FURTHER IMPROVEMENTS FOR YOUNG'S INEQUALITIES ON THE ARITHMETIC, GEOMETRIC, AND HARMONIC MEAN

Xiangrun Yang, Changsen Yang and Haiying Li

(Communicated by M. Krnić)

Abstract. In this paper, we obtain some improvements and generalizations of Young's inequalities on the arithmetic, geometric, and harmonic mean. For example,
(1) If $0<a<b, \beta \geqslant 1$ and $0<v \leqslant \tau<1$, then

$$
\frac{\left(a \nabla_{v} b\right)^{\beta}-\left(a \sharp_{\Downarrow} b\right)^{\beta}}{\left(a \nabla_{\tau} b\right)^{\beta}-\left(a \sharp_{\tau} b\right)^{\beta}} \leqslant \frac{v(1-v)}{\tau(1-\tau)} .
$$

(2) If $0<b<a, \beta \geqslant 1$ and $0<v \leqslant \tau<\frac{1}{2}$, then

$$
\frac{\left(a \nabla_{v} b\right)^{\beta}-K(h, 2)^{\beta v}\left(a \not \sharp_{v} b\right)^{\beta}}{\left(a \nabla_{\tau} b\right)^{\beta}-K(h, 2)^{\beta \tau}\left(a \not \sharp_{\tau} b\right)^{\beta}} \geqslant \frac{v(1-v)}{\tau(1-\tau)} ;
$$

(3) If $0<a<b, \beta \geqslant 1$ and $0<v \leqslant \tau<1$, then

$$
\frac{\left(a \nabla_{v} b\right)^{\beta}-\left(a!_{v} b\right)^{\beta}}{\left(a \nabla_{\tau} b\right)^{\beta}-\left(a!_{\tau} b\right)^{\beta}} \leqslant \frac{\left(a \nabla_{v} b\right)-\left(a!_{v} b\right)}{\left(a \nabla_{\tau} b\right)-\left(a!_{\tau} b\right)} \leqslant \frac{v(1-v)}{\tau(1-\tau)}
$$

In addition, we obtain some new results for Young's inequality for operators.

1. Introduction

In the paper, let \mathbb{N} be the set of positive integers. As usual, we denoted the Arithmetic mean, Geometric mean, and Harmonic mean as $a \nabla_{v} b=(1-v) a+v b, a \not{ }_{\nu} b=$ $a^{1-v} b^{v}$ and $a!v b=\left[(1-v) a^{-1}+v b^{-1}\right]^{-1}$ for $a, b>0$ and $v \in[0,1]$. The Young's inequality is well known as the following [7]: If $a, b>0$ and $0 \leqslant v \leqslant 1$, then

$$
\begin{equation*}
a^{1-v} b^{v} \leqslant(1-v) a+v b \tag{1.1}
\end{equation*}
$$

where equality holds if and only if $a=b$. And this inequality implies the classical AM-GM-HM inequalities as

$$
\begin{equation*}
a!_{v} b \leqslant a \sharp_{v} b \leqslant a \nabla_{v} b . \tag{1.2}
\end{equation*}
$$

Mathematics subject classification (2020): 26D07, 15A15, 15A42, 15A60.
Keywords and phrases: Young's inequality, Kantorovich constant, arithmetic mean, geometric mean, harmonic mean.

Zuo, Shi, Fujii [12] and Liao, Wu, Zhao [6] showed the refinement and reverse inequality of the above Young's inequality in terms of Kantorovich's constant as follows

$$
\begin{equation*}
K(h, 2)^{r} a^{1-v} b^{v} \leqslant(1-v) a+v b \leqslant K(h, 2)^{R} a^{1-v} b^{v} \tag{1.3}
\end{equation*}
$$

where $a, b \geqslant 0, r=\min \{v, 1-v\}, R=\max \{v, 1-v\}$ and $K(h, 2)=\frac{(h+1)^{2}}{4 h}$ with $h=\frac{b}{a}$.
It is easy to see that (1.3) implies

$$
\begin{equation*}
\left(\frac{1+x}{2}\right)^{2 v} \leqslant(1-v)+v x \quad\left(x \geqslant 0,0 \leqslant v \leqslant \frac{1}{2}\right) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{1+x}{2}\right)^{2 v} \geqslant(1-v)+v x \quad\left(x \geqslant 0, \quad \frac{1}{2} \leqslant v \leqslant 1\right) \tag{1.5}
\end{equation*}
$$

