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COMPLETE MOMENT CONVERGENCE FOR ARRAYS

OF ROWWISE INDEPENDENT RANDOM ELEMENTS

IN RADEMACHER TYPE p BANACH SPACES

YONGFENG WU AND XIN DENG ∗

(Communicated by X. Wang)

Abstract. The authors investigate the complete moment convergence for arrays of rowwise in-
dependent random elements in Rademacher p Banach spaces. The results obtained in this paper
improve the corresponding theorems of Hu et al. (Hu, T.-C., Rosalsky, A., Volodin, A., Zhang,
S., 2021. A complete convergence theorem for row sums from arrays of rowwise independent
random elements in Rademacher type p Banach spaces. II, Stochastic Anal. Appl., 39 (1),
177–193). Some corollaries and examples are also presented.

1. Introduction

Let (,F ,P) be a probability space and let X be a real separable Banach space with
norm || · || . The reader may refer to Hu et al. (2012) for more details on the concepts of
Rademacher type p (1 � p � 2) Banach space, random element V , EV , and rowwise
independence. In this article, all random elements are defined on the space (,F ,P)
and take values in the space X .

A sequence of random variables {Un,n � 1} is said to converge completely to a
constant a if for any  > 0,




n=1

P(|Un−a|> ) <.

This notion was given firstly by Hsu and Robbins (1947). This of course implies by the
Borel-Cantelli lemma that Un → a almost surely (a.s.).

Chow (1988) introduced a more general concept of the complete convergence. Let
{Zn,n � 1} be a sequence of random variables and an > 0, bn > 0, q > 0. If




n=1

anE{b−1
n |Zn|− }q

+ <  for some or all  > 0,
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then the above result was called the complete moment convergence. It is worthy to point
out that the complete moment convergence is the more general version of the complete
convergence, which will been shown in Remark 2.1.

Recently some scholars studied the limit property concerned a Banach space set-
ting (see, [1, 2, 7–11]) and parts of them investigated the complete convergence. How-
ever, according to our knowledge, few articles discuss the complete moment conver-
gence for sums of arrays of Banach space valued random elements. Since the complete
moment convergence is more general than the complete convergence, it is very signif-
icant to study the complete moment convergence for arrays of rowwise independent
random elements in Rademacher p Banach spaces.

Hu et al. (2012) obtained the following complete convergence theorem for row
sums from arrays of rowwise independent random elements in Rademacher type p
Banach spaces.

THEOREM A. (Hu et al., 2012, Theorem 3.1) Let {Vn,k,1 � k � kn,n � 1} be
an array of rowwise independent random elements taking values in a real separable
Rademacher type p (1 � p � 2) Banach space and let {cn,n � 1} be a sequence of
positive constants. Suppose for some J > 0 and some 1,2 > 0 that




n=1

cn

kn


k=1

P
(∣∣∣∣Vn,k

∣∣∣∣> 
)

<  for all  > 0, (1.1)




n=1

cn

(
kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣pI(∣∣∣∣Vn,k
∣∣∣∣� 1

))J

<  (1.2)

and
kn


k=1

EVn,kI
(∣∣∣∣Vn,k

∣∣∣∣� 2
)→ 0 as n → . (1.3)

Then



n=1

cnP

(∣∣∣∣∣
∣∣∣∣∣

kn


k=1

Vn,k

∣∣∣∣∣
∣∣∣∣∣> 

)
<  for all  > 0. (1.4)

Hu et al. (2021) improved partially Theorem A by replacing the condition (1.3) to
a stronger one and presented the following result.

THEOREM B. (Hu et al., 2021, Theorem 3.1) Let {Vn,k,1 � k � kn,n � 1} be
an array of rowwise independent random elements taking values in a real separable
Rademacher type p (1 � p � 2) Banach space and let {cn,n � 1} be a sequence of
positive constants. Suppose for some J > 0 and some 1,2 > 0 that (1.1) , (1.2) and

max
1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

EVn,iI
(∣∣∣∣Vn,i

∣∣∣∣� 2
)∣∣∣∣∣
∣∣∣∣∣→ 0 as n → . (1.5)

Then



n=1

cnP

(
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

Vn,i

∣∣∣∣∣
∣∣∣∣∣> 

)
<  for all  > 0. (1.6)
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It is clear that (1.6) is more stronger than (1.4). Hu et al. (2021) also presented
an example, which shows that Theorem B can fail if (1.5) is weakened to (1.3), that
is, under the conditions of Theorem A, the conclusion (1.6) of Theorem B does not
necessarily hold.

