 ⇒ N (Su,s ) >  . Thus, (∃)0 ∈ (0,1) , (∃)t0 > 0 such that
(∀) ∈ (0,1) , (∃)t = Ms > 0 with the property that (∀)u ∈ X : N (u,t0) > 0 ,
we have N (Su,s ) >  .

By (� ), it follows N ((TS)u,t)= N (T (Su),sM)> , hence TS∈NLFB(X ) .
�

PROPOSITION 3. Let (X ,N ,�) be a FNLS. If T1,T2 ∈ NLFB(X ) , then T1 +
T2 ∈ NLFB(X ) and T1T2 ∈ NLFB(X ) .

Proof. From Propositions 1 and 2, it results that T1T2 ∈ NLFB(X ) . We prove
that T1 +T2 ∈ NLFB(X ) . By hypothesis, (∃)0

i ∈ (0,1) , (∃)t0i > 0 such that (∀) ∈
(0,1) , (∃)si

 > 0, (∀)u ∈ X : N (u,t0i ) > 0
i ⇒ N (Tiu,si

 ) >  , i ∈ {1,2} .

For 0 = max{0
1 ,0

2} ∈ (0,1) and t0 = min{t01 , t02} > 0 we have (∀) ∈ (0,1) ,
(∃) ∈ (0,1) with  �  >  , (∃) s = s1

 + s2
 > 0 such that (∀) u ∈ X :

N (u, t0)>0 ⇒ N (u,t0i )� N (u,t0)>0 �0
i , i∈{1,2} , hence N ((T1+T2)u,s)

� N (T1u,s1
 )�N (T2u,s2

 ) �  � >  .
Therefore T1 +T2 ∈ NLFB(X ) . �

3. Fuzzy spectral radii for fuzzy bounded operators

In this section, within the framework of fuzzy normed spaces with a t -norm that
is not making this space a locally convex one, a general approach towards spectral sets,
resolvent sets and their properties is pursuit. There are several types of resolvent sets
and their corresponding spectral sets that we introduce, for each of the operator classes
studied in the previous section.

DEFINITION 3. Let (X ,N ,�) be a FNLS and T : X → X a linear operator.
i) The set  f l(T ) = { ∈ C :  I−T is invertible in the linear operators algebra }

is called the fuzzy linear resolvent set of T ;
ii) The set  f c(T ) = { ∈ C :  I−T is invertible in FC(X )} is called the fuzzy

continuous resolvent set of T ;



198 T. BÎNZAR AND F. PATER

iii) The set nl f b(T ) = { ∈ C : (∃) ∈ C,(∃)S ∈ NLFB(X ) such that ( I −
T )−1 = I +S} is called the neighborhood locally fuzzy bounded resolvent set of T .

The fuzzy spectral sets  f l(T ) ,  f c(T ) , nl f b(T ) are defined as being the com-
plements in C of the corresponding fuzzy resolvent sets.

We will denote by R the inverse ( left or right ) of  I −T , provided it exists.
Also, we call R the resolvent of T .

REMARK 2. i) It is obvious from Proposition 1 that  f l(T )⊆ f c(T )⊆nl f b(T ) .
ii) If (X ,N,�) is locally fuzzy bounded and T : X →X is linear operator, then

by Theorem 1,  f c(T ) = nl f b(T ) .

In the next proposition, the equality of the fuzzy spectral sets given in Remark 2,
ii), is also valid for neighborhood locally fuzzy bounded operators.

PROPOSITION 4. Let (X ,N,�) be a FNLS. If T ∈ NLFB(X ) , then  f c(T ) =
nl f b(T ) .

Proof. If X is locally fuzzy bounded, then the result is given in Remark 2, ii).
Suppose now that X is not locally fuzzy bounded. Since  f c(T ) ⊆ nl f b(T ) ,

according to Remark 2, i) , it remains to prove that  f c(T )⊆ nl f b(T ) . Let  ∈  f c(T ) ,

 �= 0. As R =
1


RT +
1


I and R ∈ FC(X ) , it results from Proposition 2 that

 ∈ n f b(T ) . It is left to prove that 0 ∈  f c(T ) , which necessarily yields 0 ∈ n f b(T ) .
If, by absurd 0 /∈  f c(T ) , i.e. R0 = T−1 ∈ FC(X ) , then according to Proposition
2, I = T−1T ∈ NLFB(X ) that is impossible in a non-locally fuzzy bounded space.
Consequently, 0 ∈  f c(T ) . �

In the sequel, two natural convergence definitions for the sequences from the con-
sidered classes of operators are introduced.

