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INEQUALITIES FOR FUNCTIONS CONVEX ON THE COORDINATES

WITH APPLICATIONS TO JENSEN AND HERMITE–HADAMARD

TYPE INEQUALITIES, AND TO NEW DIVERGENCE FUNCTIONALS

LÁSZLÓ HORVÁTH

(Communicated by M. Klaričić Bakula)

Abstract. In this paper we show that inequalities for functions convex on the coordinates can be
derived from inequalities for convex functions defined on real intervals, and essentially only this
method works. As applications, we show how our result works for the Jensen’s and Hermite-
Hadamard inequalities for functions convex on the coordinates. Finally, we extend the classical
notion of f -divergence functional to functions convex on the coordinates, and as a further appli-
cation of our main result, we study the refinement of a basic inequality corresponding to the new
divergence.

1. Introduction

In this paper we work with functions convex on the coordinates, a concept intro-
duced by Dragomir in paper [5].

DEFINITION 1. Let us consider the bidimensional interval  := I × J in R
2 ,

where I and J are compact intervals in R with nonempty interior. A function f :
 → R is said to be convex on the coordinates if the partial mappings fq : I → R ,
fq (s) := f (s,q) and fp : J → R , fp (t) := f (p,t) are convex for all q ∈ J and p ∈ I .
The set of all functions convex on the coordinates on  will be denoted by Fco

 .

The notion is interesting because the set of convex functions defined on  is a
proper subset of the class of functions convex on the coordinates on  , but the basic
inequalities for convex functions (Jensen type inequalities, Hermite-Hadamard type in-
equalities) can also be formulated for functions convex on the coordinates (see e.g. the
papers [1], [5], [13], [14], [17], [18] and [21]).

Definition 1 is obviously meaningful even if the intervals I and J are not compact,
and most of the results could be formulated and verified under such conditions, but in
general in a less transparent way. This is also true for the main result of this paper, so
we shall work with compact intervals except the last section.
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The main result of this paper is that inequalities for functions convex on the coor-
dinates can be derived from inequalities for convex functions defined on real intervals,
and essentially only this method works. This is important because it shows that in-
equalities for functions convex on the coordinates can be constructed in a simple way.
The result also explains why some of the inequalities associated with convex functions
can be extended to functions convex on the coordinates, even though the latter are not
convex in general. As applications, we show how our result works for the Jensen’s and
Hermite-Hadamard inequalities for functions convex on the coordinates. On the one
hand, we give new proofs of these results under general conditions (Borel measures are
considered on the intervals I and J ), and on the other hand, we provide methods for
generating refinements of these inequalities and give some new concrete refinements.
Most of the results of previous papers on the refinement of Jensen’s and Hermite-
Hadamard inequalities for functions convex on the coordinates can be obtained, and
even generalized, using our method. Some new and interesting results are also given on
the Hermite-Hadamard inequality and its refinements for convex functions defined on
real intervals, based on the recent papers [6] and [8]. Finally, we extend the classical
notion of f -divergence functional to functions convex on the coordinates. We prove
that the new notion has the basic properties of f -divergence, so that it can also be con-
sidered as a divergence functional. Then, as a further application of our main result, we
study the refinement of a basic inequality corresponding to the new divergence.

2. Preliminary results

Let (X ,A ,) be a measure space, where  (X) <  . The set of all  -integrable
real functions on X is denoted by L() .

Let C ⊂ R be an interval with nonempty interior. We denote by FC the set of all
convex functions on C .

If C is a compact interval,  : X →C is a measurable function and f ∈ FC , then
f ◦ is also measurable, and since  and f are bounded and  is finite,  , f ◦ ∈
L() .

We need the following easily verifiable result (see Theorem 1.1.2 in [15]).

LEMMA 1. Let C ⊂ R be an interval with nonempty interior, and let f ∈ FC . If
t0 is an interior point of C and  > 0 such that [t0−  ,t0 +  ] ⊂C, then

| f (t0± )− f (t0)| �  max(| f (t0 −  )− f (t0)| , | f (t0 +  )− f (t0)|)

for all  ∈ [0,1] .

In the first lemma, we study the boundedness, continuity and measurability prop-
erties of functions convex on the coordinates.

LEMMA 2. Let  := I × J be an interval in R
2 , where I and J are compact

intervals in R with nonempty interior. If f ∈ Fco
 , then

(a) It is bounded.
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(b) It is continuous on the interior of the interval  .
(c) It is Borel-measurable.

Proof. Assume I = [a,b] and J = [c,d] .
(a) By the convexity of the functions fp (p ∈ I) and fq (q ∈ J) ,

f (s,t) � max( f (s,c) , f (s,d) , f (a,t) , f (b,t))

� max( f (a,c) , f (b,c) , f (a,d) , f (b,d)) , (s,t) ∈ ,

and therefore the function f is bounded above.
Let (p,q) :=

(
a+c
2 , b+d

2

)
be the centre of  .

Then for all (s, t) ∈  we have that

(p,q) =
(p,t)

2
+

(p,2q− t)
2

and

(p,t) =
(s,t)

2
+

(2p− s,t)
2

,

where the points
(p,q) , (p,t) , (p,2q− t), (2p− s,t)

also belong to  .
Since the functions fp and ft are convex,

f (p,q) � f (s,t)
4

+
f (2p− s,t)

4
+

f (p,2q− t)
2

,

and hence

f (s, t) � 4 f (p,q)− f (2p− s,t)−2 f (p,2q− t) � 4 f (p,q)−3K,

where K is an upper bound of f . This implies that the function f is bounded below.
(b) By part (a), there is M > 0 such that | f (s,t)| � M for all (s,t) ∈  .
Let (s0, t0) be an interior point of  and choose  > 0 such that

 := [s0 −  ,s0 +  ]× [t0−  ,t0 +  ] ⊂ .

If (s, t) ∈  , then

| f (s, t)− f (s0,t0)| � | f (s,t)− f (s0,t)|+ | f (s0,t)− f (s0, t0)|
= | f (s0 ±1 ,t)− f (s0,t)|+ | f (s0,t0 ±2 )− f (s0,t0)| ,

where 1 , 2 ∈ [0,1] . By using Lemma 1, the convexity of the functions ft and fs0
implies that

| f (s,t)− f (s0,t0)| � 2M (1 +2) ,

and hence f is continuous at (s0,t0) .
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(c) Let  ∈ R be fixed, let H := f−1 ([,[) , and let

a := {(a,t) | t ∈ [c,d]} , b := {(b, t) | t ∈ [c,d]} ,

c := {(s,c) | s ∈ [a,b]} , d := {(s,d) | s ∈ [a,b]} .

Then
H = H

⋂
(]a,b[× ]c,d[)

⋃(
H

⋂
a

)
⋃(

H
⋂

b

)⋃(
H

⋂
c

)⋃(
H

⋂
d

)
. (1)

Since f is continuous on the interior of  , H
⋂

]a,b[× ]c,d[ is a Borel set.
Since

H
⋂

a = f−1
a ([,[)

and fa is convex, H
⋂
a is also a Borel set. It can be seen similarly that the sets in

(1) are Borel sets too.
The proof is complete. �

REMARK 1. (a) Even among convex functions on  , it is easy to construct one
that is not continuous at any point on the boundary of  .

(b) It was pointed out in the introduction that Definition 1 makes sense without the
compactness of the intervals I and J . For example, in our previous result, only part (a)
would change as follows: f is locally bounded.

The next lemma will be important in the proof of the main result.

LEMMA 3. Let  := I × J be an interval in R
2 , where I and J are compact

intervals in R with nonempty interior, and let (X ,A ,) be a measure space, where
 (X) <  . If  : X → I is a measurable function, and f ∈ Fco

 , then the function

l : J → R, l (t) :=
∫
X

f ( (x) , t)d (x)

is well defined and convex.

