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Abstract. In this paper, we obtain some improvements and generalizations of Young’s inequali-
ties on the arithmetic, geometric, and harmonic mean. For example,

(1) If 0 < a < b ,  � 1 and 0 < v �  < 1 , then

(avb) − (a�vb)

(ab) − (a�b)
� v(1− v)

(1− )
.

(2) If 0 < b < a ,  � 1 and 0 < v �  < 1
2 , then

(avb) −K(h,2)v(a�vb)

(ab) −K(h,2) (a�b)
� v(1− v)

(1− )
;

(3) If 0 < a < b ,  � 1 and 0 < v �  < 1 , then

(avb) − (a!vb)

(ab) − (a!b)
� (avb)− (a!vb)

(ab)− (a!b)
� v(1− v)

(1− )
.

In addition, we obtain some new results for Young’s inequality for operators.

1. Introduction

In the paper, let N be the set of positive integers. As usual, we denoted the Arith-
metic mean, Geometric mean, and Harmonic mean as avb = (1− v)a + vb, a�vb =
a1−vbv and a!vb = [(1− v)a−1 + vb−1]−1 for a,b > 0 and v ∈ [0,1]. The Young’s
inequality is well known as the following [7]: If a,b > 0 and 0 � v � 1, then

a1−vbv � (1− v)a+ vb, (1.1)

where equality holds if and only if a = b . And this inequality implies the classical
AM-GM-HM inequalities as

a!vb � a�vb � avb. (1.2)
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Zuo, Shi, Fujii [12] and Liao, Wu, Zhao [6] showed the refinement and reverse
inequality of the above Young’s inequality in terms of Kantorovich’s constant as follows

K(h,2)ra1−vbv � (1− v)a+ vb � K(h,2)Ra1−vbv, (1.3)

where a , b � 0, r = min{v,1−v},R = max{v,1−v} and K(h,2) = (h+1)2
4h with h = b

a .
It is easy to see that (1.3) implies

(1+ x
2

)2v
� (1− v)+ vx

(
x � 0, 0 � v � 1

2

)
(1.4)

and (1+ x
2

)2v
� (1− v)+ vx

(
x � 0,

1
2

� v � 1
)
. (1.5)

He [2] and Hirzallah [3] refined Young’s inequality so that

r2(a−b)2 � [(1− v)a+ vb]2− (a1−vbv)2 � R2(a−b)2

where a , b � 0, r = min{v,1− v} and R = max{v,1− v} .
Alzer, da Fonseca, and Kovačec [1] presented the following Young inequalities

vm

m � (avb)m− (a�vb)m

(ab)m− (a�b)m � (1− v)m

(1− )m

for 0 < v �  < 1 and m ∈ N .
Liao and Wu [5] replicated the above result as follows:

vm

m � (avb)m − (a!vb)m

(ab)m − (a!b)m � (1− v)m

(1− )m (1.6)

for 0 < v �  < 1 and m ∈ N .
Sababheh [9] obtained by convexity of function f

vm

m � [(1− v) f (0)+ v f (1)]m− f m(v)
[(1− ) f (0)+  f (1)]m− f m()

� (1− v)m

(1− )m (1.7)

for 0 < v �  < 1 and m ∈ N .
Ren [8] obtained the following inequalities:

⎧⎪⎪⎨
⎪⎪⎩

avb−a�vb
ab−a�b

� v(1− v)
(1− )

, b−a > 0

avb−a�vb
ab−a�b

� v(1− v)
(1− )

, b−a < 0
(1.8)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(avb)2− (a�vb)2

(ab)2− (a�b)2 � v(1− v)
(1− )

, b−a > 0

(avb)2− (a�vb)2

(ab)2− (a�b)2 � v(1− v)
(1− )

, b−a < 0

(1.9)
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for 0 < v �  < 1 and a, b > 0.
Similar to the arithmetic mean and geometric mean, for arithmetic mean and har-

monic mean, Sababheh [10] proved that
(i) if a,b > 0 and v, ∈ [0,1] such that (b−a)(− v) > 0, then