In this work, the authors shall study the complete moment convergence for row
sums from arrays of rowwise independent random elements in Rademacher type p
Banach spaces. The authors replace the condition (1.1) to a stronger one and obtain a
much stronger result which improves partially Theorem B.

It is obvious that (1.4) and (1.6) are true if 
n=1 cn <  . Therefore, in this paper,

{cn,n � 1} is assumed to be a sequence of positive constants such that 
n=1 cn =  .

In addition, as with Hu et al. (2021), we also assume that {kn, n � 1} is a sequence of
positive integers with kn →  as n →  .

Throughout this paper, the symbol C always stands for a generic positive constant
which may differ from one place to another. The symbol I(A) denotes the indicator
function of the event A .

2. Lemmas and main result

To prove our main result, we need the following technical lemmas.

LEMMA 2.1. (Hu et al., 2021) For all integers j � 0 , there exists a constant 0 <
Cj < depending only on j such that for all n � 1 , t > 0 and every set {Vk,1 � k � n}
of n independent random elements taking values in a real separable Banach space,

P

(
max

1�k�n

∣∣∣∣∣
∣∣∣∣∣

k


i=1

Vi

∣∣∣∣∣
∣∣∣∣∣> (3 j+1−1)t

)

� CjP
(

max
1�k�n

∣∣∣∣∣∣Vk

∣∣∣∣∣∣> 2t
)

+

(
P

(
max

1�k�n

∣∣∣∣∣
∣∣∣∣∣

k


i=1

Vi

∣∣∣∣∣
∣∣∣∣∣> 2t

))2 j

. (2.1)

LEMMA 2.2. (Rosalsky and Van Thanh, 2007) Let X be a real separable Rade-
macher type p (1 � p � 2) Banach space. Then there exists a constant 0 < Ap < 
depending only on p such that for every sequence {Vk,1 � k � n} of independent mean
0 random elements taking values in X ,

E

(
max

1�k�n

∣∣∣∣∣
∣∣∣∣∣

k


i=1

Vi

∣∣∣∣∣
∣∣∣∣∣
)p

� Ap

n


i=1

E
∣∣∣∣Vi
∣∣∣∣p, n � 1. (2.2)

Now we state our main result and the proof.

THEOREM 2.1. Let {Vn,k,1 � k � kn,n � 1} be an array of rowwise independent
random elements taking values in a real separable Rademacher type p (1 � p � 2)
Banach space and let {cn,n � 1} be a sequence of positive constants. Suppose for
some J > 1 and some 1,2 > 0 that




n=1

cn

kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣qI(∣∣∣∣Vn,k
∣∣∣∣> 

)
<  for all  > 0 and 0 < q � p, (2.3)
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n=1

cn

(
kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣pI(∣∣∣∣Vn,k

∣∣∣∣� 1
))J

< , (2.4)

kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣qI(∣∣∣∣Vn,k
∣∣∣∣> min{1,2}

)→ 0 as n →  (2.5)

and

max
1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

EVn,iI
(∣∣∣∣Vn,i

∣∣∣∣� 2
)∣∣∣∣∣
∣∣∣∣∣→ 0 as n → . (2.6)

Then



n=1

cnE

{
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

Vn,i

∣∣∣∣∣
∣∣∣∣∣−

}q

+

<  for all  > 0. (2.7)

Proof. Choose a positive integer j such that 2 j > J > 1. Let  > 0 be arbitrary
and  = max{1,2} and t0 =

(
2 (3 j+1 − 1)