He [2] and Hirzallah [3] refined Young's inequality so that

$$
r^{2}(a-b)^{2} \leqslant[(1-v) a+v b]^{2}-\left(a^{1-v} b^{v}\right)^{2} \leqslant R^{2}(a-b)^{2}
$$

where $a, b \geqslant 0, r=\min \{v, 1-v\}$ and $R=\max \{v, 1-v\}$.
Alzer, da Fonseca, and Kovačec [1] presented the following Young inequalities

$$
\frac{v^{m}}{\tau^{m}} \leqslant \frac{\left(a \nabla_{v} b\right)^{m}-\left(a \sharp_{v} b\right)^{m}}{\left(a \nabla_{\tau} b\right)^{m}-\left(a \not \sharp_{\tau} b\right)^{m}} \leqslant \frac{(1-v)^{m}}{(1-\tau)^{m}}
$$

for $0<v \leqslant \tau<1$ and $m \in \mathbb{N}$.
Liao and Wu [5] replicated the above result as follows:

$$
\begin{equation*}
\frac{v^{m}}{\tau^{m}} \leqslant \frac{\left(a \nabla_{v} b\right)^{m}-\left(a!_{v} b\right)^{m}}{\left(a \nabla_{\tau} b\right)^{m}-\left(a!_{\tau} b\right)^{m}} \leqslant \frac{(1-v)^{m}}{(1-\tau)^{m}} \tag{1.6}
\end{equation*}
$$

for $0<v \leqslant \tau<1$ and $m \in \mathbb{N}$.
Sababheh [9] obtained by convexity of function f

$$
\begin{equation*}
\frac{v^{m}}{\tau^{m}} \leqslant \frac{[(1-v) f(0)+v f(1)]^{m}-f^{m}(v)}{[(1-\tau) f(0)+\tau f(1)]^{m}-f^{m}(\tau)} \leqslant \frac{(1-v)^{m}}{(1-\tau)^{m}} \tag{1.7}
\end{equation*}
$$

for $0<v \leqslant \tau<1$ and $m \in \mathbb{N}$.
Ren [8] obtained the following inequalities:

$$
\begin{cases}\frac{a \nabla_{v} b-a \sharp_{\nu} b}{a \nabla_{\tau} b-a \sharp_{\tau} b} \leqslant \frac{v(1-v)}{\tau(1-\tau)}, & b-a>0 \tag{1.8}\\ \frac{a \nabla_{v} b-a \sharp_{\nu} b}{a \nabla_{\tau} b-a \sharp_{\tau} b} \geqslant \frac{v(1-v)}{\tau(1-\tau)}, & b-a<0\end{cases}
$$

and

$$
\begin{cases}\frac{\left(a \nabla_{v} b\right)^{2}-\left(a \sharp_{\nu} b\right)^{2}}{\left(a \nabla_{\tau} b\right)^{2}-\left(a \not \sharp_{\tau} b\right)^{2}} \leqslant \frac{v(1-v)}{\tau(1-\tau)}, & b-a>0 \tag{1.9}\\ \frac{\left(a \nabla_{v} b\right)^{2}-\left(a \not \sharp_{v} b\right)^{2}}{\left(a \nabla_{\tau} b\right)^{2}-\left(a \not \sharp_{\tau} b\right)^{2}} \geqslant \frac{v(1-v)}{\tau(1-\tau)}, & b-a<0\end{cases}
$$

for $0<v \leqslant \tau<1$ and $a, b>0$.
Similar to the arithmetic mean and geometric mean, for arithmetic mean and harmonic mean, Sababheh [10] proved that
(i) if $a, b>0$ and $v, \tau \in[0,1]$ such that $(b-a)(\tau-v)>0$, then

$$
\begin{equation*}
\frac{\left(a \nabla_{v} b\right)^{k}-\left(a!_{\nu} b\right)^{k}}{\left(a \nabla_{\tau} b\right)^{k}-\left(a!_{\tau} b\right)^{k}} \leqslant \frac{v(1-v)}{\tau(1-\tau)} \tag{1.10}
\end{equation*}
$$