Proof. Since fq ◦ ∈ L() for all q ∈ J , the definition of l is correct.
Let t1 , t2 ∈ J and  ∈ [0,1] . Since the function fp is convex for all p ∈ I , and

the integral is monotone,

l ( t1 +(1− )t2) =
∫
X

f ( (x) , t1 +(1− )t2)d (x)

�
∫
X

( f ( (x) ,t1)+ (1− ) f ( (x) ,t2)) (x)

=  l (t1)+ (1− )l (t2) ,

which implies that l is convex, that is l ∈ FJ .
The proof is complete. �
Among inequalities for convex functions, integral Jensen inequalities of different

types play a fundamental role.
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THEOREM 1. (a) (discrete Jensen inequality, see [15]) Let t1, . . . ,tn be points

from an interval C ⊂ R , and let 1, . . . ,n be scalars in [0,1] with
n


i=1

i = 1 . If

f ∈ FC , then

f

(
n


i=1

iti

)
�

n


i=1

i f (ti) .

(b) (integral Jensen inequality, see [15]) Let  be an integrable function on a

probability space (X ,A ,) taking values in an interval C ⊂ R . Then
∫
X

d lies in

C. If f ∈ FC is such that f ◦ is  -integrable, then

f

⎛
⎝∫

X

d

⎞
⎠�

∫
X

f ◦d . (2)

The following inequality will be used in the applications. In this result the intervals
are not compact.

LEMMA 4. Let (uk)
m
k=1 , (vk)

m
k=1 and (zl)

n
l=1 , (wl)

n
l=1 be positive sequences, where

k and l are positive integers, and let  := ]0,[× ]0,[ . Then for all f ∈ Fco
 inequal-

ity

(
m


k=1

uk

)(
n


l=1

zl

)
f

⎛
⎜⎜⎜⎝

m


k=1

vk

m


k=1

uk

,

n


l=1

wl

n


l=1

zl

⎞
⎟⎟⎟⎠�

m


k=1

n


l=1

ukzl f

(
vk

uk
,
wl

zl

)

holds.

Proof. Using the discrete Jensen inequality in both variables, we easily obtain

(
m


k=1

uk

)(
n


l=1

zl

)
f

⎛
⎜⎜⎜⎝

m


k=1

vk

m


k=1

uk

,

n


l=1

wl

n


l=1

zl

⎞
⎟⎟⎟⎠

=

(
m


k=1

uk

)(
n


l=1

zl

)
f

⎛
⎜⎜⎜⎝

m


k=1

vk

uk

uk
m


k=1

uk

,
n


l=1

wl

zl

zl
n


l=1

zl

⎞
⎟⎟⎟⎠

�
m


k=1

n


l=1

ukzl f

(
vk

uk
,
wl

zl

)
.

The proof is complete. �
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Let C ⊂ R be an interval with nonempty interior. The following notations are
introduced for some special functions defined on C :

idC (t) := t, pC,w (t) := (t−w)+ , t,w ∈C,

where a+ means the positive part of a ∈ R .
We shall also use the following assertion, which is a very simple special case of

the main result in paper [6].
The interior of an interval C ⊂ R is denoted by C◦ .

THEOREM 2. Let (X ,A ,) and (Y,B,) be measure spaces, where  and 
are finite measures. Let C ⊂ R be a compact interval with nonempty interior, and let
 : X →C,  : Y →C be measurable functions. Then for every f ∈ FC inequality∫

X

f ◦d �
∫
Y

f ◦d

holds if and only if

 (X) =  (Y ) ,
∫
X

d =
∫
Y

d

and it is satisfied in the following special cases: the function f is pC,w (w ∈C◦) .

Another very important inequality for convex functions is the Hermite-Hadamard
inequality. Next, we give a general Hermite-Hadamard type inequality and a method to
refine it.

The  -algebra of Borel subsets of an interval C ⊂ R will be denoted by BC .

THEOREM 3. Let [a,b] ⊂ R with nonempty interior, let  , i and i (i = 1,2)
be finite measures on B[a,b] with  ([a,b]) > 0 , and let 1 , 2 , 1 , 2 : [a,b]→ [a,b]
are Borel-measurable functions. Let

x :=
1

 ([a,b])

∫
[a,b]

td (t) .

Then
(a) Inequalities∫
[a,b]

f ◦2d2 �
∫

[a,b]

f ◦1d1 �
∫

[a,b]

f d �
∫

[a,b]

f ◦1d1 �
∫

[a,b]

f ◦2d2 (3)

are satisfied for all f ∈ F[a,b] if and only if

i ([a,b]) = i ([a,b]) =  ([a,b]) , i = 1,2, (4)

and ∫
[a,b]

idi =
∫

[a,b]

idi =
∫

[a,b]

td (t) , i = 1,2
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and ∫
[a,b]

p[a,b],w ◦2d2 �
∫

[a,b]

p[a,b],w ◦1d1 �
∫

[w,b]

(t−w)d (t)

�
∫

[a,b]

p[a,b],w ◦1d1 �
∫

[a,b]

p[a,b],w ◦2d2, w ∈ ]a,b[

hold.
(b) If 2 ([a,b]) =  ([a,b]) and

∫
[a,b]

2d2 =
∫

[a,b]
td (t) , then for all f ∈ F[a,b] we

have
f
(
x
)
 ([a,b]) �

∫
[a,b]

f ◦2d2.

(c) If 2 ([a,b]) =  ([a,b]) and
∫

[a,b]
2d2 =

∫
[a,b]

td (t) , then for all f ∈ F[a,b] we

have ∫
[a,b]

f ◦2d2 �
(

b− x
b−a

f (a)+
x −a

b−a
f (b)

)
 ([a,b]) . (5)

(d) If  is symmetric in the sense that

 (A) =  (a+b−A), A ∈ B[a,b], (6)

then

x =
a+b

2
,

b− x
b−a

f (a)+
x −a

b−a
f (b) =

f (a)+ f (b)
2

.

Proof. (a) This part of the result follows directly from Theorem 2.
(b) By using the integral Jensen inequality and the conditions,

∫
[a,b]

f ◦2d2 � 2 ([a,b]) f

⎛
⎜⎝ 1
2 ([a,b])

∫
[a,b]

td2 (t)

⎞
⎟⎠= f

(
x
)
 ([a,b]) .

(c) It follows from the convexity of f that

f (2 (t)) � b−2 (t)
b−a

f (a)+
2 (t)−a

b−a
f (b) , t ∈ [a,b] .

By integrating both sides of this inequality, and taking into account the conditions
we obtain the result.

(d) Define the function T :
[
a, a+b

2

]→ [
a+b
2 ,b

]
by T (t) := a+ b− t . Let T ()

be the image measure of the restriction of  to B[a, a+b
2 ] under the mapping T . If

B ∈ B[ a+b
2 ,b] , then by (6),


(
T−1 (B)

)
=  (a+b−B)=  (B) ,
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and hence T () is the restriction of  to B[ a+b
2 ,b] . This implies that

∫
[a,b]

td (t) =
∫

[a, a+b
2 ]

td (t)+
∫

] a+b
2 ,b]

tdT ()(t)

=
∫

[a, a+b
2 ]

td (t)+
∫

[a, a+b
2 [

(a+b− t)d (t) =
a+b

2

({

a+b
2

})

+(a+b)
([

a,
a+b

2

[)
=

a+b
2

 ([a,b]) .