)q
. Without loss of generality, we may

assume 0 <  < min{1,2} . For any fixed  > 0,




n=1

cnE

{
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

Vn,i

∣∣∣∣∣
∣∣∣∣∣−

}q

+

=



n=1

cn

∫ 

0
P

(
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

Vn,i

∣∣∣∣∣
∣∣∣∣∣− > t1/q

)
dt

=



n=1

cn

∫ t0

0
P

(
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

Vn,i

∣∣∣∣∣
∣∣∣∣∣>  + t1/q

)
dt

+



n=1

cn

∫ 

t0
P

(
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

Vn,i

∣∣∣∣∣
∣∣∣∣∣>  + t1/q

)
dt

� t0



n=1

cnP

(
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

Vn,i

∣∣∣∣∣
∣∣∣∣∣> 

)
+




n=1

cn

∫ 

t0
P

(
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

Vn,i

∣∣∣∣∣
∣∣∣∣∣> t1/q

)
dt

= : I1 + I2.

Noting that




n=1

cn

kn


k=1

P
(∣∣∣∣Vn,k

∣∣∣∣> 
)

� q



n=1

cn

kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣qI(∣∣∣∣Vn,k

∣∣∣∣> 
)

< ,

which indicates (2.3) implies (1.1). By Theorem B, we have I1 <  . To prove (2.7), it
is enough to prove I2 <  .

For n � 1, 1 � k � kn and t � t0 , let

V
′
n,k = Vn,kI

(∣∣∣∣Vn,k

∣∣∣∣� t1/q/(2(3 j+1−1))
)
,

V
′′
n,k = Vn,kI

(∣∣∣∣Vn,k

∣∣∣∣> t1/q/(2(3 j+1−1))
)
.
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Then

I2 �



n=1

cn

∫ 

t0
P

(
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

(V
′
n,i−EV

′
n,i)

∣∣∣∣∣
∣∣∣∣∣> t1/q/2

)
dt

+



n=1

cn

∫ 

t0
P

(
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

(V
′′
n,i +EV

′
n,i)

∣∣∣∣∣
∣∣∣∣∣> t1/q/2

)
dt

= : I3 + I4.

It follows from the definition of V
′
n,k that

max
1�k�kn

∣∣∣∣V ′
n,k −EV

′
n,k

∣∣∣∣� t1/q

3 j+1−1
almost surely (a.s.). (2.8)

Thus by Lemma 2.1, we have

I3 =



n=1

cn

∫ 

t0
P

(
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

(V
′
n,i−EV

′
n,i)

∣∣∣∣∣
∣∣∣∣∣> (3 j+1−1)

t1/q

2(3 j+1−1)

)
dt

� Cj




n=1

cn

∫ 

t0
P

(
max

1�k�kn

∣∣∣∣V ′
n,k −EV

′
n,k

∣∣∣∣> t1/q

3 j+1−1

)
dt

+



n=1

cn

∫ 

t0

{
P

(
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

(V
′
n,i−EV

′
n,i)

∣∣∣∣∣
∣∣∣∣∣> t1/q

3 j+1−1

)}2 j

dt

� 0+



n=1

cn

∫ 

t0

{
P

(
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

(V
′
n,i−EV

′
n,i)

∣∣∣∣∣
∣∣∣∣∣> t1/q

3 j+1−1

)}J

dt (by (2.8))

� C



n=1

cn

∫ 

t0

{
t−p/qE

(
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

(V
′
n,i−EV

′
n,i)

∣∣∣∣∣
∣∣∣∣∣
)p}J

dt

(by the Markov inequality)

� C



n=1

cn

∫ 

t0

{
t−p/q

kn


k=1

E
∣∣∣∣(V ′

n,k −EV
′
n,k)
∣∣∣∣p}J

dt (by Lemma 2.2)

� C



n=1

cn

∫ 

t0

{
t−p/q

kn


k=1

E
∣∣∣∣V ′

n,k

∣∣∣∣p}J

dt

(by the Cr-inequality and Jensen’s inequality)

= C



n=1

cn

∫ 

t0

{
t−p/q

kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣pI(∣∣∣∣Vn,k

∣∣∣∣� 1
)

+t−p/q
kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣pI(1 <
∣∣∣∣Vn,k

∣∣∣∣� t1/q

2(3 j+1−1)
)}J

dt
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� C



n=1

cn

∫ 

t0

{
t−p/q

kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣pI(∣∣∣∣Vn,k

∣∣∣∣� 1)
)}J

dt

+C



n=1

cn

∫ 

t0

{
t−p/q

kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣pI(1 <
∣∣∣∣Vn,k

∣∣∣∣� t1/q

2(3 j+1−1)
)}J

dt

= : I5 + I6.