(ii) if $a, b>0$ and $v, \tau \in[0,1]$ such that $(b-a)(\tau-v)<0$, then

$$
\begin{equation*}
\frac{\left(a \nabla_{v} b\right)^{k}-\left(a!_{\nu} b\right)^{k}}{\left(a \nabla_{\tau} b\right)^{k}-\left(a!_{\tau} b\right)^{k}} \geqslant \frac{v(1-v)}{\tau(1-\tau)} \tag{1.11}
\end{equation*}
$$

for $k=1,2$.
Yang and Wang [11] improved (1.8) and (1.9) as follows
THEOREM 1.1. Let $0<v \leqslant \tau<1, m \in \mathbb{N}$ and a, b are real positive numbers. Then
(1) If $b>a$, we have

$$
\begin{equation*}
\frac{\left(a \nabla_{v} b\right)^{m}-\left(a \not \sharp_{v} b\right)^{m}}{\left(a \nabla_{\tau} b\right)^{m}-\left(a \not \sharp_{\tau} b\right)^{m}} \leqslant \frac{v(1-v)}{\tau(1-\tau)} ; \tag{1.12}
\end{equation*}
$$

(2) If $b<a$, we have

$$
\begin{equation*}
\frac{\left(a \nabla_{v} b\right)^{m}-\left(a \sharp_{v} b\right)^{m}}{\left(a \nabla_{\tau} b\right)^{m}-\left(a \not \sharp_{\tau} b\right)^{m}} \geqslant \frac{v(1-v)}{\tau(1-\tau)} . \tag{1.13}
\end{equation*}
$$

In this paper, we point out that the condition $m \in \mathbb{N}$ can be changed into $m \geqslant 1$ in (1.12) and (1.13). Using the same method, we also showed that (1.10) and (1.11) are also valid for any positive number $k \geqslant 1$.

For convenience, in the following, all letters a, b, x designate positive reals with $a \neq b$ unless we state explicitly the contrary. v, τ are always reals in $[0,1]$. By $K(h, 2)=\frac{(h+1)^{2}}{4 h}$ we mean the Kantorovich constant.

2. Generalized improvements of Young's inequalities for three mean

In order to show our main results, we firstly give a lemma as follows.
LEMMA 2.1. Define functions $f, J, K:(0,1) \rightarrow \mathbb{R}$ of v, with parameters α, β and x by the formulas

$$
\begin{aligned}
& f(v)=\frac{(1-v+v x)^{\beta}-x^{\beta v}}{(1-v+v x)^{\alpha}-x^{\alpha v} ;} \\
& J(v)= \begin{cases}\frac{(1-v+v x)^{\beta}-\left(\frac{1+x}{2}\right)^{2 \beta v}}{(1-v+v x)^{\alpha}-\left(\frac{1+x}{2}\right)^{2 \alpha v}} & v \neq \frac{1}{2} \\
\lim _{v \rightarrow \frac{1}{2}} \frac{(1-v+v x)^{\beta}-\left(\frac{1+x}{2}\right)^{2 \beta v}}{(1-v+v x)^{\alpha}-\left(\frac{1+x}{2}\right)^{2 \alpha v}} & v=\frac{1}{2} ;\end{cases}
\end{aligned}
$$

$$
K(v)=\frac{(1-v+v x)^{\beta}-\left(1-v+v x^{-1}\right)^{-\beta}}{(1-v+v x)^{\alpha}-\left(1-v+v x^{-1}\right)^{-\alpha}}
$$

Then each of these functions is either non-increasing or non-decreasing on $(0,1)$ according to which of the cases in the following table applies.

\[

\]

