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Abstract. For a Finsler manifold equipped with the weighted volume form, we established a new
Laplacian comparison theorem for the distance function. As applications, we obtain Bishop-
Gromov type volume comparison for the geodesic balls, and Cheng type comparison theorem
for the first Dirichlet eigenvalue. Moreover, we also give a simple proof for Myers theorem.

1. Introduction

Similar to Riemannian case, comparison theorems play an important role in Finsler
geometry, especially in its global and analytic aspects. There are many kinds of com-
parison theorems obtained in the Finsler setting up to now. Shen [9] first extended
comparison theorems to Finsler geometry under Ricci and S -curvature conditions. Af-
terwards, Wu-Xin [11], via various curvature conditions, proved Hessian comparison
theorem, Laplacian comparison theorems and volume comparison theorems. The re-
sults were generalized further by Wu [10] and Zhao-Shen [15], respectively. On the
other hand, by using the weighted Ricci curvature RicN , Ohta-Sturm [6], [7] gave
another version of Laplacian and volume comparison theorems. Along this line, the
second author [12] obtain Laplacian comparison theorem and volume comparison the-
orem on a Finsler manifold with the weighted Ricci curvature Ric bounded below.
Recently, under an upper bound on r controlled by a function (r) of the distance
function r , Cheng-Shen [3] obtain a relative volume comparison of Bishop-Gromov
type for the geodesic balls.

Let (M,F,d) be a Finsler n -manifold with an arbitrary volume form d =
(x)dx . Let p be a fixed point and r(x) = d(p,x) the distance function from p . As-
sume that d̃ = ̃(x)dx , where ̃ (x) = (x)e(x,r(x)) , and  is the distortion with
respect to d . Then ̃(x) is bounded around the point p , and d̃ gives a weighted
volume form on M\{p} . Further more, for any integrable function f , we have

∫
M\{p}

f d̃ =
∫

M
f d̃ .
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So we might as well regard d̃ as the volume form defined on M . The Finsler manifold
(M,F) equipped with the weighted volume form d̃ has some interesting properties.
In particular, the radial S -curvature vanishes along the geodesic from p . See Lemma
3.1 in Section 3 below.

In this paper, our main aim is to establish a new Laplacian comparison theorem on
Finsler manifolds with weighted volume form d̃ . Precisely, we have

THEOREM 1.1. Let (M,F,d) be a Finsler n-manifold with an arbitrary volume
form d = (x)dx . Let p be a fixed point and r(x) = d(p,x) the distance function
from p. Assume that the volume form d̃ = ̃(x)dx , where ̃(x) = (x)e(x,r(x)) ,
and  is the distortion with respect to d . If the Ricci curvature Ric � (n−1)k , then
the Laplacian of r(x) with respect to d̃ can be estimated as follows:

̃r � (n−1)ctk(r)

pointwise on M\({p}∪Cut(p)) and in the sense of distributions on M\{p} . Here

ctk(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
k · cot(

√
kr), k > 0,

1
r
, k = 0,

√−k · coth(
√−kr), k < 0.

The equality holds if and only if the radial flag curvature K(x,r(x)) = k .

The second aim of this paper is to give some applications of the Laplacian com-
parison theorem (Theorem 1.1). In particular, we obtain a volume comparison theorem
as follows.

THEOREM 1.2. Let (M,F,d) be a Finsler n-manifold with an arbitrary volume
form d = (x)dx . Let p be a fixed point and r(x) = d(p,x) the distance function
from p. Assume that the volume form d̃ = ̃(x)dx , where ̃(x) = (x)e(x,r(x)) ,
and  is the distortion with respect to d . If the Ricci curvature Ric � (n−1)k , then
for any 0 < r < R (R � √

k
when k > 0 ), it holds that

vold̃F B+
p (R)

vold̃F B+
p (r)

�
∫ R
0 sk(t)n−1dt∫ r
0 sk(t)n−1dt

,

where B+
p (r) denotes the forward geodesic ball centered at p of radius r , and sk(t)

is defined by (3.1) below. The equality holds if and only if the radial flag curvature
K(x,r(x)) = k .