By 0 < q � p , J > 1 and (2.4), we have

I5 = C



n=1

cn

(
kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣pI(∣∣∣∣Vn,k
∣∣∣∣� 1)

))J ∫ 

t0
t−pJ/qdt

� C



n=1

cn

(
kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣pI(∣∣∣∣Vn,k

∣∣∣∣� 1)
))J

< .

By 0 < q � p , J > 1 and (2.3), we have

I6 �
(
2(3 j+1−1)

)(q−p)J
C

×



n=1

cn

∫ 

t0

{
t−1

kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣qI(1 <
∣∣∣∣Vn,k

∣∣∣∣� t1/q

2(3 j+1−1)

)}J

dt

�
(
2(3 j+1−1)

)(q−p)J
C




n=1

cn

(
kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣qI(∣∣∣∣Vn,k

∣∣∣∣> 1
))J ∫ 

t0
t−Jdt

� C



n=1

cn

(
kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣qI(∣∣∣∣Vn,k
∣∣∣∣> 1

))J

.

By (2.5), we have

kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣qI(∣∣∣∣Vn,k

∣∣∣∣> 1
)→ 0 as n → .

Therefore, there exists a positive integer N1 such that

kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣qI(∣∣∣∣Vn,k
∣∣∣∣> 1

)
< 1

holds uniformly for all n > N1 and t � t0 . Then by (2.3), we can obtain

I6 � C
N1


n=1

cn

(
kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣qI(∣∣∣∣Vn,k

∣∣∣∣> 1
))J

+C



n=N1+1

cn

(
kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣qI(∣∣∣∣Vn,k
∣∣∣∣> 1

))J

� C+C



n=N1+1

cn

kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣qI(∣∣∣∣Vn,k
∣∣∣∣> 1

)
< .
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Finally we will show I4 <  . Observing that

max
t�t0

max
1�k�kn

2t−1/q

∣∣∣∣∣
∣∣∣∣∣

k


i=1

EV
′
n,i

∣∣∣∣∣
∣∣∣∣∣

= 2max
t�t0

max
1�k�kn

t−1/q

∣∣∣∣∣
∣∣∣∣∣

k


i=1

EVn,iI
(∣∣∣∣Vn,i

∣∣∣∣� t1/q

2(3 j+1−1)
)∣∣∣∣∣
∣∣∣∣∣

� 2max
t�t0

max
1�k�kn

t−1/q

∣∣∣∣∣
∣∣∣∣∣

k


i=1

EVn,iI
(∣∣∣∣Vn,i

∣∣∣∣� 2

)∣∣∣∣∣
∣∣∣∣∣

+2max
t�t0

max
1�k�kn

t−1/q

∣∣∣∣∣
∣∣∣∣∣

k


i=1

EVn,iI
(
2 <

∣∣∣∣Vn,i
∣∣∣∣� t1/q

2(3 j+1−1)

)∣∣∣∣∣
∣∣∣∣∣

= : J1 + J2.

From the (2.6), we have

J1 � 2t−1/q
0 max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

EVn,iI
(∣∣∣∣Vn,i

∣∣∣∣� 2
)∣∣∣∣∣
∣∣∣∣∣→ 0 as n → .

From the (2.5), we have

J2 � 2max
t�t0

t−1/q
kn


i=1

E
∣∣∣∣Vn,i

∣∣∣∣I(2 <
∣∣∣∣Vn,i

∣∣∣∣� t1/q

2(3 j+1−1)

)

� 1
3 j+1−1

max
t�t0

kn


i=1

EI
(
2 <

∣∣∣∣Vn,i
∣∣∣∣� t1/q

2(3 j+1−1)

)

� 1
3 j+1−1

kn


i=1

P
(∣∣∣∣Vn,i

∣∣∣∣> 2
)

� 1
3 j+1−1

−q
2

kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣qI(∣∣∣∣Vn,k
∣∣∣∣> 2

)→ 0 as n → .