Proof. Firstly, letting $0<\alpha<\beta$, we can obtain that if $g(u)=\beta-\alpha+\alpha u^{\beta}-\beta u^{\alpha}$, then $g^{\prime}(u)=\alpha \beta\left[u^{\beta-1}-u^{\alpha-1}\right] \leqslant 0$ for $u \in(0,1)$ and $g^{\prime}(u) \geqslant 0$ for $u \in(1, \infty)$. So we have $g(u) \geqslant g(1)=0$ on $[0, \infty)$. Next, if $h(u)=(\beta-\alpha) u^{\beta}-\beta u^{\beta-\alpha}+\alpha$, then $h^{\prime}(u)=\beta(\beta-\alpha)\left[u^{\beta-1}-u^{\beta-\alpha-1}\right] \leqslant 0$ for $u \in(0,1)$ and $h^{\prime}(u) \geqslant 0$ for $u \in(1, \infty)$. It also follows that $h(u) \geqslant 0$ on $[0, \infty)$. Now

$$
\begin{aligned}
& {\left[(1-v+v x)^{\alpha}-x^{\alpha v}\right]^{2} f^{\prime}(v) } \\
= & {\left[(1-v+v x)^{\alpha}-x^{\alpha v}\right]\left[\beta(x-1)(1-v+v x)^{\beta-1}-\beta x^{\beta v} \ln x\right] } \\
& -\left[(1-v+v x)^{\beta}-x^{\beta v}\right]\left[\alpha(x-1)(1-v+v x)^{\alpha-1}-\alpha x^{\alpha v} \ln x\right] \\
= & (x-1)(1-v+v x)^{\alpha+\beta-1}\left\{\beta-\alpha-\beta\left(\frac{x^{v}}{1-v+v x}\right)^{\alpha}+\alpha\left(\frac{x^{v}}{1-v+v x}\right)^{\beta}\right\} \\
& +x^{\alpha v}(1-v+v x)^{\beta} \ln x\left\{-\beta\left(\frac{x^{v}}{1-v+v x}\right)^{\beta-\alpha}+(\beta-\alpha)\left(\frac{x^{v}}{1-v+v x}\right)^{\beta}+\alpha\right\} \\
= & (x-1)(1-v+v x)^{\beta+\alpha-1} g\left(\frac{x^{v}}{1-v+v x}\right)+x^{\alpha v}(1-v+v x)^{\beta} h\left(\frac{x^{v}}{1-v+v x}\right) \ln x .
\end{aligned}
$$

We see if $x>1$ then both of the last two terms connected by the ' + ' in the middle are nonnegative since h and g are nonnegative; so, as the initial expression is of from $\left[(1-v+v x)^{\alpha}-x^{\alpha v}\right]^{2} f^{\prime}(v)$, we find $f^{\prime}(v) \geqslant 0$, and so f is non-decreasing. If $x<1$ the first term is evidently negative and the second is so because of the occurrence of $\ln x$; so $f^{\prime}(v) \leqslant 0$, and so f is non-increasing. We proceed with examining J^{\prime} and K^{\prime} in a similar manner. Namely, for $v \neq \frac{1}{2}$, we have