The paper is organized as follows. In Section 2, some fundamental concepts and
formulas which are necessary for the present paper are given. In Section 3 we will
prove Theorems 1.1 and 1.2, respectively. Finally, we will give some other applications
of the Laplacian comparison theorem (Theorem 1.1) in Section 4.
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2. Preliminaries

Let M be an n−dimensional smooth manifold and  : TM → M be the natural
projection from the tangent bundle TM . Let (x,y) be a point of TM with x ∈ M ,
y ∈ TxM , and let (xi,yi) be the local coordinates on TM with y = yi/xi . A Finsler
metric on M is a function F : TM → [0,+) satisfying the following properties:

(i) Regularity: F(x,y) is smooth in TM \ 0;
(ii) Positive homogeneity: F(x,y) = F(x,y) for  > 0;
(iii) Strong convexity: The fundamental quadratic form

g := gi j(x,y)dxi ⊗dx j, gi j :=
1
2
[F2]yiy j

is positive definite.
Let X = Xi 

xi be a vector field. Then the covariant derivative of X by v ∈ TxM
with reference vector w ∈ TxM\0 is defined by

Dw
v X(x) :=

{
v j Xi

x j (x)+i
jk(w)v jXk(x)

}

xi ,

where i
jk denote the coefficients of the Chern connection.

Given two linearly independent vectors V,W ∈ TxM\0, the flag curvature is de-
fined by

K(V,W ) :=
gV (RV (V,W )W,V )

gV (V,V )gV (W,W )−gV (V,W )2 ,

where RV is the Riemannian curvature:

RV (X ,Y )Z = DV
XDV

Y Z−DV
Y DV

XZ−DV
[X ,Y ]Z.

Then the Ricci curvature for (M,F) is defined as

Ric(V ) =
n−1


i=1

K(V,ei),

where e1, · · · ,en−1,
V

F(V ) form an orthonormal basis of TxM with respect to gV .

For a given volume form d = (x)dx and a vector V ∈ TxM\0, the distortion of
(M,F,d) is defined by

(x,V ) := ln

√
det(gi j(x,V ))

(x)
.

When (M,F) is a Riemannian manifold, the distortion  = (x) becomes a smooth
function on M . To measure the rate of changes of the distortion along geodesics, we
define the S-curvature as

S(x,V ) :=
d
dt

[((t), ̇(t))]t=0,
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where (t) is the geodesic with (0) = x, ̇(0) = V .
For a smooth function u : M → R , the gradient vector of u at x is defined as

u(x) :=

{
gi j(x,u) u

x j

xi , du(x) �= 0,

0, du(x) = 0.

Set MV := {x∈M|V (x) �= 0} for a vector field V on M , and Mu := Mu . For a smooth
vector field V on M and x∈MV , we define V (x)∈ T ∗

x M⊗TxM by using the covariant
derivative as

V (v) := DV
v V (x) ∈ TxM, v ∈ TxM.

For a smooth function u : M → R and x ∈ Mu , Set 2u(x) := (u)(x) . Define the
Hessian of u by [11]

H(u)(X ,Y ) = XYu−XYu, X ,Y ∈ TxM.

Then we have

H(u)(X ,Y ) = gu(Du
X u,Y ) = gu(Du

Y u,X) = H(u)(Y,X).

Let V = V i 
xi be a C vector field on M . The divergence of V with respect to

an arbitrary volume form d is defined by

divV :=
n


i=1

(
V i

xi +Vi 
xi

)
,

where d = edx . Then the Finsler-Laplacian of u can be defined by

u := div(u).

Let (M,F,d) be a Finsler n -manifold. Define the canonical energy functional as
([8], p. 210)

E (u) :=
∫
M F∗(du)2d∫

M u2d
,

where F∗ is the dual Finsler metric with respect to F . It follows that a function u ∈
W 1,2

0 (M) satisfies duE = 0 with  = E (u) if and only if

u = −u.

In this case,  and u called an eigenvalue and an eigenfunction of (M,F,d) , respec-
tively. It is shown in [4] that u ∈C1,(Mu)∩C(M) .