(avb)k − (a!vb)k

(ab)k − (a!b)k � v(1− v)
(1− )

(1.10)

(ii) if a,b > 0 and v, ∈ [0,1] such that (b−a)(− v) < 0, then

(avb)k − (a!vb)k

(ab)k − (a!b)k � v(1− v)
(1− )

(1.11)

for k = 1,2.
Yang and Wang [11] improved (1.8) and (1.9) as follows

THEOREM 1.1. Let 0 < v �  < 1 , m ∈ N and a, b are real positive numbers.
Then

(1) If b > a, we have

(avb)m − (a�vb)m

(ab)m − (a�b)m � v(1− v)
(1− )

; (1.12)

(2) If b < a, we have

(avb)m − (a�vb)m

(ab)m − (a�b)m � v(1− v)
(1− )

. (1.13)

In this paper, we point out that the condition m ∈ N can be changed into m � 1 in
(1.12) and (1.13). Using the same method, we also showed that (1.10) and (1.11) are
also valid for any positive number k � 1.

For convenience, in the following, all letters a,b,x designate positive reals with
a �= b unless we state explicitly the contrary. v, are always reals in [0,1] . By

K(h,2) = (h+1)2
4h we mean the Kantorovich constant.

2. Generalized improvements of Young’s inequalities for three mean

In order to show our main results, we firstly give a lemma as follows.

LEMMA 2.1. Define functions f ,J,K : (0,1)→R of v, with parameters , and
x by the formulas

f (v) =
(1− v+ vx) − x v

(1− v+ vx)− xv ;

J(v) =

⎧⎪⎪⎨
⎪⎪⎩

(1−v+vx)−( 1+x
2 )2v

(1−v+vx)−( 1+x
2 )2v v �= 1

2

lim
v→ 1

2

(1−v+vx)−( 1+x
2 )2v

(1−v+vx)−( 1+x
2 )2v v = 1

2

;
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K(v) =
(1− v+ vx) − (1− v+ vx−1)−

(1− v+ vx)− (1− v+ vx−1)−
.

Then each of these functions is either non-increasing or non-decreasing on (0,1)
according to which of the cases in the following table applies.

0 <  <  0 <  < 
x < 1 non-increasing non-decreasing
x > 1 non-decreasing non-increasing

Proof. Firstly, letting 0< < , we can obtain that if g(u)=−+u−u ,
then g′(u) =  [u−1 − u−1] � 0 for u ∈ (0,1) and g′(u) � 0 for u ∈ (1,) . So
we have g(u) � g(1) = 0 on [0,) . Next, if h(u) = ( −)u − u− + , then
h′(u) =  ( −)[u−1 −u−−1] � 0 for u ∈ (0,1) and h′(u) � 0 for u ∈ (1,) . It
also follows that h(u) � 0 on [0,) . Now

[(1− v+ vx)− xv]2 f ′(v)

= [(1− v+ vx)− xv][ (x−1)(1− v+ vx)−1−x v lnx]

−[(1− v+ vx) − x v][(x−1)(1− v+ vx)−1−xv lnx]

= (x−1)(1− v+ vx)+−1
{
 −−

( xv

1− v+ vx

)
+

( xv

1− v+ vx

)}

+xv(1− v+ vx) lnx
{
−

( xv

1− v+ vx

)−
+( −)

( xv

1− v+ vx

)
+

}

= (x−1)(1− v+ vx)+−1g
( xv

1− v+ vx

)
+ xv(1− v+ vx)h

( xv

1− v+ vx

)
lnx.