$$
\begin{aligned}
& {\left[(1-v+v x)^{\alpha}-\left(\frac{1+x}{2}\right)^{2 \alpha v}\right]^{2} J^{\prime}(v) } \\
= & {\left[(1-v+v x)^{\alpha}-\left(\frac{1+x}{2}\right)^{2 \alpha v}\right]\left[\beta(x-1)(1-v+v x)^{\beta-1}-2 \beta\left(\frac{1+x}{2}\right)^{2 \beta v} \ln \frac{1+x}{2}\right] } \\
& -\left[(1-v+v x)^{\beta}-\left(\frac{1+x}{2}\right)^{2 \beta v}\right]\left[\alpha(x-1)(1-v+v x)^{\alpha-1}-2 \alpha\left(\frac{1+x}{2}\right)^{2 \alpha v} \ln \frac{1+x}{2}\right] \\
= & (x-1)(1-v+v x)^{\alpha+\beta-1}\left\{\beta-\alpha-\beta\left(\frac{\left(\frac{1+x}{2}\right)^{2 v}}{1-v+v x}\right)^{\alpha}+\alpha\left(\frac{\left(\frac{1+x}{2}\right)^{2 v}}{1-v+v x}\right)^{\beta}\right\} \\
& +2\left(\frac{1+x}{2}\right)^{2 \alpha v}(1-v+v x)^{\beta} \\
& \times \ln \frac{1+x}{2}\left\{-\beta\left(\frac{\left(\frac{1+x}{2}\right)^{2 v}}{1-v+v x}\right)^{\beta-\alpha}+(\beta-\alpha)\left(\frac{\left(\frac{1+x}{2}\right)^{2 v}}{1-v+v x}\right)^{\beta}+\alpha\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & (x-1)(1-v+v x)^{\alpha+\beta-1} g\left(\frac{\left(\frac{1+x}{2}\right)^{2 v}}{1-v+v x}\right) \\
& +2\left(\frac{1+x}{2}\right)^{2 \alpha v}(1-v+v x)^{\beta} h\left(\frac{\left(\frac{1+x}{2}\right)^{2 v}}{1-v+v x}\right) \ln \frac{1+x}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[(1-v+v x)^{\alpha}-\left(1-v+v x^{-1}\right)^{-\alpha}\right]^{2} K^{\prime}(v) } \\
= & {\left[(1-v+v x)^{\alpha}-\left(1-v+v x^{-1}\right)^{-\alpha}\right] } \\
& \times\left[\beta(x-1)(1-v+v x)^{\beta-1}-\beta\left(1-v+v x^{-1}\right)^{-\beta-1}\left(1-x^{-1}\right)\right] \\
& -\left[(1-v+v x)^{\beta}-\left(1-v+v x^{-1}\right)^{-\beta}\right] \\
& \times\left[\alpha(x-1)(1-v+v x)^{\alpha-1}-\alpha\left(1-v+v x^{-1}\right)^{-\alpha-1}\left(1-x^{-1}\right)\right] \\
= & (x-1)(1-v+v x)^{\alpha+\beta-1} \\
& \times\left\{\beta-\alpha-\beta\left(\frac{\left(1-v+v x^{-1}\right)^{-1}}{1-v+v x}\right)^{\alpha}+\alpha\left(\frac{\left(1-v+v x^{-1}\right)^{-1}}{1-v+v x}\right)^{\beta}\right\} \\
& +\frac{(x-1)}{x}\left(1-v+v x^{-1}\right)^{-\alpha-\beta-1} \\
& \times\left\{-\alpha+\alpha\left(\frac{(1-v+v x)}{\left(1-v+v x^{-1}\right)^{-1}}\right)^{\beta}+\beta-\beta\left(\frac{(1-v+v x)}{\left(1-v+v x^{-1}\right)^{-1}}\right)^{\alpha}\right\} \\
= & (x-1)(1-v+v x)^{\alpha+\beta-1} g\left(\frac{\left(1-v+v x^{-1}\right)^{-1}}{1-v+v x}\right) \\
& +\frac{(x-1)}{x}\left(1-v+v x^{-1}\right)^{-\alpha-\beta-1} g\left(\frac{(1-v+v x)}{\left(1-v+v x^{-1}\right)^{-1}}\right) .
\end{aligned}
$$

We have that $J^{\prime}(v), K^{\prime}(v) \geqslant 0$ if $x>1$ and $J^{\prime}(v), K^{\prime}(v) \leqslant 0$ under the condition $x \in$ $(0,1)$, which completes the proof of (i). Next, if $0<\beta<\alpha$, then $h(u), g(u) \leqslant 0$, and this implies that $f^{\prime}(v), J^{\prime}(v), K^{\prime}(v) \geqslant 0$ if $x \in(0,1)$ and $f^{\prime}(v), J^{\prime}(v), K^{\prime}(v) \leqslant 0$ under the condition $x>1$. Hence (ii) is also valid.

THEOREM 2.2. Let $0<v \leqslant \tau<1,0<\alpha<\beta$ and a, b are real positive numbers. Then
(1) If $b>a$, we can get

$$
\begin{equation*}
\frac{\left(a \nabla_{v} b\right)^{\beta}-\left(a \sharp_{v} b\right)^{\beta}}{\left(a \nabla_{\tau} b\right)^{\beta}-\left(a \sharp_{\tau} b\right)^{\beta}} \leqslant \frac{\left(a \nabla_{v} b\right)^{\alpha}-\left(a \sharp_{v} b\right)^{\alpha}}{\left(a \nabla_{\tau} b\right)^{\alpha}-\left(a \sharp_{\tau} b\right)^{\alpha}} ; \tag{2.1}
\end{equation*}
$$

(2) If $b<a$, then the reverse inequality is valid.