DEFINITION 4. Let (X ,N ,�) be a FNLS and (Sn)n ⊂FC(X ) . We say that the

sequence (Sn) converges fuzzy equicontinuously to null operator denoted Sn
feq−→ 0 if

(∀) ∈ (0,1) , (∀)t > 0, (∃) ,t ∈ (0,1) , (∃)s ,t > 0 such that (∀) > 0, (∃)n0(,,t)∈
N with the property that (∀)n � n0(,,t) , (∀)u∈X : N (u,s ,t)>  ,t ⇒ N (Snu,t)
> 

DEFINITION 5. Let (X ,N ,�) be a FNLS and (Sn)n ⊂ NLFB(X ) . We say

that the sequence (Sn) converges fuzzy uniformly to null operator denoted Sn
fu−→ 0 if

(∃)0 ∈ (0,1) , (∃)t0 > 0, such that (∀) ∈ (0,1) , (∀)s > 0, (∃)n0( ,s) ∈ N with the
property that (∀)n � n0( ,s) , (∀)u ∈ X : N (u,t0) > 0 ⇒ N (Snu,s) >  .

Taking into account the newly defined concepts of convergence, we arrive to the
next definition.
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DEFINITION 6. Let (X ,N ,�) be a FNLS and T : X → X a linear operator.
The numbers:

i) r f l(T ) = inf{ > 0 : (∀)u ∈ X ,(∀)t > 0, lim
n→

N

(
Tn

n u,t

)
= 1} ;

ii) r f c(T ) = inf{ > 0 :
Tn

n

feq−→ 0} ;

iii) rnl f b(T ) = inf{ > 0 :
Tn

n
fu−→ 0}

are called fuzzy linear radius of T , fuzzy continuous radius of T , neighborhood
locally fuzzy bounded radius of T , respectively.

In the next result, relations between the freshly introduced radii are provided.

THEOREM 2. If (X ,N ,�) is a FNLS and T : X → X is a linear operator,
then r f l(T ) � r f c(T ) � rnl f b(T ) .

Proof. We show that{
 > 0 :

Tn

n

feq−→ 0

}
⊂

{
 > 0 : (∀)u ∈ X ,(∀)t > 0, lim

n→
N

(
Tn

n u, t

)
= 1

}
.

Fix  > 0,  ∈ (0,1) , u ∈ X , t > 0. From
Tn

n

feq−→ 0, it results that (∃) ,t ∈
(0,1) , (∃)s ,t > 0 such that (∀) > 0, (∃)n0(,,t) ∈ N : (∀)n � n0(,,t) , (∀)v ∈
X with N (v,s ,t ) >  ,t ⇒ N

(
Tn

n v,t
)

>  . Using (N 5) we deduce that

(∃)s > 0 such that N (u,s) >  ,t . From the above, for  =
s ,t

s
> 0 and v =

s ,t

s
u

we have N (v,s ,t) = N (u,s) >  ,t , whence

N

(
Tn

n u, t

)
= N

(
Tn

n

(
s

s ,t
v

)
,t

)
= N

(
Tn

n v,
s ,t

s
t

)
= N

(
Tn

n v,t
)

> ,

that is lim
n→

N

(
Tn

n u,t

)
= 1.

Hence the inclusion is proved and this implies r f l(T ) � r f c(T ) . We prove that
Tn

n
fu−→ 0 ⇒ Tn

n

feq−→ 0.

Consider  > 0 fixed,  ∈ (0,1) , t > 0,  > 0. Following the hypothesis, (∃)0 ∈
(0,1) , (∃)t0 > 0 such that, for s = t > 0, (∃)n0(,,t) ∈ N with the property (∀)n �
n0(,, t) , (∀)u ∈ X : N (u,t0) > 0 ⇒ N

(
Tn

n u,t
)

>  .