It follows by J1 → 0 and J2 → 0 as n →  that

max
t�t0

max
1�k�kn

2t−1/q

∣∣∣∣∣
∣∣∣∣∣

k


i=1

EV
′
n,i

∣∣∣∣∣
∣∣∣∣∣→ 0 as n → 

and so there exists a positive integer N2 such that

max
1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

EV
′
n,i

∣∣∣∣∣
∣∣∣∣∣< t1/q/4
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holds uniformly for all n > N2 and t � t0 . Hence

I4 �



n=1

cn

∫ 

t0
P

(
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

V
′′
n,i

∣∣∣∣∣
∣∣∣∣∣+ max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

EV
′
n,i

∣∣∣∣∣
∣∣∣∣∣> t1/q/2

)
dt

� C



n=1

cn

∫ 

t0
P

(
max
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V
′′
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)
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� C
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cn

∫ 

t0
P

(
kn⋃

k=1

[∣∣∣∣Vn,k
∣∣∣∣> t1/q

2(3 j+1−1)

])
dt

� C
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kn


k=1

∫ 

t0
P

(∣∣∣∣Vn,k

∣∣∣∣> t1/q

2(3 j+1−1)

)
dt.

Noting that ∫ 

a
P(|Y | > t1/ )dt � E|Y | I(|Y | > a1/ ),

then we have by (2.3)

I4 � C



n=1

cn

kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣qI(∣∣∣∣Vn,k

∣∣∣∣> 
)

< .

The proof is completed. �

REMARK 2.1. Noting that

 >



n=1

cnE

{
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

Vn,i

∣∣∣∣∣
∣∣∣∣∣−

}q

+

=



n=1

cn

∫ 

0
P

(
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1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

Vn,i

∣∣∣∣∣
∣∣∣∣∣>  + t1/q

)
dt

�



n=1

cn

∫ q

0
P

(
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

Vn,i

∣∣∣∣∣
∣∣∣∣∣> + t1/q

)
dt

� q



n=1

cnP

(
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

Vn,i

∣∣∣∣∣
∣∣∣∣∣> 2

)
,

hence (2.7) is much stronger than (1.6) and Theorem 2.1 improves partially Theorem
B.

OPEN PROBLEM. Since (2.3) is stronger than (1.1) and we add the condition (2.5),
it is worthy to point out that whether Theorem 2.1 remains true under the conditions of
Theorem B. It is an interesting and challenging work. Despite our efforts to solve this
problem, it is still an open problem.
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3. Corollaries

Take cn = 1/n , kn = n in Theorem 2.1, we can obtain directly the following corol-
lary.

COROLLARY 3.1. Let {Vn,k,1 � k � n,n � 1} be an array of rowwise indepen-
dent random elements taking values in a real separable Rademacher type p (1 � p � 2)
Banach space. Suppose for some J > 0 and some 1,2 > 0 that




n=1

n−1
n


k=1

E
∣∣∣∣Vn,k

∣∣∣∣qI(∣∣∣∣Vn,k

∣∣∣∣> 
)

<  for all  > 0 and 0 < q � p, (3.1)




n=1

n−1

(
n


k=1

E
∣∣∣∣Vn,k

∣∣∣∣pI(∣∣∣∣Vn,k
∣∣∣∣� 1

))J

< , (3.2)

n


k=1

E
∣∣∣∣Vn,k

∣∣∣∣qI(∣∣∣∣Vn,k

∣∣∣∣> min{1,2}
)→ 0 as n →  (3.3)

and

max
1�k�n

∣∣∣∣∣
∣∣∣∣∣

k


i=1

EVn,iI
(∣∣∣∣Vn,i

∣∣∣∣� 2
)∣∣∣∣∣
∣∣∣∣∣→ 0 as n → . (3.4)

Then



n=1

n−1E

{
max

1�k�n

∣∣∣∣∣
∣∣∣∣∣

k


i=1

Vn,i

∣∣∣∣∣
∣∣∣∣∣−

}q

+

<  for all  > 0. (3.5)

COROLLARY 3.2. Let {Vn,k,1 � k � kn,n � 1} be an array of rowwise indepen-
dent mean 0 random elements taking values in a real separable Rademacher type p
(1 � p � 2) Banach space and let {cn,n � 1} be a sequence of positive constants.
Suppose that (2.3),




n=1

cn

(
kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣q)J

<  for some 0 < q � p and J > 1 (3.6)

and

kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣max{q,1}
I
(∣∣∣∣Vn,k

∣∣∣∣> 
)→ 0 as n →  for some  > 0. (3.7)

Then (2.7) holds.