3. The proofs of Theorem 1.1 and 1.2

LEMMA 3.1. Let (M,F,d) be a Finsler n-manifold with an arbitrary volume
form d = (x)dx . Let p be a fixed point and r(x) = d(p,x) the distance function
from p. Assume that the volume form d̃ = ̃(x)dx , where ̃(x) = (x)e(x,r(x)) ,
and  is the distortion with respect to d . Then the S-curvature vanishes along the
geodesics from p.
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Proof. Computing the distortion under the volume form d̃ , we have

̃(x,y) = log

√
det(gi j(x,y))

̃(x)
= log

√
det(gi j(x,y))

(x)e(x,r(x))

= log

√
det(gi j(x,y))

(x)
− (x,r(x))

= (x,y)− (x,r(x)).

Let  be a geodesic such that (0) = p . Then, along the geodesic  , we have

̃(, ̇) = ̃(x,r(x)) = 0,

and thus
S̃(, ̇) = S̃(x,r(x)) = 0. �

Proof of Theorem 1.1 . We follow the standard arguments. See [11] for reference.
Suppose that r is smooth at q ∈ M . Let  : [0,r(q)] → M be the normal geodesic
from p to q . Choose the local gr -orthonormal basis {e1, · · · ,en−1,en = ̇} at TqM .
we get local vector fields {e1(s), · · · ,en−1(s),en(s) = ̇} by parallel transport along
geodesic rays. For any 1 � i � n−1, there is a unique Jacobi vector field Ji such that
Ji(0) = 0,Ji(r(q)) = ei . Set Wi(s) = sk(s)

sk(r(q))ei(s) , where

sk(r) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sin(
√

kr)√
k

, k > 0;

r, k = 0;

sinh(
√−kr)√−k

, k < 0.

(3.1)

Obviously, Wi(0) = 0, Wi(r(q)) = Ji(r(q)) . Using the basic index lemma, we have

trrH(r)
∣∣
q =

n−1


i=1

I(Ji,Ji) �
n−1


i=1

I(Wi,Wi)

=
1

sk(r(q))2

∫ r(q)

0

[
(n−1)s′k(s)

2 −Ric(̇)sk(s)2
]
ds

=
1

sk(r(q))2

∫ r(q)

0

[
(n−1)s′k(s)

2 − (n−1)ksk(s)2
]
ds

= (n−1)ctk(r(q)). (3.2)

Now from Lemma 3.1, we have

̃(, ̇) = 0, S̃(, ̇) = 0

along the geodesic  . It follows that

̃r = trrH(r)− S̃(r) = trrH(r). (3.3)
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Then from (3.2) and (3.3), we have

̃r � (n−1)ctk(r).

By the well known Calabi skill, we can get the inequality in distributional sense on
M\{p} . This finishes the proof of the first part.

In what follows, we consider the second part. If the equality holds,

̃r = (n−1)ctk(r),

then from (3.3) we have

trrH(r) = (n−1)ctk(r). (3.4)

Direct differentiating on both sides with respect to r in (3.4), we obtain


 r

trrH(r)+
(trrH(r))2

n−1
= −(n−1)k. (3.5)

Let Sp(r(x)) be the forward geodesic sphere of radius r(x) centered at p . Choosing
the local gr -orthonormal frame E1, · · · ,En−1 of Sp(r(x)) near x , we get local vector
fields E1, · · · ,En−1,En = r by parallel transport along geodesic rays. Thus, it follows
from [11] that


 r

trrH(r) = −Ric(r)−
n−1


i, j=1

[H(r)(Ei,Ej)]2, (3.6)

Therefore, from (3.5) and (3.6), we derive

−(n−1)k =

 r

trrH(r)+
1

n−1
(trrH(r))2

� 
 r

trrH(r)+
n−1


i, j=1

[H(r)(Ei,Ej)]2

= −Ric(r) � −(n−1)k.

Thus, we obtain

n−1


i, j=1

[H(r)(Ei,Ej)]2 =
1

n−1
(trrH(r))2. (3.7)

By Schwarz inequality, it follows from (3.4) and (3.7) that, for 1 � i, j � n−1,

(
H(r)(Ei,Ej)

)
=

⎛
⎜⎜⎜⎝

ctk(r) 0 · · · 0
0 ctk(r) · · · 0
...

...
...

...
0 0 · · · ctk(r)

⎞
⎟⎟⎟⎠ (3.8)
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Now we calculate the flag curvature of (M,F) . By (3.8) we observe that {Ei}n−1
i=1 are

(n−1) eigenvectors of 2r . That is,

Dr
Ei
r = ctk(r)Ei, i = 1, · · · ,n−1.