Consequently, (∀) ∈ (0,1) , (∀)t > 0 (∃) ,t = 0 ∈ (0,1) , (∃)s ,t = t0 > 0
such that (∀) > 0, (∃)n0(,,t)∈N with the property (∀)n � n0(,,t) , (∀)u∈X :

N (u,s ,t) >  ,t ⇒ N

(
Tn

n u,t
)

>  . Therefore r f c(T ) � rnl f b(T ) . �

The last inequality in Theorem 2 becomes equality in the case of a NLFB(X )
operator.
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THEOREM 3. If (X ,N ,�) is a FNLS and T ∈ NLFB(X ) , then r f c(T ) =
rnl f b(T ) .

Proof. From Theorem2 we know that r f c(T )� rnl f b(T ) . We prove that rnl f b(T )�
r f c(T ) . Since T ∈ NLFB(X ) it results (∃)0 ∈ (0,1) (∃)t0 > 0 such that (∀) ∈
(0,1) , (∃)s > 0 with the property (∀)u∈X , having N (u,t0)>0 ⇒ N (Tu,s) >
 (��) .

Let  > r f c(T ) . Then
Tn

n

feq−→ 0, so (∀) ∈ (0,1) , (∀)t > 0, (∃) ,t ∈ (0,1) ,

(∃)s ,t > 0 such that (∀) > 0, (∃) n0(,,t) ∈ N , (∀) n � n0(,, t) , (∀) v ∈ X

with N (v,s ,t ) >  ,t ⇒ N

(
Tn

n v,t
)

>  . (� � �)

Considering  ∈ (0,1) , t > 0 and taking  ,t instead of  in (��) we get that
(∃) s,t > 0 such that (∀)u ∈ X with N (u,t0) > 0 ⇒ N (Tu,s,t ) >  ,t . For

 =
 · s ,t

s,t

> 0 and v = T

(
s ,t

s,t

u

)
in (���) we deduce that (∃) 0 ∈ (0,1) , (∃)t0 >

0 such that (∀)  ∈ (0,1) , (∀)t > 0, (∃) n0(,t) = n0

(
 · s ,t

s,t

,,t

)
∈ N such that

(∀)n � n0(, t) , (∀)u ∈ X : N (u,t0) > 0 ⇒ N (Tu,s,t ) = N (v,s ,t) >  ,t

which implies N

(
Tn+1

n+1 u,t

)
= N

(
Tn

n v,t
)

>  . So
Tn+1

n+1

feq−→ 0, which yields to

 � rnl f b(T ) .
Therefore rnl f b(T ) � r f c(T ) . �

The following definition is useful for computing r f c(T ) .

DEFINITION 7. Let (X ,N ,�) be a FNLS and G (X ) a family of linear oper-
ators on X . We say that the family G (X ) is fuzzy equicontinuous if (∀) ∈ (0,1) ,
(∀)t > 0, (∃) ,t ∈ (0,1) , (∃)s ,t > 0 such that (∀)u ∈ X : N (u,s ,t) >  ,t ⇒
N (Su, t) >  , (∀)S ∈ G (X ) .

Alternative calculi for fuzzy radii are given.

THEOREM 4. If (X ,N ,�) is a FNLS and T : X → X is a linear operator,
then:

i) r f l = inf

{
 > 0 : (∀) ∈ (0,1),(∀)u ∈X ,(∃)t ,u > 0 such that (∀)n ∈ N∗ ⇒

N

(
Tn

n u, t ,u

)
> 

}
;

ii) If T ∈ FC(X ) , then r f c(T ) = inf

{
 > 0 :

{
Tn

n

}
n∈N∗

is fuzzy equicontinu-

ous

}
;
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iii) If T ∈ NLFB(X ) , then rnl f b(T ) = inf

{
 > 0 : (∃)0 ∈ (0,1),(∃)t0 > 0

such that (∀) ∈ (0,1),(∀)t > 0,(∀)u ∈ X : N (u,t0) > 0,(∀)n ∈ N∗ ⇒
N

(
Tn

n u, t

)
> 

}
.

Proof. i) Denote by r′f l = inf

{
 > 0 : (∀) ∈ (0,1),(∀)u ∈ X ,(∃)t ,u > 0 such

that (∀)n ∈ N∗ ⇒ N

(
Tn

n u,t ,u

)
> 

}
. We show that

{
 > 0 : (∀)u ∈ X ,(∀)t >

0 ⇒ lim
n→

N

(
Tn

n u, t

)
= 1

}
⊂

{
 > 0 : (∀) ∈ (0,1),(∀)u ∈ X ,(∃)t ,u > 0 such

that (∀)n ∈ N∗ ⇒ N

(
Tn

n u,t ,u

)
> 

}
.