We see if x > 1 then both of the last two terms connected by the ’+’ in the middle
are nonnegative since h and g are nonnegative; so, as the initial expression is of from
[(1−v+vx)−xv]2 f ′(v) , we find f ′(v) � 0, and so f is non-decreasing. If x < 1 the
first term is evidently negative and the second is so because of the occurrence of lnx ;
so f ′(v) � 0, and so f is non-increasing. We proceed with examining J′ and K′ in a
similar manner. Namely, for v �= 1

2 , we have

[
(1− v+ vx)−

(1+ x
2

)2v]2
J′(v)

=
[
(1− v+ vx)−

(1+ x
2

)2v][
 (x−1)(1− v+ vx)−1−2

(1+ x
2

)2 v
ln

1+ x
2

]

−
[
(1− v+ vx) −

(1+ x
2

)2 v][
(x−1)(1− v+ vx)−1−2

(1+ x
2

)2v
ln

1+ x
2

]

= (x−1)(1− v+ vx)+−1
{
 −−

( ( 1+x
2 )2v

1− v+ vx

)
+

( ( 1+x
2 )2v

1− v+ vx

)}

+2
(1+ x

2

)2v
(1− v+ vx)

× ln
1+ x

2

{
−

( ( 1+x
2 )2v

1− v+ vx

)−
+( −)

( ( 1+x
2 )2v

1− v+ vx

)
+

}
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= (x−1)(1− v+ vx)+−1g
( ( 1+x

2 )2v

1− v+ vx

)

+2
(1+ x

2

)2v
(1− v+ vx)h

( ( 1+x
2 )2v

1− v+ vx

)
ln

1+ x
2

,

and

[(1− v+ vx)− (1− v+ vx−1)− ]2K′(v)
= [(1− v+ vx)− (1− v+ vx−1)− ]

×[ (x−1)(1− v+ vx)−1− (1− v+ vx−1)−−1(1− x−1)]

−[(1− v+ vx) − (1− v+ vx−1)− ]
×[(x−1)(1− v+ vx)−1−(1− v+ vx−1)−−1(1− x−1)]

= (x−1)(1− v+ vx)+−1

×
{
 −−

((1− v+ vx−1)−1

1− v+ vx

)
+

((1− v+ vx−1)−1

1− v+ vx

)}

+
(x−1)

x
(1− v+ vx−1)−−−1

×
{
−+

( (1− v+ vx)
(1− v+ vx−1)−1

)
+ −

( (1− v+ vx)
(1− v+ vx−1)−1

)}

= (x−1)(1− v+ vx)+−1g
((1− v+ vx−1)−1

1− v+ vx

)

+
(x−1)

x
(1− v+ vx−1)−−−1g

( (1− v+ vx)
(1− v+ vx−1)−1

)
.

We have that J′(v),K′(v) � 0 if x > 1 and J′(v),K′(v) � 0 under the condition x ∈
(0,1) , which completes the proof of (i). Next, if 0 <  <  , then h(u),g(u) � 0, and
this implies that f ′(v),J′(v),K′(v) � 0 if x ∈ (0,1) and f ′(v),J′(v),K′(v) � 0 under
the condition x > 1. Hence (ii) is also valid. �

THEOREM 2.2. Let 0< v �  < 1 , 0< <  and a, b are real positive numbers.
Then

(1) If b > a, we can get

(avb) − (a�vb)

(ab) − (a�b)
� (avb) − (a�vb)

(ab) − (a�b)
; (2.1)

(2) If b < a, then the reverse inequality is valid.

Proof. Let f (v) = (1−v+vx)−xv

(1−v+vx)−xv . By Lemma 2.1 (i), we have

(1) if x > 1, then f ′(v) � 0, meaning that f (v) is increasing on (0,1) , that is to



320 X. YANG, C. YANG AND H. LI

say f (v)
f () � 1. Therefore

(1− v+ vx) − x v

(1− + x) − x
=

((1− v+ vx)− xv) f (v)
((1− + x) − x) f ()

� (1− v+ vx)− xv

(1− + x) − x
.

(2) If 0 < x � 1, then f ′(v) � 0, meaning that f (v) is decreasing on (0,1) , that

is to say f (v)
f () � 1. Therefore

(1− v+ vx) − x v

(1− + x) − x
=

((1− v+ vx)− xv) f (v)
((1− + x) − x) f ()

� (1− v+ vx)− xv

(1− + x) − x
.