The proof is complete. �

REMARK 2. Even for signed measures, necessary and sufficient conditions are
known to satisfy either the first or the second inequality of

f
(
x
)
 ([a,b]) �

∫
[a,b]

f d �
(

b− x
b−a

f (a)+
x −a

b−a
f (b)

)
 ([a,b]) (7)

for any convex function f on [a,b] (see the book [15] and the paper [8]). Our previ-
ous result is mainly interesting for refining the inequalities in (7). Hermite-Hadamard
inequality for measures can also be found in paper [16].

It is worth mentioning two special cases of the previous theorem. In the first case

i (t) = i (t) = t, t ∈ [a,b] , i = 1,2,

while in the second case
i = i =  , i = 1,2.

PROPOSITION 1. Let [a,b]⊂R with nonempty interior, let  , i and i (i = 1,2)
be finite measures on B[a,b] with  ([a,b]) > 0 .

Then
(a) Inequalities∫

[a,b]

f d2 �
∫

[a,b]

f d1 �
∫

[a,b]

f d �
∫

[a,b]

f d1 �
∫

[a,b]

f d2

are satisfied for all f ∈ F[a,b] if and only if (4) holds,
∫

[a,b]

tdi (t) =
∫

[a,b]

tdi (t) =
∫

[a,b]

td (t) , i = 1,2 (8)

and for all of the signed measures

1 := 2− 1, 2 := 1−  , 3 := −1, 4 := 1−2
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we have ∫
[w,b]

(t−w)di (t) � 0, i = 1,2,3,4, w ∈ ]a,b[ . (9)

(b) Under the conditions (4), (8) and (9)

f
(
x
)
 ([a,b]) �

∫
[a,b]

f d2

and ∫
[a,b]

f d2 �
(

b− x
b−a

f (a)+
x −a

b−a
f (b)

)
 ([a,b]) .

Proof. It is an immediate consequence of Theorem 3. �

REMARK 3. It is easy to check that (4), (8) and (9) imply∫
[a,w]

(w− t)di (t) � 0, i = 1,2,3,4, w ∈ ]a,b[ ,

so in this case the measures i (i = 1,2,3,4) are essentially Steffensen-Popoviciumea-
sures (see [15]). They would be true Steffensen-Popoviciu measures if i ([a,b]) > 0
(i = 1,2,3,4) were satisfied.

In the case of equality of measures, we give only a sufficient condition, which is
Theorem 8 in the recent paper [8].

PROPOSITION 2. Let [a,b]⊂R with nonempty interior, and let  be a finite mea-
sure on B[a,b] such that  ([a,b]) > 0 . Assume 1 , 2 , 1 , 2 : [a,b] → [a,b] are
increasing functions such that∫

[a,x]

2d �
∫

[a,x]

1d �
∫

[a,x]

td (t) �
∫

[a,x]

1d �
∫

[a,x]

2d , x ∈ [a,b] (10)

and ∫
[a,b]

id =
∫

[a,b]

id =
∫

[a,b]

td (t) , i = 1,2 (11)

are satisfied. Then for all f ∈ F[a,b] we have

f
(
x
)
 ([a,b])

�
∫

[a,b]

f ◦2d �
∫

[a,b]

f ◦1d �
∫

[a,b]

f d �
∫

[a,b]

f ◦1d �
∫

[a,b]

f ◦2d

�
(

b− x
b−a

f (a)+
x −a

b−a
f (b)

)
 ([a,b]) .
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Depending on the measure  , it is easier or harder to construct functions that
satisfy conditions (10) and (11), but it is straightforward under stronger conditions on
the measure and the functions. The following result is derived from Theorem 9 (c)
in [8].

PROPOSITION 3. Let [a,b]⊂R with nonempty interior, and let  be a finite mea-
sure on B[a,b] such that  ([a,b]) > 0 . Assume 1 , 2 , 1 , 2 : [a,b] → [a,b] are
increasing functions. If the measure  and the functions 1 , 2 1 , 2 satisfy the
symmetry properties

 (A) =  (a+b−A), A ∈ B[a,b] (12)

and

 (a+b− t)= a+b− (t) , t ∈ [a,b]

respectively, and

2 (t) � 1 (t) � t � 1 (t) � 2 (t) , t ∈
[
a,

a+b
2

]
,

then conditions (10) and (11) hold.
Moreover, ∫

[a,b]

f ◦2d (13)

� f (a)+ f (b)
2

 ([a,b])+
(

f

(
a+b

2

)
− f (a)+ f (b)

2

)

({

a+b
2

})
.

REMARK 4. Inequality (13) is sharper than inequality (5).

The following result is a majorization type inequality which is contained in Theo-
rem 9 of [6].

THEOREM 4. Let X := {1, . . . ,m} for some m ∈ N+ , let Y := {1, . . . ,n} for
some n ∈ N+ , and let C ⊂ R be an interval with nonempty interior. Assume (pi)

m
i=1

and (q j)n
j=1 are real sequences, and s := (s1, . . . ,sm) ∈ Cm and t := (t1, . . . ,tn) ∈

Cn . Let u1 > u2 > .. . > uo be the different elements of s and t in decreasing order
(1 � o � m+n). Then for every f ∈ FC inequality

m


i=1

pi f (si) �
n


j=1

q j f (t j) (14)

holds if and only if
m


i=1

pi =
n


j=1

q j,
m


i=1

pisi =
n


j=1

q jt j (15)
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and


{i∈X |si�ul}

pisi − 
{ j∈Y |t j�ul}

q jt j

� ul

⎛
⎝ 

{i∈X |si�ul}
pi − 

{ j∈Y |t j�ul}
q j

⎞
⎠ , l = 1, . . . ,o (16)

are satisfied.

3. Main result

Our main result shows that we can always derive inequalities for functions con-
vex on the coordinates from inequalities for convex functions defined on intervals, and
essentially only this method works.

THEOREM 5. Let  := I × J be an interval in R
2 , where I and J are compact

intervals in R with nonempty interior, and let (Xi,Ai,i) and (Yi,Bi,i) be measure
spaces (i = 1,2) , where 0 < i (Xi) <  and 0 < i (Yi) <  (i = 1,2) . Further-
more, let 1 : X1 → I , 2 : X2 → J , 1 : Y1 → I , 2 : Y2 → J be measurable functions
(i = 1,2) , and let  := (1,2) : X1×X2 →  and  := (1,2) : Y1×Y2 →  .

(a) If either 1 (X1) = 1 (Y1) or 2 (X2) = 2 (Y2) and for all f ∈ Fco
 we have

∫
X1×X2

f ◦d (1× 2) �
∫

Y1×Y2

f ◦d (1×2) , (17)

then ∫
X1

g ◦1d1 �
∫
Y1

g ◦1d1 (18)

is satisfied for all g ∈ FI and inequality
∫
X2

h ◦2d2 �
∫
Y2

h ◦2d2 (19)

is satisfied for all h ∈ FJ .
(b) Conversely, if (18) is satisfied for all g∈ FI and (19) is satisfied for all h∈ FJ ,

then i (Xi) = i (Yi) (i = 1,2) and (17) holds for all f ∈ Fco
 .

Proof. By Lemma 2 (c), f is Borel-measurable, and hence f ◦ is A1 ×A2 -
measurable and f ◦ is B1×B2 -measurable. Lemma 2 (a) implies that f is bounded.
It now follows that the integrals in (17) exist, since 1× 2 and 1×2 are finite.

(a) We consider the case 1 (X1) = 1 (Y1) , the other case can be discussed in an
equivalent way.
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Since the constant functions f : → R by f (s,t) := ±1 belong to Fco
 , it follows

from (17) that 1 × 2 (X1×X2) = 1 ×2 (Y1×Y2) , and hence 1 (X1) = 1 (Y1) > 0
implies 2 (X2) = 2 (Y2) .

We show that inequality (18) is satisfied for all g ∈ FI , a similar argument can be
applied to inequality (19).