Proof. Let $f(v)=\frac{(1-v+v x)^{\beta}-x^{\beta v}}{(1-v+v x)^{\alpha}-x^{\alpha v}}$. By Lemma 2.1 (i), we have
(1) if $x>1$, then $f^{\prime}(v) \geqslant 0$, meaning that $f(v)$ is increasing on $(0,1)$, that is to
say $\frac{f(v)}{f(\tau)} \leqslant 1$. Therefore

$$
\begin{aligned}
\frac{(1-v+v x)^{\beta}-x^{\beta v}}{(1-\tau+\tau x)^{\beta}-x^{\beta \tau}} & =\frac{\left((1-v+v x)^{\alpha}-x^{\alpha v}\right) f(v)}{\left((1-\tau+\tau x)^{\alpha}-x^{\alpha \tau}\right) f(\tau)} \\
& \leqslant \frac{(1-v+v x)^{\alpha}-x^{\alpha v}}{(1-\tau+\tau x)^{\alpha}-x^{\alpha \tau}}
\end{aligned}
$$

(2) If $0<x \leqslant 1$, then $f^{\prime}(v) \leqslant 0$, meaning that $f(v)$ is decreasing on $(0,1)$, that is to say $\frac{f(v)}{f(\tau)} \geqslant 1$. Therefore

$$
\begin{aligned}
\frac{(1-v+v x)^{\beta}-x^{\beta v}}{(1-\tau+\tau x)^{\beta}-x^{\beta \tau}} & =\frac{\left((1-v+v x)^{\alpha}-x^{\alpha v}\right) f(v)}{\left((1-\tau+\tau x)^{\alpha}-x^{\alpha \tau}\right) f(\tau)} \\
& \geqslant \frac{(1-v+v x)^{\alpha}-x^{\alpha v}}{(1-\tau+\tau x)^{\alpha}-x^{\alpha \tau}}
\end{aligned}
$$

One deduces (2.1) by noting facts like this: if we substitute in $(1-v+v x)^{\beta}-x^{\beta v}$, x by $\frac{b}{a}$ and then multiply with a^{β} we get $\left(a \nabla_{v} b\right)^{\beta}-\left(a \not \sharp_{v} b\right)^{\beta}$.

Using (1.8), and Theorem 2.2, we have the following result.

Corollary 2.3. Let $0<v \leqslant \tau<1, \beta \geqslant 1$ and a, b are real positive numbers. Then
(1) If $b>a$, we have

$$
\begin{equation*}
\frac{\left(a \nabla_{v} b\right)^{\beta}-\left(a \sharp_{v} b\right)^{\beta}}{\left(a \nabla_{\tau} b\right)^{\beta}-\left(a \sharp_{\tau} b\right)^{\beta}} \leqslant \frac{\left(a \nabla_{v} b\right)-\left(a \sharp_{v} b\right)}{\left(a \nabla_{\tau} b\right)-\left(a \not \sharp_{\tau} b\right)} \leqslant \frac{v(1-v)}{\tau(1-\tau)} ; \tag{2.2}
\end{equation*}
$$

(2) If $b<a$, then the reverse inequality is valid.

REMARK 2.4. (1) Let $\beta=2$ or $\beta=m \in \mathbb{N}$, we can get [9, Theorem 2.3] and [11, Theorem 2.1], respectively.
(2) Let $a=b, b=a, v=1-\tau, \tau=1-v$ in inequality (2.2), we can also obtain the reverse inequality of (2.2) directly for $b<a$.
(3) Let $0<v \leqslant \tau<1$, so $\frac{1-v}{1-\tau} \geqslant 1$, therefore
(i) If $b>a$, then

$$
\frac{\left(a \nabla_{v} b\right)^{\beta}-\left(a \sharp_{v} b\right)^{\beta}}{\left(a \nabla_{\tau} b\right)^{\beta}-\left(a \not{ }_{\tau} b\right)^{\beta}} \leqslant \frac{v(1-v)}{\tau(1-\tau)} \leqslant \frac{v(1-v)^{\beta}}{\tau(1-\tau)^{\beta}} \leqslant \frac{(1-v)^{\beta}}{(1-\tau)^{\beta}} ;
$$