Proof. In view of Theorem 2.1 for the case 1 = 2 =  , we need only to verify
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(2.4), (2.5) and (2.6). We first verify (2.4).
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(
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k=1

E
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∣∣∣∣pI(∣∣∣∣Vn,k
∣∣∣∣� 1

))J

=  pJ
1
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(
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k=1

E

∣∣∣∣Vn,k

∣∣∣∣p
 p

1
I
(∣∣∣∣Vn,k

∣∣∣∣� 1
))J

�  pJ
1




n=1

cn

(
kn


k=1

E

∣∣∣∣Vn,k
∣∣∣∣q

 q
1

I
(∣∣∣∣Vn,k

∣∣∣∣� 1
))J

�  (p−q)J
1




n=1

cn

(
kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣q)J

< .

On the other hand, we can easily verify (2.5) for the case 1 = 2 =  from the
condition (3.7). Finally, since the Vn,i all have mean 0, we can obtain

max
1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

EVn,iI
(∣∣∣∣Vn,i

∣∣∣∣� 2
)∣∣∣∣∣
∣∣∣∣∣ = max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

EVn,iI
(∣∣∣∣Vn,i

∣∣∣∣> 2
)∣∣∣∣∣
∣∣∣∣∣

�
kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣I(∣∣∣∣Vn,k

∣∣∣∣> 2
)

�
kn


k=1

E
∣∣∣∣Vn,k

∣∣∣∣max{q,1}
I
(∣∣∣∣Vn,k

∣∣∣∣> 
)→ 0 as n → ,

which shows (2.6) holds and completes the proof. �

An array of random elements {Vn,k,1 � k � kn,n � 1} is said to be stochastically
dominated by a random variable X if there exists a constant 0 < C <  such that

P(
∣∣∣∣Vn,k

∣∣∣∣> x) � CP(|X | > x) (3.8)

for all x � 0 and all 1 � k � kn and all n � 1.
The above concept of stochastic domination is a generalization of the concept

of identical distributions. Stochastic dominance of {Vn,k,1 � k � kn,n � 1} by the
random variable X implies E

∣∣∣∣Vn,k
∣∣∣∣p� CE|X |p if the p -moment of |X | exists, i. e., if

E|X |p <  .

COROLLARY 3.3. Let {Vn,k,1 � k � kn,n � 1} be an array of rowwise indepen-
dent random elements taking values in a real separable Rademacher type p (1 � p � 2)
Banach space. Suppose that {Vn,k,1 � k � kn,n � 1} is stochastically dominated by a
random variable X . Let {an,k,1 � k � kn,n � 1} be an array of constants such that

kn


k=1

|an,k|p = O(n−) for some  > 0. (3.9)

Suppose that
kn = o(n/(p−1)) for 1 < p � 2 (3.10)
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and
E|X |p < . (3.11)

Then for all  < −1 ,




n=1

nE

{
max

1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

an,iVn,i

∣∣∣∣∣
∣∣∣∣∣−

}q

+

< for all  > 0 and 0 < q � p. (3.12)

Proof. Taking cn = n and replacing Vn,k with an,kVn,k in Theorem 2.1, we need
only to verify (2.3), (2.4), (2.5) and (2.6).

Firstly, note that for 0 < q � p , (3.9) and  < −1,




n=1

n
kn


k=1

E
∣∣∣∣an,kVn,k

∣∣∣∣qI(∣∣∣∣an,kVn,k

∣∣∣∣> 
)

� C
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n
kn
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|an,k|qE|X |qI(|an,kX | > 
)

� Cq−p
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n
kn
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|an,k|pE|X |pI(|an,kX | > 
)

� C



n=1

n
kn


k=1

|an,k|pE|X |p

� C



n=1

n− < .