Let g ∈ FI , and define the function f : → R by f (s, t) := g(s) . Then f ∈ Fco
 ,

and hence (17) and 2 (X2) = 2 (Y2) > 0 imply that (18) holds.
(b) Inequality (18) holds for the constant functions g : I → R , g(s) := ±1, and

hence 1 (X1) = 1 (Y1) . Similarly, we can obtain from (19) that 2 (X2) = 2 (Y2) .
Let f ∈ Fco

 be fixed.
Since inequality (18) is satisfied for all g ∈ FI , it follows that∫

X1

fq ◦1d1 �
∫
Y1

fq ◦1d1, q ∈ J. (20)

By Lemma 3, the function

l1 : J → R, l1 (t) :=
∫
X1

f (1 (x1) , t)d1 (x1)

belongs to FJ . Since inequality (19) is satisfied for all h ∈ FJ , we have that

∫
X2

⎛
⎝∫

X1

f (1 (x1) ,2 (x2))d1 (x1)

⎞
⎠d2 (x2)

�
∫
Y2

⎛
⎝∫

X1

f (1 (x1) ,2 (y2))d1 (x1)

⎞
⎠d2 (y2) . (21)

Another application of Lemma 3 gives that the function

l1 : J → R, l1 (t) :=
∫
Y1

f (1 (y1) , t)d1 (y1)

also belongs to FJ .
Since l1 , l1 ∈ FJ , it follows from (20) that

∫
Y2

⎛
⎝∫

X1

f (1 (x1) ,2 (y2))d1 (x1)

⎞
⎠d2 (y2)

�
∫
Y2

⎛
⎝∫

Y1

f (1 (y1) ,2 (y2))d1

⎞
⎠d2 (y2) . (22)

The result now follows from inequalities (21) and (22) by taking Fubini’s theorem.
The proof is complete. �
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REMARK 5. (a) The preceding statement allows the simple generation of inequal-
ities for functions convex on the coordinates from known inequalities for convex func-
tions on real intervals.

(b) It comes from the proof that if inequality (17) is satisfied for all f ∈ Fco
 , then

1 (X1)2 (X2) = 1 (Y1)2 (Y2) . But it is straightforward to construct concrete exam-
ples to show that inequality (17) can be satisfied for any f ∈ Fco

 such that 1 (X1) �=
1 (Y1) and 2 (X2) �= 2 (Y2) . In these cases, neither inequality (18) is satisfied for all
g ∈ FI , nor inequality (19) is satisfied for all h ∈ FJ .

4. Jensen type inequalities for functions convex on the coordinates
and their refinements

Let (X ,A ) be a measurable space. The unit mass at x ∈ X (the Dirac measure at
x ) will be denoted by x .

In the following two results, we obtain a version of the integral Jensen inequality
for functions convex on the coordinates, and give a refinement of it. The main objective
is to illustrate the following phenomenon: by applying Theorem 5 to suitable refine-
ments of the integral Jensen inequality, we can almost automatically obtain refinements
to the integral Jensen inequality for functions convex on the coordinates.

To achieve this goal, we first recall two refinements of the integral Jensen inequal-
ity, far from being completely general.

THEOREM 6. Let (X ,A ) be a measurable space, let  : X → R be a measurable
function taking values in an interval C ⊂ R , and let f ∈ FC .

(a) If  is a probability measure on A and  , f ◦ ∈ L() , then

f

⎛
⎝∫

X

d

⎞
⎠�

∫
X

f

⎛
⎝

∫
X

d +(1−)

⎞
⎠d �

∫
X

f ◦d

for all  ∈ [0,1] .
(b) Let  be a measure on A with (X) > 0 , and let w be a positive function on

X such that
∫
X

wd = 1 . If w, ( f ◦)w ∈ L() and w1, . . . ,wn (n � 2) are positive

and measurable functions on X such that
n

i=1

wj = w, then

f

⎛
⎝∫

X

wd

⎞
⎠ �

n


i=1

f

⎛
⎝
∫
X
wid∫

X
wid

⎞
⎠∫

X

wid �
∫
X

( f ◦)wd.

Proof. (a) Using the definition of convexity and then the integral Jensen inequality
twice, we obtain (a).

(b) It is an elementary case of the main result of paper [7].
The proof is complete. �
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After these preparations, we can make the following two statements.

THEOREM 7. (Integral Jensen inequality for functions convex on the coordinates)
Let  := I × J be an interval in R

2 , where I and J are compact intervals in R with
nonempty interior, and let (X1,A1,1) and (X2,A2,2) be probability spaces. Fur-
thermore, let 1 : X1 → I and 2 : X2 → J be measurable functions. Then

⎛
⎝∫

X1

1d1,

∫
X2

2d2

⎞
⎠

lies in  , and for all f ∈ Fco


f

⎛
⎝∫

X1

1d1,

∫
X2

2d2

⎞
⎠ �

∫
X1×X2

f ◦ (1,2)d (1× 2) .

Proof. It follows directly from Theorem 5 (b) by using the integral Jensen inequal-
ity and

f

⎛
⎝∫

X1

1d1,

∫
X2

2d2

⎞
⎠=

∫
X1×X2

f

⎛
⎝∫

X1

1d1,

∫
X2

2d2

⎞
⎠d (1× 2) .

The proof is complete. �

REMARK 6. (a) Theorem 7 is not new, it has already been proved in paper [14].
The main interest of the claim is the method of proof, which is based on Theorem 5. A
special case of Theorem 7 has also been proved by using differentiation in [21] only for
convex functions on  .

(b) The notion of a co-ordinate convex function is naturally generalizable to n -
dimensional intervals, and Theorem 7 can also be easily formulated for this case. This
variant can be found in paper [20], the form of the inequality and the proof are closely
related to the analogous result in [14].

THEOREM 8. Let  := I × J be an interval in R
2 , where I and J are compact

intervals in R with nonempty interiors. Let (X1,A1,1) be a probability space, and
let 1 : X1 → I be a measurable function. Let (X2,A2,) be a measure space with

 (X2) > 0 , let w be a positive function on X2 such that
∫
X2

wd = 1 , let w1, . . . ,wn

(n � 2) be positive and measurable functions on X2 such that
n

i=1

wi = w, and let 2 :
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X2 → J be a measurable function. Then for all f ∈ Fco


f

⎛
⎝∫

X1

1d1,

∫
X2

2wd

⎞
⎠

�
n


i=1

⎛
⎜⎝∫

X1

f ◦

⎛
⎜⎝

∫
X1

1d1 +(1−)1,

∫
X2

2wid∫
X2

wid

⎞
⎟⎠d1 ·

∫
X2

wid

⎞
⎟⎠

�
∫

X1×X2

f ◦ (1,2)wd (1×) ,

where  ∈ [0,1] can be chosen arbitrarily.

Proof. By Theorem 6 (a),

g

⎛
⎝∫

X1

1d1

⎞
⎠�

∫
X1

g

⎛
⎝

∫
X1

1d1 +(1−)1

⎞
⎠d1 �

∫
X1

g ◦1d1

for all g ∈ FI .
Let the probability measure 2 be defined on A2 by

2 (A) :=
∫
A

wd.

By introducing the notations

i :=
∫
X2

wid, ti :=

∫
X2

2wid∫
X2

wid
, i = 1, . . . ,n,

we define the discrete probability measure  on BJ by

 :=
n


i=1

i · ti .