One deduces (2.1) by noting facts like this: if we substitute in (1−v+vx) −x v ,
x by b

a and then multiply with a we get (avb) − (a�vb) .
Using (1.8), and Theorem 2.2, we have the following result. �

COROLLARY 2.3. Let 0 < v �  < 1 ,  � 1 and a, b are real positive numbers.
Then

(1) If b > a, we have

(avb) − (a�vb)

(ab) − (a�b)
� (avb)− (a�vb)

(ab)− (a�b)
� v(1− v)

(1− )
; (2.2)

(2) If b < a, then the reverse inequality is valid.

REMARK 2.4. (1) Let  = 2 or  = m ∈ N , we can get [9, Theorem 2.3] and
[11, Theorem 2.1], respectively.

(2) Let a = b , b = a , v = 1−  ,  = 1− v in inequality (2.2), we can also obtain
the reverse inequality of (2.2) directly for b < a .

(3) Let 0 < v �  < 1, so 1−v
1− � 1, therefore

(i) If b > a , then

(avb) − (a�vb)

(ab) − (a�b)
� v(1− v)

(1− )
� v(1− v)

(1− )
� (1− v)

(1− )
;

(ii) If b < a , then

(avb) − (a�vb)

(ab) − (a�b)
� v(1− v)

(1− )
� v (1− v)

 (1− )
� v


.

Using Lemma 2.1, we can also obtain the following results.
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THEOREM 2.5. Let 0 <  <  , 0 < a < b and let h = b
a . Then

(a) If 1
2 < v �  � 1 or 0 < v �  < 1

2 , then

K(h,2) v(a�vb) − (avb)

K(h,2)(a�b) − (ab)
� K(h,2)v(a�vb) − (avb)

K(h,2)(a�b) − (ab)
(2.3)

(b) If 0 < v < 1
2 <  < 1 , then we have the reverse inequality of (2.3) .

On the other hand, if 0 < b < a, then the reverse inequality of above results is true
under their other conditions, respectively.

Proof. Let J(v) = (1−v+vx)−( 1+x
2 )2v

(1−v+vx)−( 1+x
2 )2v , then J(v) � J() for 0 < v <  � 1 under

the condition x � 1, and this implies that

(1− v+ vx) − ( 1+x
2 )2 v

(1− v+ vx)− ( 1+x
2 )2v

�
(1− + x) − ( 1+x

2 )2

(1− + x) − ( 1+x
2 )2

holds for x > 1. With evident notation this inequality is of form c
d � e

f . Now by (1.4)

and (1.5) d and e have the same sign and hence d
e is nonnegative. So multiplying the

fraction with d
e we can get the inequality c

e � d
f , that is,

(1− v+ vx) − ( 1+x
2 )2 v

(1− + x) − ( 1+x
2 )2

�
(1− v+ vx)− ( 1+x

2 )2v

(1− + x) − ( 1+x
2 )2

for x > 1 and 1
2 < v �  � 1 or 0 < v �  < 1

2 ; and

(1− v+ vx) − ( 1+x
2 )2 v

(1− + x) − ( 1+x
2 )2

�
(1− v+ vx)− ( 1+x

2 )2v

(1− + x) − ( 1+x
2 )2

for x > 1 and 0 < v < 1
2 <  < 1.

By taking x = b
a , we can get our desired results directly. �

LEMMA 2.6. Let a, b be real positive numbers and let h = b
a . Then

(a) If 1
2 < v �  < 1 , then

K(h,2)va�vb−avb
K(h,2)a�b−ab

� v


� v(1− v)
(1− )

(2.4)

(b) If 0 < v �  < 1
2 , then

K(h,2)va�vb−avb
K(h,2)a�b−ab

� v(1− v)
(1− )

� v

. (2.5)

Proof. Firstly we let for any x > 0 and 0 < v � 1,

f (v) =

(
x+1
2

)2v − (1− v+ vx)
v

.
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Then

f ′(v) =

(
x+1
2

)2v [
2v ln

(
x+1
2

)−1
]
+1

v2

≡ h(x)
v2

and

h′(x) = 2v2
(

x+1
2

)2v−1

ln

(
x+1

2

)
.