Fix  > 0 from the left side set of the previous inclusion relation. Let  ∈ (0,1) ,
u ∈ X . For t = s > 0 fixed, we deduce that (∃)n1(,u) ∈ N∗ \ {1} such that (∀)n �
n1(,u) we have N

(
Tn

n u,s

)
>  . It is clear from (N 5) that (∃)ti(u) > 0, i ∈

{1,2, . . . ,n1(,x)−1} such that N

(
Tn

n u,ti(u)
)

>  . Hence (∃)t ,u = max{s,t1(u),

t2(u), . . . ,tn1( ,u)−1(u)} with the property that (∀)n ∈ N∗ ⇒ N

(
Tn

n u,t ,u

)
>  ,

which proves the proposed inclusion. So r f l(T ) � r′f l(T ) .
Conversely, suppose  > r′f l(T ) fixed. Choose  > 0 with  > > r′f l(T ) . Then,

(∀)u∈X , (∀) ∈ (0,1) , (∃)t ,u > 0 such that (∀)∈N∗ ⇒ N

(
Tn

n u,t ,u

)
> . For

all t > 0, we have N

(
Tn

n u,t

)
= N

((



)n T n

n u,t

)
= N

(
Tn

n u,

(



)n

t

)
>  ,

(∀)n ∈ N∗ with

(



)n

t > t ,u , so lim
n→

N

(
Tn

n u,t

)
= 1, (∀)u ∈ X , (∀)t > 0. Thus

r′f l(T ) � r f l(T ) . Therefore r f l(T ) = r′f l(T ) .

ii) Consider T ∈ FC(X ) and r′f c(T ) = inf

{
 > 0 :

{
Tn

n

}
n∈N∗

is fuzzy equi-

continuous

}
. If  > 0 is fixed such that

Tn

n

feq−→ 0, then (∀) ∈ (0,1) , (∀)t > 0,

(∃) ,t ∈ (0,1) , (∃)s ,t > 0 such that (∀) > 0, (∃)n0(,, t) ∈ N∗ such that (∀)n �

n0(,, t) , (∀)u : N (u,s ,t) >  ,t ⇒ N

(
Tn

n u,t
)

>  . Thus, taking  = 1,

we deduce that (∀) ∈ (0,1) , (∀)t > 0, (∃)n0(,t) ∈ N∗ such that (∀)n � n0(,t) ,

(∀)u ∈ X : N (u,s ,t) >  ,t ⇒ N

(
Tn

n u,t

)
>  .

Since T ∈ FC(X ) we obtain that (∀) ∈ (0,1) , (∀)t > 0, (∀)n < n0(,t) ,
(∃) ,t,n ∈ (0,1) , (∃)s ,t,n > 0 such that (∀)u ∈ X : N (u,s ,t,n) >  ,t,n ⇒
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N

(
Tn

n u, t

)
>  .

So, (∀) ∈ (0,1) , (∀)t > 0, (∃) ,t = max{ ,t , ,t,1, . . . , ,t,n0( ,t)−1}∈ (0,1) ,
(∃)  ,t = min{s ,t ,s ,t,1, . . . ,s ,t,n0( ,t)−1}
> 0 such that (∀)n∈N∗ we have (∀)u∈X : N (u, ,t) >  ,t ⇒ N

(
Tn

n u,t

)
> ,

meaning

{
Tn

n

}
n∈N∗

is fuzzy equicontinuous . Hence r f c(T ) � r′f c(T ) .

Now, take  > r′f c(T ) . Then, (∃) > 0 such that  > > r′f c(T ) . As

{
Tn

n

}
n∈N∗

is fuzzy equicontinuous, it results that (∀) ∈ (0,1) , (∀)t > 0, (∃) ,t ∈ (0,1) , (∃)s ,t >

0, such that (∀)u ∈ X : N (u,s ,t) >  ,t ⇒ N

(
Tn

n u, t

)
>  , (∀)n ∈ N∗ .