Secondly, by  < −1 and J > 1, we have J > 1 > +1
 , then  −J < −1. It

follows by (3.9) and  −J < −1,




n=1

n
(
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k=1

E
∣∣∣∣an,kVn,k

∣∣∣∣pI(∣∣∣∣an,kVn,k

∣∣∣∣� 1
))J

�



n=1

n
(

kn


k=1

|an,k|pE
∣∣∣∣Vn,k

∣∣∣∣p)J

� C



n=1

n
(

kn


k=1

|an,k|pE|X |p
)J

� C



n=1

n−J < .

Thirdly, we let 0 = min{1,2} . Then we have by (3.9) and (3.11) that

kn


k=1

E
∣∣∣∣an,kVn,k

∣∣∣∣qI(∣∣∣∣an,kVn,k
∣∣∣∣> 0

)
=

kn


k=1

|an,k|qE|X |qI(|an,kX | > 0
)

�  q−p
0

kn


k=1

|an,k|pE|X |pI(|an,kX |> 0
)

� C
kn


k=1

|an,k|p � Cn− as n → ,
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which shows (2.5) holds.
Finally, we will verify (2.6). We can obtain by Jensen’s inequality and (3.9)–(3.11)

that

max
1�k�kn

∣∣∣∣∣
∣∣∣∣∣

k


i=1

E(an,iVn,i)I
(∣∣∣∣an,iVn,i

∣∣∣∣� 2
)∣∣∣∣∣
∣∣∣∣∣

�
kn


i=1

|an,i|E
∣∣∣∣Vn,i

∣∣∣∣ � CE|X |
kn


k=1

|an,k|

� Ck1−1/p
n

(
kn


k=1

|an,k|p
)1/p

� C
k1−1/p
n

n/p

=
{

Cn− → 0 as n → , p = 1,

C
( kn

n/(p−1)

)1−1/p → 0 as n → , 1 < p � 2.

The proof is completed. �

REMARK 3.2. The condition (3.10) is weaker than (4.8) in Corollary 4.5 by Hu
et al. (2021), and the rest of the conditions are same, but (3.12) is much stronger than
(4.10). Therefore, Corollary 3.3 improves Corollary 4.5 in Hu et al. (2021).

4. Examples

The following example is a modification of Example 5.3 of Hu et al. (2021).
We will discuss in two cases. Case I illustrates Theorem 2.1 and Case II shows that
Theorem 2.1 can fail if the condition (2.6) is not met.

EXAMPLE 4.1. Take kn = 2n and cn = n−1 for n � 1 and let {Vn,k,1 � k �
kn,n � 1} be an array of rowwise independent random variables such that

P

(
Vn,k = − 1

(n+2)

)
=

n2 +2n
(n+1)2 and P

(
Vn,k = n

)
=

1
(n+1)2 , 1 � k � n

and

P

(
Vn,k =

1
(n+2)

)
=

n2 +2n
(n+1)2 and P

(
Vn,k = −n

)
=

1
(n+1)2 , n+1 � k � 2n,

where  � 1 and 0 <  < 1/q .
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Case I:  > 1

Firstly, for arbitrary  > 0 and all large n , we have by q < 1 that
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)
=
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nqP
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)

= 2



n=1

nq

(n+1)2 < ,

then (2.3) is verified.

Secondly, let p = 2, J > 1 and 1 > 0. For all large n , it follows by  > 1 that
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EV 2
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(
1
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(n+2)2J

< 2J



n=1

1

(n+2)(2−1)J+1
< ,

then (2.4) is also verified.

Thirdly, for some 1,2 > 0 and all large n , we have by q < 1 that
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E
∣∣Vn,k

∣∣qI(∣∣Vn,k
∣∣> min{1,2}

)
=

2n
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E
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)

=
2n


k=1

nqP
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∣∣= n
)

=
2nq+1

(n+1)2 → 0 as n → ,

which shows (2.5) is verified.
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Finally, for some 2 > 0 and all large n , we have by  > 1 that
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)

=
2n

(n+2)
× n2 +2n

(n+1)2 → 0 as n → 

and so (2.6) is verified. Therefore, by Theorem 2.1,
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+

< for all  > 0 and 0 < q � 2.