It means that h′(x) � 0 for x ∈ (0,1] and h′(x) � 0 for x ∈ [1,) . So h(x) � h(1) = 0

and f ′(v) � 0. Therefore f (v) is increasing on (0,1) , which implies that f (v)
1−v is also

increasing on (0,1) , that is to say

(
x+1
2

)2v− (1− v+ vx)
v

�
(

x+1
2

)2 − (1− + x)


and (
x+1
2

)2v− (1− v+ vx)
v(1− v)

�
(

x+1
2

)2 − (1− + x)
(1− )

for any 0 < v �  < 1.
Therefore, (

x+1
2

)2v− (1− v+ vx)(
x+1
2

)2 − (1− + x)
� v



for 1
2 < v �  � 1 by (1.5); and

(
x+1
2

)2v − (1− v+ vx)(
x+1
2

)2 − (1− + x)
� v(1− v)

(1− )

for 0 < v �  < 1
2 by (1.4).

Taking x = b
a , we can get our desired results directly. �

THEOREM 2.7. Let a, b be real positive numbers, h = b
a , and  � 1 . Then

(a) If 0 < a < b and 1
2 < v �  � 1 , then

K(h,2) v(a�vb) − (avb)

K(h,2)(a�b) − (ab)
� v


� v(1− v)

(1− )
(2.6)

(b) If 0 < b < a and 0 < v �  < 1
2 , then

K(h,2) v(a�vb) − (avb)

K(h,2)(a�b) − (ab)
� v(1− v)

(1− )
� v


. (2.7)
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Proof. Let J(v) = (1−v+vx)−( 1+x
2 )2v

1−v+vx−( 1+x
2 )2v .

(i) If x > 1 and 1
2 < v �  � 1, using Lemma 2.1 and Lemma 2.6, we have

(1− v+ vx) − ( 1+x
2 )2 v

(1− + x) − ( 1+
2 )2

=
J(v)
J()

1− v+ vx− ( 1+x
2 )2v

1− + x− ( 1+x
2 )2

�
1− v+ vx− ( 1+x

2 )2v

1− + x− ( 1+x
2 )2

� v


� v(1− v)
(1− )

(ii) If x ∈ (0,1) and 0 < v �  < 1
2 , using Lemma 2.1 and Lemma 2.6, we also

have

(1− v+ vx) − ( 1+x
2 )2 v

(1− + x) − ( 1+
2 )2

=
J(v)
J()

1− v+ vx− ( 1+x
2 )2v

1− + x− ( 1+x
2 )2

�
1− v+ vx− ( 1+x

2 )2v

1− + x− ( 1+x
2 )2

� v(1− v)
(1− )

� v


Taking x = b
a , we can get our desired results directly. �

Now using (1.10), (1.11) and Lemma 2.1, by the same method as above, we can
easily obtain the following result.

THEOREM 2.8. Let 0 < v �  < 1 ,  � 1 and a, b real positive numbers. Then
(1) If b > a, then

(avb) − (a!vb)

(ab) − (a!b)
� (avb)− (a!vb)

(ab)− (a!b)
� v(1− v)

(1− )
; (2.8)

(2) If b < a, then

(avb) − (a!vb)

(ab) − (a!b)
� (avb)− (a!vb)

(ab)− (a!b)
� v(1− v)

(1− )
. (2.9)

Proof. (1) For  = 1, the function K(v) = (1vx)−(1vx−1)−
(1vx)−(1vx−1)−1 . We consider the

numerator, put x = b
a and multiply with a . This yields

((
1v

b
a

) −
(
1v

a
b

)−)
a =

(
1− v+ v

b
a

)
a −

(
1− v+ v

a
b

)−
(a−1)−

= ((1− v)a+ vb) − ((1− v)a−1 + vb−1)− )

= (avb) − (a!b) .
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We will below use similar equations for  in place of v and for 1 in place of  .
Since b > a , we have x > 1 and the hypothesis tells us  �  > 0. So if 0 < v �  � 1
we have by Lemma 2.1 the inequality K(v) � K() , that is

(1vx) − (1vx−1)−

(1vx)− (1vx−1)−1 � (1x) − (1x−1)−

(1x)− (1x−1)−1 .