So, (∀) ∈ (0,1) , (∀)t > 0, (∃) ,t ∈ (0,1) , (∃)s ,t > 0, with the property

(∀) > 0, (∃)n0(,,t) ∈ N∗ such that
n0

n0
>

1


and (∀)u ∈ X : N (u,s ,t) >  ,t ,

(∀)n � n0(,, t) we obtain N

(
Tn

n u,t
)

= N

(
Tn

n u,
n

n t
)

� N

(
Tn

n u,t

)
> 

which proves that
Tn

n

feq−→ 0.

Therefore r′f c(T ) � r f c(T ) , hence r f c(T ) = r′f c(T ) .
iii) It can be proved similarly to ii) . �

4. Volterra operator in fuzzy context

Being one of the most useful operator in a good number of fields, from ordinary
differential equations to inverse problems of mathematical-physics, appearing in a wide
range of setups (from abstract operator spaces to different types of function spaces
suited for solving differential equations), the Volterra operator represents one of the
most effective methods for solving one-dimensional inverse problems. It also helps
dealing with transformation and factorization operator method. Over the years, since
its first appearance, many specialists dedicated their time to find methods to characterize
as much as possible this operator’s properties (see [2, 14, 20]).

We consider in this section the classical Volterra operator acting on L2[0,1] en-
dowed with fuzzy norm derived from the usual norm of L2[0,1] , denoted by ||.||2 . We
calculate the spectral radii of this type of Volterra operator in this new framework who
was described in detail in the previous sections.

Suppose V : L2[0,1]→ L2[0,1] is defined by:

V f (u) =
u∫

0

f (s)ds
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Recall the definition of the operator norm ||.|| on L2[0,1] :

||V || = sup
|| f ||2=1

||V f ||2

It’s a known fact that operator norm of V is 2/ and

lim
m→

||m!Vm|| = 1/2 (1)

(see [17]). Now, if we consider X := L2[0,1] , and put

N ( f ,s) =

{ s
s+ || f ||2 , s > 0,

0, s = 0,

then N is a fuzzy norm on L2[0,1] making (L2[0,1],N ,�) a fuzzy normed space.
We intend to study the fuzzy boundedness and the spectral radii of the fuzzy Volterra

operator FV : (L2[0,1],N ,�)→ (L2[0,1],N ,�) , FV f (u) =
u∫
0

f (s)ds . Consider 0 =
1
2

and s0 = 1. It is easy to see that for f ∈X , the inequalities N ( f ,s0)>0 and || f ||2 <

1 are equivalent. Thus, (∀) ∈ (0,1),(∃) s =
2

(1−)
> 0 such that (∀) f ∈X with

N ( f ,s0) > 0 , we have

N (FV f ,s ) =
s

s + ||FV f ||2 � s
s + ||FV |||| f ||2 =

s
s + 2

 || f ||2
>

s
s + 2


= 

Therefore FV ∈ NLFB(X ) .
According to Theorem 3, the equality r f c(FV ) = rnl f b(FV ) holds. It is possible to

prove that r f l(FV ) = r f c(FV ) = rnl f b(FV ) .
Hence, for calculating the spectral radius of FV , it is sufficient to work with the

formula:

r f l(FV ) = inf{ > 0 : (∀) f ∈ L2[0,1],(∀)t > 0, lim
n→

N

(
Fn
V

n f ,t

)
= 1}

= inf

{
 > 0 : (∀) f ∈ L2[0,1],(∀)t > 0, lim

n→

t

t + ||Fn
V f ||2
n

= 1

}

= inf

{
 > 0 : (∀) f ∈ L2[0,1], lim

n→

||Fn
V f ||2
n = 0

}
.

Since
||Fn

V f ||2
n � ||Fn

V |||| f ||2
n , we have:

r f l(FV ) � inf

{
 > 0 : (∀) f ∈ L2[0,1], lim

n→

||Fn
V |||| f ||2
n = 0

}

= inf

{
 > 0 : (∀) f ∈ L2[0,1], lim

n→

||n!Fn
V |||| f ||2
n!n = 0

}
.
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But, following (1), lim
m→

||n!Fn
V || = 1/2, whence the limit lim

n→

||n!Fn
V |||| f ||2
n!n = 0 yields

lim
n→

|| f ||2
2n!n = 0 which is satisfied for all  > 0. So, r f l(FV ) � 0 therefore r f c(FV ) =

rnl f b(FV ) = r f l(FV ) = 0.
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