Theorem 6 (b) shows that

h

⎛
⎝∫

X2

2wd

⎞
⎠�

n


i=1

h

⎛
⎜⎝

∫
X2

2wid∫
X2

wid

⎞
⎟⎠∫

X2

wid �
∫
X2

(h ◦2)wd,

or in another form

h

⎛
⎝∫

X2

2d2

⎞
⎠ �

∫
J

hd �
∫
X2

(h ◦2)d2
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for all h ∈ FJ .
Now by applying Theorem 5 (b) to (Y1,B1,1) := (X1,A1,1) , (Y2,B2,2) :=

(J,BJ ,) and

1 :=
∫
X1

1d1, 2 :=
∫
X2

2d2

and
1 := 

∫
X1

1d1 +(1−)1, 2 := idJ,

we obtain

f

⎛
⎝∫

X1

1d1,

∫
X2

2d2

⎞
⎠=

∫
X1×X2

f

⎛
⎝∫

X1

1d1,

∫
X2

2d2

⎞
⎠d (1× 2)

�
∫

X1×J

f ◦
⎛
⎝

∫
X1

1d1 +(1−)1, idJ

⎞
⎠d (1×) ,

which is exactly the first inequality.
The same technique works for the second inequality.
The proof is complete. �

REMARK 7. We stress again that we have obtained a refinement of the integral
Jensen inequality for functions convex on the coordinates in an almost elementary way
from two different types of refinements of the integral Jensen inequality. Since many
refinements of the integral Jensen inequality are known, by applying Theorem 5 (b)
we have obtained a very efficient method for refining the integral Jensen inequality for
functions convex on the coordinates. And it follows from Theorem 5 (a) that this is
essentially the only option.

5. Hermite-Hadamard type inequalities for functions convex
on the coordinates and their refinements

Combining our main result with either Theorem 3 or Proposition 1 or Proposition
2 or Proposition 3, we can obtain Hermite-Hadamard inequalities for functions convex
on the coordinates and a refinement method for them. We formulate only the version
based on Proposition 2.

THEOREM 9. Let  := [a,b]× [c,d] be an interval in R
2 , where [a,b] and [c,d]

are compact intervals in R with nonempty interiors, let 1 be a finite measure on
B[a,b] , and let 2 be a finite measure on B[c,d] such that i ([a,b]) > 0 (i = 1,2) . As-
sume 1 , 2 , 1 , 2 : [a,b]→ [a,b] and 1 , 2 , 1 , 2 : [c,d]→ [c,d] are increasing
functions such that∫

[a,x]

2d1 �
∫

[a,x]

1d1 �
∫

[a,x]

sd1 (s) �
∫

[a,x]

1d1 �
∫

[a,x]

2d1, x ∈ [a,b] , (23)
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∫
[a,b]

id1 =
∫

[a,b]

id1 =
∫

[a,b]

sd1 (s) , i = 1,2 (24)

and ∫
[c,y]

2d2 �
∫

[c,y]

1d2 �
∫

[c,y]

td2 (t) �
∫

[c,y]

1d2 �
∫

[c,y]

2d2, y ∈ [c,d] ,

∫
[c,d]

id2 =
∫

[c,d]

id2 =
∫

[c,d]

td2 (t) , i = 1,2

are satisfied. Then for all f ∈ Fco
 we have

f
(
x1 ,y2

)
1 ([a,b])2 ([c,d]) (25)

�
∫∫


f ◦ (2,2)d (1× 2) �
∫∫


f ◦ (1,1)d (1× 2) �
∫∫


f d (1× 2) (26)

�
∫∫


f ◦ (1,1)d (1× 2) �
∫∫


f ◦ (2,2)d (1× 2) (27)

�
(

b− x1

b−a

(
d− y2

d− c
f (a,d)+

y2 − c

d− c
f (a,c)

)
(28)

+
x1 −a

b−a

(
d− y2

d− c
f (b,d)+

y2 − c

d− c
f (b,c)

))
1 ([a,b])2 ([c,d]) ,

where

x1 :=
1

1 ([a,b])

∫
[a,b]

sd1 (s) , y2 :=
1

2 ([c,d])

∫
[c,d]

td2 (t) .

Proof. The first, the second, the third, the fourth and the fifth inequalities in (25–
28) are immediate consequences of Proposition 2 and Theorem 5. The sixth inequality
is also a consequence of these two theorems, where on the right hand side we use the
discrete measure (

b− x1

b−a
a +

x1 −a

b−a
b
)
1 ([a,b])

on B[a,b] and the discrete measure

(
d− y2

d− c
c +

y2 − c

d− c
d
)
2 ([c,d])

on B[c,d] .
The proof is complete. �
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REMARK 8. (a) Many authors have dealt with Hermite–Hadamard type inequal-
ities for functions convex on the coordinates and their refinements using the classical
Lebesgue integral (see e.g. the papers [1], [5], [13], [14], [17] and [18]). We emphasize
that our result gives the Hermite-Hadamard inequality for functions convex on the co-
ordinates using Borel measures, and a method for refining the obtained inequality. All
of the refinements in the aforementioned papers can be obtained from Theorem 9.

(b) Assume the measure 1 has density u1 : [a,b]→ [0,[ with respect to the clas-
sical Lebesgue measure on B[a,b] and 2 has density u2 : [c,d] → [0,[ with respect
to the classical Lebesgue measure on B[c,d] . If

u1 (s) = u1 (a+b− s), s ∈ [a,b]

and
u2 (t) = u2 (c+d− t) , t ∈ [c,d] ,

then the symmetry property (12) is true for both measures. This is satisfied, for exam-
ple, in paper [17], where

u1 (s) := h1

(
b− s
b−a

)
+h1

(
s−a
b−a

)
and

u2 (t) := h2

(
d− t
d− c

)
+h2

(
t − c
d− c

)
,

where h1 , h2 : [0,1]→ ]0,[ are Lebesgue-integrable functions.
(c) It is worth noting that from known refinements, new refinements can be ob-

tained by different processes. We illustrate this for the functions 1 and 2 . Define
the functions  : [a,b] → [a,b] (0 �  � 1) by

 (t) := (1− )2 (t)+1 (t) .

Then it is easy to check that for each  ∈ [0,1] the function  is also increasing.
By the first inequality in (23),∫

[a,x]

2d1 �
∫

[a,x]

d1 �
∫

[a,x]

1d1, x ∈ [a,b] ,  ∈ [0,1] ,

and by (24), ∫
[a,b]

d1 =
∫

[a,b]

td1 (t) ,  ∈ [0,1] .

Now, by applying Theorem 9 and the convexity of fq (q ∈ [c,d]) we have∫∫


f ◦ (2,2)d (1× 2) �
∫∫


f ◦ ( ,2)d (1× 2)

� (1− )
∫∫


f ◦ (1,1)d (1× 2)+
∫∫


f ◦ (2,1)d (1× 2)

�
∫∫


f ◦ (2,2)d (1× 2) .
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Our last results are intended to illustrate the applicability of the previous theorem.
First, by using Theorem 9, we give an extension of Theorem 2.2. in paper [13]

with a simple proof.

THEOREM 10. Let  := [a,b]× [c,d] be an interval in R
2 , where [a,b] and [c,d]

are compact intervals in R with nonempty interiors. If f ∈ Fco
 , then

f

(
a+b

2
,
c+d

2

)
� 

b−a

b∫
a

f

(
s,

c+d
2

)
ds+

1−
d− c

d∫
c

f

(
a+b

2
,t

)
dt

� 1
(b−a)(d− c)

∫∫


f � 
4(b−a)

b∫
a

(
f (s,c)+ f (s,d)+2 f

(
s,

c+d
2

))
ds

+
1−

4(d− c)

d∫
c

(
f (a,t)+ f (b,t)+2 f

(
a+b

2
,t

))
dt

� f (a,c)+ f (b,c)+ f (a,d)+ f (b,d)
16

+
1
4

f

(
a+b

2
,
c+d

2

)

+
f
(

a+b
2 ,c

)
+ f

(
a+b
2 ,d

)
+ f

(
a, c+d

2

)
+ f

(
b, c+d

2

)
8

for all  ,  ∈ [0,1] .