As x > 1, for any v ∈ (0,1) there holds 1vx > 1vx−1 . So we can interchange in
above inequality the left lower with the right upper expression and we get

(1vx) − (1vx−1)−

(1x) − (1x−1)−
� (1vx)− (1vx−1)−1

(1x)− (1x−1)−1 .

Here now we substitute x = b
a , then multiply both the parts of the left fraction with a

and of the right fraction with a and get the left of (2.8), while the right part follows
from Sababheh’s inequality (1.11) for k = 1.

(2) The proof of part (2) is similar. �

3. Applications

Let Mn(C) denote the space of all n× n complex matrices and M+
n (C) denote

the space of all n× n positive semidefinite matrices in Mn(C) . We recall that X ∈
M+

n (C) implies trX � 0 and detX � 0, see [12, Corollary 7.1.5] and the definition
of the Loewner or positive semidefinite ordering, see [12, Definition 7.7.1]. A matrix
norm |||.||| is called unitarily invariant norm if |||UAV ||| = |||A||| for all A ∈ Mn(C)
and for all unitary matrices U,V ∈Mn(C) . For A = [ai j] ∈Mn(C) , the trace norm of A
is defined by

‖A‖1 = tr|A| =
n


i=1

si(A)

where s1(A) � s2(A) � · · · � sn(A) are the singular values of A , that is, the eigen-

values of the positive matrix |A| = (A∗A)
1
2 , arranged in decreasing order and repeated

according to multiplicity and tr is the usual trace function.

LEMMA 3.1. (Minkowski’s inequality, [12, Theorem 7.8.8]) Let A,B ∈ M+
n (C) ,

then

det(A+B)
1
n � detA

1
n +detB

1
n .

LEMMA 3.2. ([5]) Let A,B,X ∈ Mn(C) and A,B ∈ M+
n (C) . If 0 � v � 1 , then

|||AvXB1−v||| � |||AX |||v|||XB|||1−v.
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THEOREM 3.1. Let A,B ∈ M+
n (C) ,  � 1 and 0 < v �  < 1 . Then

(i) If B � A � 0 , we have

‖(1− v)A+ vB‖1 − (‖A‖1−v
1 ‖B‖v

1)


v(1− v)
� ‖(1− )A+ B‖1 − (‖A‖1−

1 ‖B‖1)
(1− )

;

(ii) If A � B � 0 , we have

‖(1− v)A+ vB‖1 − (‖A‖1−v
1 ‖B‖v

1)


v(1− v)
� ‖(1− )A+ B‖1 − (‖A‖1−

1 ‖B‖1)
(1− )

.

Proof. Suppose B � A . Then putting a = tr(A) and b = tr(B) we have b � a and
using Corollary 2.3 we deduce

‖(1− v)A+ vB‖1
= (tr((1− v)A)+ tr(vB))

= ((1− v)tr(A)+ vtr(B))

� (tr(A)1−vtr(B)v) +
v(1− v)
(1− )

[((1− )tr(A)+ tr(B)) − (tr(A)1− tr(B)) ]

= (‖A‖1−v
1 ‖B‖v

1)
 +

v(1− v)
(1− )

[‖(1− )A+ B‖1 − (‖A‖1−
1 ‖B‖1) ].

Using the same method we can get (ii) similarly, so we omit it. �

THEOREM 3.2. Let A,B ∈ M+
n (C) , n � 1 and 0 < v �  < 1 . Then

(i) If B � A � 0 , we can get

det((1− )A+ B)

� (1− )
v(1− v)

[
[(1− v)detA

1
n + vdetB

1
n ]n−det(A1−vBv)

]
+det

(
A1−B) ;

(ii) If A � B � 0 , we can get

det((1− v)A+ vB)

� v(1− v)
(1− )

[
[(1− )detA

1
n +  detB

1
n ]n−det(A1−B)

]
+det(A1−vBv) .