Since r is a geodesic field on (M,F) , the flag curvature K(r; ·) is equal to the sec-
tional curvature of the weighted Riemannian manifold (M,gr) . Note that {Ei}n−1

i=1 are
(n− 1) eigenvectors of 2r and parallel along the geodesic ray. By a straightforward
computation, we get, for 1 � i � n−1,

K(r;Ei) = Rr(Ei,r,Ei,r) = gr(Rr(Ei,r)r,Ei)

= gr(Dr
Ei

Dr
rr−Dr

rD
r
Ei
r−Dr

[Ei,r]r,Ei)

= −gr(Dr
r(ctk(r))Ei +Dr

Dr
Ei
r−Dr

rEi
r,Ei)

= −gr(ct′k(r)Ei +Dr
ctk(r)Ei

r,Ei)

= −ct′k(r)− ctk(r)gr(Dr
Ei
r,Ei)

= −ct′k(r)− ctk(r)2

= k.

Conversely, if the radial flag curvature K(x,r(x)) = k , then by Hessian compar-
ison theorem [11], we have{

H(r)(Ei,Ej) = ctk(r)i j, i, j � n−1,

H(r)(r,r) = 0,

which means that
̃r = trrH(r) = (n−1)ctk(r). �

REMARK. Notice that under the weighted volume form the S -curvature only van-
ishes along the geodesic from p . Therefore, for an arbitrary smooth function f (x) , it
does not hold that

̃ f = trrH( f ).

Let (M,F,d) be a Finsler n -manifold. For a fixed point p ∈ M , define

Ip :={v ∈ TpM|F(v) = 1}, c(v) := sup{t > 0|dF(p,exp(tv)) = t}
C(p) :={c(v)v|c(v) < ,v ∈ Ip}, C(p) := expC(p), ip := inf{c(v)|v ∈ Ip},
D(p) :={tv|0 � t < c(v),v ∈ Ip}, D(p) := expD(p).

Then D(p) = M\C(p) . Let { | = 1, · · ·n− 1} be the local coordinates that are
intrinsic to Ip . For any q ∈ D(p) , the polar coordinates of q are defined by ( , ) =
((q), 1(q), · · · , n−1(q)) , where (q) = F(v),(q) = ( v

F(v) ) and v = exp−1
p (q) .

Let Dp(r) := {v ∈ Ip|rv ∈ Dp} . It is easy to see that Dp(r) = Ip for r < ip . Set

p(r) :=
∫

Dp(r)
(r, )d .
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Denote by B+
p (r) the forward geodesic ball centered at p of radius r . Then for r < ip ,

voldF (B+
p (r)) =

∫ r

0
p(r)dr.

Proof of Theorem 1.2 . Since Ric � (n− 1)k , by Laplacian comparison theorem
(Theorem 1.1), we have

̃r � (n−1)ctk(r) = (n−1)
s′k(r)
sk(r)

.

Let (r, ) be the polar coordinate around p and write the volume form by d̃ =
̃(r, )drd . Then

̃r =

 r

log ̃(r, ).

which yields

 r

log ̃ � 
 r

logsk(r)n−1.

Set ̂ := sk(r)n−1 and define f (r) = ̃
̂ . Then

f ′(r) =
̃ ′̂ − ̃ ̂ ′

̂2 =
̃
̂


 r

(log ̃ − loĝ) � 0.

Hence, f (r) is non-increasing monotonically on r . It follows that

̃(R, )
̂(R)

� ̃(r, )
̂(r)

, r � R.

Integrating it over Dp(r) with respect to d , we get

̃p(R)
̂(R)

� ̃p(r)
̂(r)

, r � R.

By a standard argument, we then have
∫ R
0 ̃p(t)dt∫ R
0 ̂(t)dt

�
∫ r
0 ̃p(t)dt∫ r
0 ̂(t)dt

, r � R.

Namely,
vold̃F B+

p (R)

vold̃F B+
p (r)

�
∫ R
0 sk(t)n−1dt∫ r
0 sk(t)n−1dt

.

If the equality holds, then all inequalities become equalities. In particular, we have

̃r = (n−1)ctk(r).