Proof. We first show that

f

(
a+b

2
,
c+d

2

)
� 1

b−a

b∫
a

f

(
s,

c+d
2

)
ds � 1

(b−a)(d− c)

∫∫


f (29)

� 1
4(b−a)

b∫
a

(
f (s,c)+ f (s,d)+2 f

(
s,

c+d
2

))
ds (30)

� f (a,c)+ f (b,c)+ f (a,d)+ f (b,d)
16

+
1
4

f

(
a+b

2
,
c+d

2

)
(31)

+
f
(

a+b
2 ,c

)
+ f

(
a+b
2 ,d

)
+ f

(
a, c+d

2

)
+ f

(
b, c+d

2

)
8

. (32)

Define the functions 1 , 1 , 2 : [a,b] → [a,b] by

1 (s) = 1 (s) := s, 2 (s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a, s ∈ [
a, 3a+b

4

[
a+b
2 , s ∈ [

3a+b
4 , a+3b

4

]
b, s ∈ ]

a+3b
4 ,b

] ,
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and define the functions 1 , 1 , 2 : [c,d] → [c,d] by

1 (t) :=
c+d

2
, 1 (t) = 2 (t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c, t ∈ [
c, 3c+d

4

[
c+d
2 , t ∈ [

3c+d
4 , c+3d

4

]
d, t ∈ ]

c+3d
4 ,d

] .

Some elementary calculations show that the conditions of Theorem 9 are satisfied
with these functions, and hence inequalities (29-32) follow.

In exactly the same way, we can justify easily that

f

(
a+b

2
,
c+d

2

)
� 1

d− c

d∫
c

f

(
a+b

2
,t

)
dt � 1

(b−a)(d− c)

∫∫


f (33)

� 1
4(d− c)

d∫
c

(
f (a,t)+ f (b,t)+2 f

(
a+b

2
,t

))
dt (34)

� f (a,c)+ f (b,c)+ f (a,d)+ f (b,d)
16

+
1
4

f

(
a+b

2
,
c+d

2

)
(35)

+
f
(

a+b
2 ,c

)
+ f

(
a+b
2 ,d

)
+ f

(
a, c+d

2

)
+ f

(
b, c+d

2

)
8

. (36)

The result is a trivial consequence of inequalities (29–32) and (33–36).
The proof is complete. �

REMARK 9. Theorem 2.2. in [13] is the special case of our previous result when
 =  = 1

2 . The proof also illustrates the method described in Remark 8 (c).

Second, a parametric refinement of the Hermite-Hadamard inequality is obtained.
It is given under the conditions of Proposition 3 for the sake of simplicity and clarity.
Even in this case, it is useful to introduce a few terms before making the claim.

Let [a,b] ⊂ R be an interval with nonempty interior. We shall say that I1 , . . . ,Im ,
Im+1 ,Im+2 , . . . ,I2m+1 (m � 1) is a symmetric partition of [a,b] if they are adjacent
pairwise disjoint intervals with union [a,b] , I1 , . . . ,Im are left-closed and right open,
Im+1 :=

{
a+b
2

}
, and Ii is symmetric to I2m+2−i with respect to the point a+b

2 (i =
1, . . . ,m) . We shall also say the next: the points s1 , . . . ,sm ,sm+1 ,sm+2 , . . . ,s2m+1 are
generated from below by the symmetric partition just described if s1 , . . . ,sm are the
left-hand endpoints of I1 , . . . ,Im , sm+1 := a+b

2 , and sm+2 , . . . ,s2m+1 are the right-hand
endpoints of Im+2 , . . . ,I2m+1 ; the points ŝ1 , . . . , ŝm , ŝm+1 , ŝm+2 , . . . , ŝ2m+1 are gener-
ated from above by the same symmetric partition if ŝ1 , . . . , ŝm are the right-hand end-
points of I1 , . . . ,Im , ŝm+1 := a+b

2 , and ŝm+2 , . . . , ŝ2m+1 are the left-hand endpoints of
Im+2 , . . . ,I2m+1 (by the symmetry of the intervals, s2m+2−i = a+b− si and ŝ2m+2−i =
a+b− ŝi , i = 1, . . . ,m).

We are now ready to give the promised result.
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PROPOSITION 4. Let  := [a,b]× [c,d] be an interval in R
2 , where [a,b] and

[c,d] are compact intervals in R with nonempty interiors, let 1 be a finite measure
on B[a,b] , and let 2 be a finite measure on B[c,d] such that i ([a,b]) > 0 (i = 1,2)

and the symmetry property (12) is true for both measures. Let
(
Ik
i

)2mk+1
i=1 (k = 1,2)

be symmetric partitions of [a,b] , and let
(
Jk

j

)2nk+1

j=1
(k = 1,2) be symmetric parti-

tions of [c,d] . Assume the points
(
s1
i

)2m1+1
i=1 are generated from below by the partition(

I1
i

)2m1+1
i=1 and

(
ŝ2
i

)2m2+1
i=1 are generated from above by the partition

(
I2
i

)2m2+1
i=1 , and(

t1j

)2n1+1

j=1
are generated from below by the partition

(
J1

j

)2n1+1

j=1
and

(
t̂2j

)2n2+1

j=1
are

generated from above by the partition
(
J2

j

)2n2+1

j=1
. Then

f

(
a+b

2
,
c+d

2

)
1 ([a,b])2 ([c,d]) �

2m2+1


i=1

2n2+1


j=1

f
(
ŝ2
i , t̂

2
j

)
1
(
I2
i

)
2
(
J2

j

)

�
∫∫


f d (1× 2) �
2m1+1


i=1

2n1+1


j=1

f
(
s1
i , t

1
j

)
1
(
I1
i

)
2
(
J1

j

)

�
∫∫


f d (1 ×2) � f (a,c)+ f (b,c)+ f (a,d)+ f (b,d)
4

1 ([a,b])2 ([c,d]) ,

where

1 :=

(
1 ([a,b])− 1

({
a+b
2

})
2

)
(a + b)+ 1

({
a+b

2

})
 a+b

2

and

2 :=

(
2 ([c,d])− 2

({
c+d
2

})
2

)
(c + d)+ 2

({
c+d

2

})
 c+d

2
.

Proof. Define the functions 1 , 1 : [a,b] → [a,b] and 1 , 1 : [c,d] → [c,d] by

1 (s) := s1
i if s ∈ I1

i , i = 1, . . .2m1 +1,

1 (s) := ŝ2
i if s ∈ I2

i , i = 1, . . .2n1 +1,

1 (t) := t1i if t ∈ J1
j , j = 1, . . .2m2 +1,

and
1 (t) := t̂2i if t ∈ J2

j , j = 1, . . .2n2 +1.

Then 1 , 1 , 1 and 1 are increasing functions such that 1 and 1 satisfy

1 (a+b− s) = a+b−1 (s) , 1 (a+b− s) = a+b−1 (s) , s ∈ [a,b] ,
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and

1 (s) � s � 1 (s) , s ∈
[
a,

a+b
2

]
while 1 and 1 satisfy

1 (c+d− t) = c+d−1 (t) , 1 (c+d− t) = c+d−1 (t) , t ∈ [c,d]

and

1 (t) � t � 1 (t) , t ∈
[
c,

c+d
2

]
.

The result now follows from Theorem 9, taking Theorem 3 into account.
The proof is complete. �

REMARK 10. We mention one refinement, which is a special case of our previous
result: Theorem 2.5 of [17].

6. Application to a new functional corresponding to f -divergence functional

The following notion was introduced by Csiszár in [2] and [3].