Case II:  = 1
(2.3) and (2.5) can be verified by similar discussion in Case I, we need only con-

sider (2.4) and (2.6). For (2.4), we also let p = 2, J > 1 and 1 > 0. For all large n , it
follows by  = 1 that
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Next we will verify that (2.6) fails. For all 2 > 0 and all large n , we find that

max
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and so (2.6) fails.
Finally, noting that for all n � 1,∣∣∣∣∣n

(
− 1

n+2

)∣∣∣∣∣> 1
4
.
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Hence by similar discussion in Example 5.3 by Hu et al. (2021), we have




n=1

cnE

{
max

1�k�kn

∣∣∣∣∣
k


i=1

Vn,i

∣∣∣∣∣−1
8

}q

+

=



n=1

n−1E

{
max

1�k�2n

∣∣∣∣∣
k


i=1

Vn,i

∣∣∣∣∣−1
8

}q

+

=



n=1

n−1
∫ 

0
P

(
max

1�k�2n

∣∣∣∣∣
k


i=1

Vn,i

∣∣∣∣∣> 1
8

+ t1/q

)
dt

�



n=1

n−1
∫ 8−q

0
P

(
max

1�k�2n

∣∣∣∣∣
k


i=1

Vn,i

∣∣∣∣∣> 1
8

+ t1/q

)
dt

� 8−q



n=1

n−1P

(
max

1�k�2n

∣∣∣∣∣
k


i=1

Vn,i

∣∣∣∣∣> 1
4

)

� 8−q



n=1

n−1(1+o(1)
)
e−1 = ,

which shows (2.7) fails. Therefore, Theorem 2.1 can fail if (2.6) is not met.
The following example illustrates Corollary 3.2.

EXAMPLE 4.2. Let {Vn,n � 1} be a sequence of independent and identically
distributed random elements taking values in a real separable Rademacher type p (1 �
p � 2) Banach space. Let  � 0, J > 1,  > ( +1)(J−1) and E

∣∣∣∣V1
∣∣∣∣max{q,1}

< 
for some q ∈ (0, p] . Taking

Vn,k =
Vk

n
+J++1

qJ

, 1 � k � n, n � 1.

We will verify that the conditions (2.3), (3.6) and (3.7) of Corollary 3.2 hold with kn = n
and cn = n .

Firstly, for all  > 0, we have by  > ( +1)(J−1) that
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and so (2.3) is verified.
Secondly, we also obtain by  > ( +1)(J−1) > 0 that
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and so (3.6) is verified.

Finally, we will verify (3.7). If q � 1, by E
∣∣∣∣V1
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<  , we have
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Thus, by Corollary 3.2,




n=1

nE

{
n−

+J++1
qJ max

1�k�n

∣∣∣∣∣
∣∣∣∣∣

k


i=1

Vi

∣∣∣∣∣
∣∣∣∣∣−

}q

+

<  for all  > 0.

The last example illustrates Corollary 3.3.

EXAMPLE 4.3. Let {Vn,k,1 � k � kn,n � 1} be an array of rowwise independent
random elements taking values in a real separable Rademacher type 2 Banach space.
Suppose that {Vn,k,1 � k � kn,n � 1} is stochastically dominated by a random variable
X with EX2 <  .

For a real number x , the symbol [x] denotes the maximal integer which is not more
than x . Let  > 0 and 0 <  < 1. Taking p = 2, kn = [n ] and an,k = n−(+1)/2 in
Corollary 3.3, we can verify that

kn = o(n)

and
kn


k=1

|an,k|p =
[n ]


k=1

a2
n,k = [n ] n−(+1) = O(n−).

Then by Corollary 3.3, for all  < −1,




n=1

nE

{
n−(+1)/2 max

1�k�[n ]

∣∣∣∣∣
∣∣∣∣∣

k


i=1

Vn,i

∣∣∣∣∣
∣∣∣∣∣−

}q

+

< for all  > 0 and 0 < q � 2.
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