Therefore, by Theorem 1.1, we conclude that the equality holds if and only if the radial
flag curvature K(x,r(x)) = k . �
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4. Some other applications

Using a similar argument as the Riemannian case, the celebrated Myers theorem
has been generalized to Finsler geometry (see [1], p. 194). By using the Laplacian
comparison theorem (Theorem 1.1), we can give a simple proof of Myers theorem.

THEOREM 4.1. [1], [5] Let (M,F) be a Finsler n-manifold. If the Ricci curvature
Ric � (n−1)k > 0 , the M is compact and

Diam(M) � √
k
.

Proof. Let d = (x)dx be an arbitrary volume form, and  be the distortion
with respect to d . Define

d̃ = ̃(x)dx, ̃(x) = (x)e(x,r(x)).

Let r(x) = d(p,x) be the distance function from p . Then, by Theorem 1.1, the Lapla-
cian of r(x) with respect to d̃ satisfies

̃r � (n−1)
√

k cot(
√

kr). (4.1)

Notice that if x∈M\Cut(p)∪{p} , then r(x) is smooth and ̃r is bounded. If Diam(M)
> √

k
, then there exists some point x0 such that r is smooth at x0 and r(x0) = √

k
.

However, we find that the left side in (4.1) is bounded at x0 while the right side turns
to − . It is a contradiction. This ends the proof. �

Recall that Cheng [2] obtained some eigenvalue comparison theorems in Rieman-
nian geometry. The results are partially generalized to Finsler geometry[13], [14]. Next
we will give an eigenvalue comparison theorem by using the Laplacian comparison
(Theorem 1.1).

THEOREM 4.2. Let (M,F,d) be a complete Finsler n-manifold with an arbi-
trary volume form d = (x)dx . Let p be a fixed point and r(x) = d(p,x) the dis-
tance function from p. Assume that the volume form d̃ = ̃(x)dx , where ̃(x) =
(x)e(x,r(x)) , and  is the distortion with respect to d . If the Ricci curvature satis-
fies Ric � (n−1)k , then the first Dirichlet eigenvalue of Finsler Laplacian with respect
to (M,F,d̃) satisfies

̃1(B+
p (r)) � 1(Vn(k,r)),

where Vn(k,r) denotes a (forward or backward) geodesic ball with radius r in the n-
dimensional simply connected Finsler spaces with flag curvature k and vanishing S
curvature. The equality holds if and only if the radial flag curvature K(x,r(x)) = k .

Proof. If Vn(k,r) is a geodesic ball in a Riemannian space form, we let  be the
negative first eigenfunction in Vn(k,r) . Since all simply connected spaces forms are
two-point homogenous,  is a radial function. Namely, (x) = (d(p, x)) , where p
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is the center of Vn(k,r) , and d(p, x) is the distance function from p to x . Moreover,
we have [2]

{
 ′′(t)+ (n−1)ctk(t) ′(t)+1(Vn(k,r))(t) = 0,

(r) = 0,  ′(t) > 0, t ∈ (0,r).
(4.2)

We remark that, for both forward and backward geodesic balls with constant flag
curvature and vanishing S curvature, the first Dirichlet eigenvalue are the same (see
[13] for details).

Let (x) = d(p,x) be the forward distance function of (M,F) , u(x) = ((x)) .
Since du =  ′d and  ′ > 0, we find u =  ′ . Using Theorem 1.1 and noting that
F() = 1, it follows from (4.2) that

̃u = div(u)
= div( ′)

=  ′′()+ ′()̃
�  ′′()+ (n−1)ctk () ′()
= −1(Vn(k,r))u.

Note that u|B+
p (r) < 0 and u|B+

p (r) = 0. It follows that

∫
B+

p (r)
(F∗(du))2d̃ =

∫
B+

p (r)
du(u)d̃

= −
∫

B+
p (r)

ũud̃

� 1(Vn(k,r))
∫

B+
p (r)

u2d̃ . (4.3)

Thus, from (4.3) we have

̃1(B+
p (r)) = inf

f∈C
0 (B+

p (r))\{0}

∫
B+

p (r) F
∗(d f )2d̃∫

B+
p (r) f 2d̃

�
∫
B+

p (r) F
∗(du)2d̃∫

B+
p (r) u

2d̃

� 1(Vn(k,r)).

If the equality holds, then we have

̃ = (n−1)ctk().

From Theorem 1.1, this means that the radial flag curvature K(x,r(x)) = k . �
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