Proof. Suppose B � A . Then putting b = detB
1
n and a = detA

1
n , we have b � a

and again by Corollary 2.3 and Lemma 3.1, we have

det((1− )A+ B)

=
[
det((1− )A+ B)

1
n

]n

�
[
(1− )detA

1
n +  detB

1
n

]n
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� (1− )
v(1− v)

[
[(1− v)detA

1
n + vdetB

1
n ]n− [detA

1−v
n detB

v
n ]n

]

+
[
detA

1−
n detB


n

]n

=
(1− )
v(1− v)

[
[(1− v)detA

1
n + vdetB

1
n ]n−det(A1−vBv)

]
+det

(
A1−B) .

Using the same method we can get (ii) similarly, so we omit it. �

THEOREM 3.3. Let A,B,X ∈ Mn(C) with A,B ∈ M+
n (C) ,  � 1 and 0 < v �

 < 1 . Then for any unitarily invariant norm ||| · |||
(i) If |||XB|||� |||AX ||| , we get

[(1− )|||AX |||+ |||XB|||]

� (1− )
v(1− v)

[
[(1− v)|||AX |||+ v|||XB|||]− (|||AX |||1−v|||XB|||v)

]
+ |||A1−XB ||| ;

(ii) If |||AX |||� |||XB||| , we get

[(1− v)|||AX |||+ v|||XB|||]

� v(1− v)
(1− )

[
[(1− )|||AX |||+ |||XB|||] − (|||AX |||1− |||XB|||)

]
+ |||A1−vXBv||| .

Proof. Suppose |||XB|||� |||AX ||| and by Corollary 2.3 and Lemma 3.2, we have

[(1− )|||AX |||+ |||XB|||] −|||A1−XB |||
� [(1− )|||AX |||+ |||XB|||] − (|||AX |||1− |||XB|||)

� (1− )
v(1− v)

[
[(1− v)|||AX |||+ v|||XB|||]− (|||AX |||1−v|||XB|||v)

]
.

Using the same method we can get (ii) similarly, so we omit it. �

THEOREM 3.4. Let A,B∈M+
n (C) such that 0 � A � B, � 1 and 1

2 < v �  � 1 .
Then

K(h,2) v‖A‖ (1−v)
1 ‖B‖ v

1 −‖(1− v)A+ vB‖1
v

� K(h,2)‖A‖ (1−)
1 ‖B‖1 −‖(1− )A+ B‖1



where h = tr(B)
tr(A) .
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Proof. According to (2.6), we have

‖(1− v)A+ vB‖1
= [(1− v)tr(A)+ vtr(B)]

� K(h,2) vtr(A) (1−v)tr(B) v

− v

[K(h,2) tr(A) (1−)tr(B) − ((1− )tr(A)+ tr(B)) ]

= K(h,2) v‖A‖ (1−v)
1 ‖B‖ v

1 − v

[K(h,2)‖A‖ (1−)

1 ‖B‖1 −‖(1− )A+ B‖1 ].

This completes the proof. �

Applying Theorem 2.8, we also have

THEOREM 3.5. Let A,B ∈ M+
n (C) ,  � 1 and 0 < v �  < 1 . Then

(1) If B � A � 0 , we obtain

‖(1− v)A+ vB‖1 − (‖A‖1!v‖B‖1)

v(1− v)
� ‖(1− )A+ B‖1 − (‖A‖1!‖B‖1)

(1− )
;

(2) If A � B � 0 , we obtain

‖(1− v)A+ vB‖1 − (‖A‖1!v‖B‖1)

v(1− v)
� ‖(1− )A+ B‖1 − (‖A‖1!‖B‖1)

(1− )
.

Proof. (1) We can write

‖(1− v)A+ vB||1 − (‖A‖1!v‖B‖) = ((1− v)trA+ vtrB) − (trA!vtrB) ,

and a similar expression for  in place of v . So, with the substitutions a = trA and
b = trB , we see the inequality claimed can be written

(avb) − (a!vb)

v(1− v)
� (ab)− (a!b)

(1− )
.

Here again because of avb � a!vb we can interchange the left lower expression with
the right upper and get this way an inequality which follows directly from Theorem 2.8
as b � a .

Using the same method we can get (2) similarly, so we omit it. �
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