DEFINITION 2. Let g : ]0,[→ ]0,[ be a convex function, and let p:=(p1, . . ., pn)
and q := (q1, . . . ,qn) be positive probability distributions. The g -divergence functional
is

Ig(p,q) :=
n


i=1

qig

(
pi

qi

)
.

It is possible to use nonnegative probability distributions in the g -divergence func-
tional, by defining

g(0) := lim
t→0+

g(t) ; 0g

(
0
0

)
:= 0; 0g

(a
0

)
:= lim

t→0+
tg
(a

t

)
, a > 0.

The basic inequality (which comes from the discrete Jensen inequality)

Ig(p,q) � g(1) (37)

is one of the key properties of g -divergences.
The refinement of inequality (37) is the subject of several papers (for a non-

exhaustive list, see book [12] and references therein, and papers [4], [9], [10] and [11]).
Starting from the concept of g -divergence, we introduce the following quantity, in

which we use a function convex on the coordinates instead of a convex function. For
clarity, only positive probability distributions are considered in this section.

DEFINITION 3. Let o ∈ {1,2} . Let po :=
(
po

1, . . . , p
o
no

)
, qo :=

(
qo

1, . . . ,q
o
no

)
be

positive probability distributions for some no � 1, and let f : ]0,[× ]0,[→ ]0,[ be
a function convex on the coordinates. We introduce the following functional

I f (p1,p2,q1,q2) :=
n1


i=1

n2


j=1

q1
i q

2
j f

(
p1

i

q1
i

,
p2

j

q2
j

)
.
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We show below that the basic properties of g -divergence (see [19]) are also satis-
fied for the introduced quantity I f (p1,p2,q1,q2) .

First, we formulate the analogue of inequality (37) for I f (p1,p2,q1,q2) . This, like
inequality (37), is almost obvious, we just need to apply the integral Jensen inequality
for functions convex on the coordinates.

PROPOSITION 5. Let o ∈ {1,2} . Let po :=
(
po

1, . . . , p
o
no

)
, qo :=

(
qo

1, . . . ,q
o
no

)
be

positive probability distributions for some no � 1 . Then for every function f : ]0,[×
]0,[ → ]0,[ convex on the coordinates inequality

I f (p1,p2,q1,q2) � f (1,1) (38)

holds.

Proof. Define the probability measures 1 and 2 on B]0,[ by

1 :=
n1


i=1

q1
i p1

i /q1
i
and 2 :=

n2


j=1

q2
jp2

j/q2
j
,

and let 1 , 2 : ]0,[ → ]0,[ , 1 (t) = 2 (t) := t .
By Theorem 7,

I f (p1,p2,q1,q2) =
∫

]0,[×]0,[

f ◦ (1,2)d (1× 2)

� f

⎛
⎜⎝ ∫

]0,[

1d1,

∫
]0,[

2d2

⎞
⎟⎠= f (1,1) .

The proof is complete. �

REMARK 11. Theorem 7 can be applied since there are compact intervals I , J ⊂
]0,[ such that

p1
i

q1
i

∈ I, i = 1, . . . ,n1 and
p2

j

q2
j

∈ J, j = 1, . . . ,n2.

The next basic property of g -divergence corresponds to the perspective of g which
is defined by

g∗ : ]0,[ → ]0,[ , g∗ (t) := tg

(
1
t

)
.

It is well known that g∗ is also convex and

Ig∗ (q,p) = Ig(p,q). (39)

To formulate the equivalent of property (39) for the introduced quantity I f (p1,p2,
q1,q2) , we need to define the perspective of a function convex on the coordinates.
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DEFINITION 4. Let f : ]0,[× ]0,[ → ]0,[ be a function convex on the coor-
dinates, and define the perspective of f by

f ∗ : ]0,[× ]0,[ → ]0,[ , f ∗ (s,t) := st · f

(
1
s
,
1
t

)
.

We can then make the following statement.

PROPOSITION 6. (a) If f : ]0,[× ]0,[ → ]0,[ is a function convex on the
coordinates, then f ∗ is also a function convex on the coordinates.

(b) Let o ∈ {1,2} . Let po :=
(
po

1, . . . , p
o
no

)
, qo :=

(
qo

1, . . . ,q
o
no

)
be positive proba-

bility distributions for some no � 1 . Then for every function f : ]0,[× ]0,[ → ]0,[
convex on the coordinates

I f ∗(q1,q2,p1,p2) = I f (p1,p2,q1,q2).

Proof. (a) Consider the partial mappings f1/q : ]0,[→ ]0,[ , f1/q (s) := f
(
s, 1

q

)
for all q ∈ ]0,[ and f1/p : ]0,[ → ]0,[ , f1/p (t) := f

(
1
p ,t

)
for all p ∈ ]0,[ .

Let q ∈ ]0,[ be fixed. Since f1/q is convex, the perspective of f1/q

f ∗1/q(s) = s f

(
1
s
,
1
q

)
, s ∈ ]0,[

is also convex, and therefore the convexity of

f ∗ (s,q) = q f ∗1/q(s), s ∈ ]0,[

follows.
We can prove similarly that the function

f ∗ (p,t) = p f ∗1/p (t) , t ∈ ]0,[

is convex for all p ∈ ]0,[ .
(b) It can be obtained by elementary calculation that

I f ∗(q1,q2,p1,p2) =
n1


i=1

n2


j=1

p1
i p2

j
q1

i

p1
i

q2
j

p2
j

f

⎛
⎜⎝ 1

q1
i

p1
i

,
1
q2

j

p2
j

⎞
⎟⎠= I f (p1,p2,q1,q2).

The proof is complete. �
The third important property of g -divergence is monotonicity. This means the

next: Let (Ai)
m
i=1 be pairwise disjoint subsets of {1, . . . ,n} with Ai �= ∅ for all i =

1, . . . ,m and
m⋃

i=1

Ai = {1, . . . ,n} , and let Pi := 
j∈Ai

p j and Qi := 
j∈Ai

q j (i = 1, . . . ,m) .

Then
Ig (P,Q) � Ig(p,q),

where P := (P1, . . . ,Pm) and Q := (Q1, . . . ,Qm) .
The monotonicity can be formulated as follows for I f (p1,p2,q1,q2) :
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PROPOSITION 7. Let o ∈ {1,2} . Let po :=
(
po

1, . . . , p
o
no

)
, qo :=

(
qo

1, . . . ,q
o
no

)
be

positive probability distributions for some no � 1 . Let
(
A1

k

)m1
k=1 be pairwise disjoint

subsets of {1, . . . ,n1} with A1
k �= ∅ for all k = 1, . . . ,m1 and

m1⋃
k=1

A1
k = {1, . . . ,n1} , and

let
(
A2

l

)m2
l=1 be pairwise disjoint subsets of {1, . . . ,n2} with A2

l �= ∅ for all l = 1, . . . ,m2

and
m2⋃
l=1

A2
l = {1, . . . ,n2} . Define P1

k := 
i∈A1

k

p1
i , Q1

k := 
i∈A1

k

q1
i (k = 1, . . . ,m1) , and P2

l :=


j∈A2

l

p2
j , Q2

l := 
j∈A2

l

q2
j (l = 1, . . . ,m2) . Then for every function f : ]0,[× ]0,[ →

]0,[ convex on the coordinates

I f (P1,P2,Q1,Q2) � I f (p1,p2,q1,q2),

where Po :=
(
Po

1 , . . . ,Po
mo

)
and Qo :=

(
Qo

1, . . . ,Q
o
mo

)
.

Proof. Since

I f (P1,P2,Q1,Q2) =
m1


k=1

m2


l=1

Q1
kQ

2
l f

(
P1

k

Q1
k

,
P2

l

Q2
l

)
,

by applying Lemma 4 to each member of the sum, we obtain the statement.
The proof is complete. �

REMARK 12. Let o ∈ {1,2} . Let po :=
(
po

1, . . . , p
o
no

)
, qo :=

(
qo

1, . . . ,q
o
no

)
be

positive probability distributions for some no � 1, and let g : ]0,[→ ]0,[ be a convex
function. The products of the probability distributions p1 and p2 and q1 and q2 are
the probability distributions

p1 ⊗p2 =
(
p1

i p2
j

) j∈{1,...,n2}
i∈{1,...,n1} and q1 ⊗q2 =

(
q1

i q
2
j

) j∈{1,...,n2}
i∈{1,...,n1} ,

respectively.
If the function f : ]0,[× ]0,[ → ]0,[ is defined by f (s,t) := g(st) , then it is

convex on the coordinates and

I f (p1,p2,q1,q2) = Ig (p1⊗p2,q1 ⊗q2) ,

which shows that the new quantity I f (p1,p2,q1,q2) contains the g -divergence.
This, Proposition 5, Proposition 6 and Proposition 7 show that the quantity I f (p1,p2,

q1,q2) can be seen as a generalization of the g -divergence.

Finally, as another application of our main result we give a necessary and sufficient
condition for the inequality

I f (p1,p2,q1,q2) � I f (u1,u2,v1,v2)

to be satisfied, so we obtain a necessary and sufficient condition for refining inequality
(38) by another divergence.
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THEOREM 11. Let o ∈ {1,2} . Let Xo := {1, . . . ,no} for some no � 1 , and let
Yo := {1, . . . ,mo} for some mo � 1 . Let po :=

(
po

1, . . . , p
o
no

)
, qo :=

(
qo

1, . . . ,q
o
no

)
,

uo :=
(
uo

1, . . . ,u
o
mo

)
and vo :=

(
vo
1, . . . ,v

o
mo

)
be positive probability distributions. Let

co
1 > co

2 > .. . > co
ko

be the different elements of
(

po
i

qo
i

)no

i=1
and

(
uo
i

vo
i

)mo

i=1
in decreasing

order (1 � ko � mo +no) . For every function f : ]0,[× ]0,[ → ]0,[ convex on the
coordinates inequality

I f (p1,p2,q1,q2) =
n1


i=1

n2


j=1

q1
i q

2
j f

(
p1

i

q1
i

,
p2

j

q2
j

)

�
m1


i=1

m2


j=1

v1
i v

2
j f

(
u1

i

v1
i

,
u2

j

v2
j

)
= I f (u1,u2,v1,v2) (40)

holds if and only if

{
j∈Yo|

uo
j

voj
�co

l

}uo
j − {

i∈Xo| po
i

qo
i

�co
l

} po
i

� co
l

⎛
⎜⎜⎜⎝ {

j∈Yo|
uo
j

voj
�co

l

}vo
j − {

i∈Xo| po
i

qo
i
�co

l

}qo
i

⎞
⎟⎟⎟⎠ , l = 1, . . . ,ko, o = 1,2

are satisfied.

Proof. Define the probability measures 1 , 2 , 1 and 2 on B]0,[ by

1 :=
n1


i=1

q1
i p1

i /q1
i
, 2 :=

n2


j=1

q2
jp2

j/q2
j

and

1 :=
m1


i=1

v1
i u1

i /v1
i
, 2 :=

m2


j=1

v2
ju2

j/v2
j
,

and let 1 , 2 , 1 , 2 : ]0,[ → ]0,[ , 1 (t) = 2 (t) = 1 (t) = 2 (t) := t .
With these notations inequality (40) is equivalent to the following integral inequal-

ity: ∫
]0,[×]0,[

f ◦ (1,2)d (1 × 2) �
∫

]0,[×]0,[

f ◦ (1,2)d (1 ×2) . (41)

We first show that (41) holds for every function f : ]0,[× ]0,[ → ]0,[ convex
on the coordinates if and only if∫

]0,[

g ◦odo �
∫

]0,[

g ◦odo, o = 1,2 (42)
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are satisfied for all g ∈ F]0,[ .
Assume (42) holds for all g∈F]0,[ . Since there are compact intervals I , J ⊂ ]0,[

such that
p1

i

q1
i

∈ I◦, i = 1, . . . ,n1 and
p2

j

q2
j

∈ J◦, j = 1, . . . ,n2,

and
u1

i

v1
i

∈ I◦, i = 1, . . . ,m1 and
u2

j

q2
j

∈ J◦, j = 1, . . . ,m2,

inequalities ∫
I

g ◦1d1 �
∫
I

g ◦1d1 and
∫
J

h ◦2d2 �
∫
J

g ◦2d2

are also satisfied for all g ∈ FI and h ∈ FJ . Then by Theorem 5 (b), inequality∫
I×J

f ◦ (1,2)d (1× 2) �
∫

I×J

f ◦ (1,2)d (1 ×2)

holds for every function f : I×J → ]0,[ convex on the coordinates, and therefore (41)
is true for every function f : ]0,[× ]0,[ → ]0,[ convex on the coordinates.

Conversely, assume (41) holds for every function f : ]0,[× ]0,[→ ]0,[ convex
on the coordinates. Then, copying the proof of Theorem 5 (a), we can show that (42)
holds for all g ∈ F]0,[ .

Since (42) is equivalent to

no


i=1

qo
i g

(
po

i

qo
i

)
�

mo


j=1

vo
jg

(
uo

j

vo
j

)
, o = 1,2,

the result follows from Theorem 4.
The proof is complete. �

REMARK 13. The previous result generalizes Theorem 10 in the recent paper [8].
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[3] I. CSISZÁR, Information-type measures of difference of probability distributions and indirect obser-
vations, Studia Sci. Math. Hungar 2 (1967) 299–318.

[4] S. S. DRAGOMIR, A new refinement of Jensen’s inequality in linear spaces with applications, Math.
Comput. Modelling 52 (2010) 1497–1505.

[5] S. S. DRAGOMIR, On the Hadamard’s inequality for convex functions on the co-ordinates in a rect-
angle from the plane, Taiwanese J. Math. 5 (4) (2001) 775–778.



314 L. HORVÁTH
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cyclic refinement of the Jensen’s inequality, Bull. Malays. Math. Sci. Soc. 42 (2019) 933–946.

[10] M. A. KHAN, Z. M. AL-SAHWI AND Y. M. CHU, New estimations for Shannon and Zipf–Mandelbrot
entropies, Entropy 2018 20 (8), 608.

[11] M. A. KHAN, F. FAISAL AND S. KHAN, Estimation of Jensen’s gap through an integral identity with
applications to divergence, Innov. J. Math. 1 (2022) 99–114.

[12] M. A. KHAN, K. A. KHAN, D. PEČARIĆ AND J. PEČARIĆ, Some New Improvements of Jensen’s
Inequality, Jensen’s Type Inequalities in Information Theory, Element, Zagreb, 2020. pp. 1–148.
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[17] M. Z. SARIKAYA AND D. KILIÇER, On the extension of Hermite-Hadamard type inequalities for
coordinated convex mappings, Turkish J. Math. 45 (6) (2021) Article 23.

[18] KAI-CHEN SHU, Refinements of Hermite-Hadamard type inequalities for differentiable co-ordinated
convex functions and applications, Taiwanese J. Math. 19 (1) (2015) 133–157.

[19] I. VAJDA, On metric divergences of probability measures, Kybernetika 45 (6) (2009) 885–900.
[20] J. M. VILORIA AND M. VIVAS-CORTEZ, Jensen’s inequality for convex functions on N -coordinates,

Appl. Math. Inf. Sci. 12 (5) (2018) 1–5.
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