(ii) If $b<a$, then

$$
\frac{\left(a \nabla_{v} b\right)^{\beta}-\left(a \sharp_{\nu} b\right)^{\beta}}{\left(a \nabla_{\tau} b\right)^{\beta}-\left(a \sharp_{\tau} b\right)^{\beta}} \geqslant \frac{v(1-v)}{\tau(1-\tau)} \geqslant \frac{v^{\beta}(1-v)}{\tau^{\beta}(1-\tau)} \geqslant \frac{v^{\beta}}{\tau^{\beta}} .
$$

Using Lemma 2.1, we can also obtain the following results.

THEOREM 2.5. Let $0<\alpha<\beta, 0<a<b$ and let $h=\frac{b}{a}$. Then (a) If $\frac{1}{2}<v \leqslant \tau \leqslant 1$ or $0<v \leqslant \tau<\frac{1}{2}$, then

$$
\begin{equation*}
\frac{K(h, 2)^{\beta v}\left(a \sharp_{\nu} b\right)^{\beta}-\left(a \nabla_{\nu} b\right)^{\beta}}{K(h, 2)^{\beta \tau}\left(a \not \sharp_{\tau} b\right)^{\beta}-\left(a \nabla_{\tau} b\right)^{\beta}} \leqslant \frac{K(h, 2)^{\alpha \nu}\left(a \sharp_{\nu} b\right)^{\alpha}-\left(a \nabla_{\nu} b\right)^{\alpha}}{K(h, 2)^{\alpha \tau}(a \sharp \tau b)^{\alpha}-\left(a \nabla_{\tau} b\right)^{\alpha}} \tag{2.3}
\end{equation*}
$$

(b) If $0<v<\frac{1}{2}<\tau<1$, then we have the reverse inequality of (2.3).

On the other hand, if $0<b<a$, then the reverse inequality of above results is true under their other conditions, respectively.

Proof. Let $J(v)=\frac{(1-v+v x)^{\beta}-\left(\frac{1+x}{2}\right)^{2 \beta v}}{(1-v+v x)^{\alpha}-\left(\frac{1+x}{2}\right)^{2 \alpha v}}$, then $J(v) \leqslant J(\tau)$ for $0<v<\tau \leqslant 1$ under the condition $x \geqslant 1$, and this implies that

$$
\frac{(1-v+v x)^{\beta}-\left(\frac{1+x}{2}\right)^{2 \beta v}}{(1-v+v x)^{\alpha}-\left(\frac{1+x}{2}\right)^{2 \alpha v}} \leqslant \frac{(1-\tau+\tau x)^{\beta}-\left(\frac{1+x}{2}\right)^{2 \beta \tau}}{(1-\tau+\tau x)^{\alpha}-\left(\frac{1+x}{2}\right)^{2 \alpha \tau}}
$$

holds for $x>1$. With evident notation this inequality is of form $\frac{c}{d} \leqslant \frac{e}{f}$. Now by (1.4) and (1.5) d and e have the same sign and hence $\frac{d}{e}$ is nonnegative. So multiplying the fraction with $\frac{d}{e}$ we can get the inequality $\frac{c}{e} \leqslant \frac{d}{f}$, that is,

$$
\frac{(1-v+v x)^{\beta}-\left(\frac{1+x}{2}\right)^{2 \beta v}}{(1-\tau+\tau x)^{\beta}-\left(\frac{1+x}{2}\right)^{2 \beta \tau}} \leqslant \frac{(1-v+v x)^{\alpha}-\left(\frac{1+x}{2}\right)^{2 \alpha v}}{(1-\tau+\tau x)^{\alpha}-\left(\frac{1+x}{2}\right)^{2 \alpha \tau}}
$$

for $x>1$ and $\frac{1}{2}<v \leqslant \tau \leqslant 1$ or $0<v \leqslant \tau<\frac{1}{2}$; and

$$
\frac{(1-v+v x)^{\beta}-\left(\frac{1+x}{2}\right)^{2 \beta v}}{(1-\tau+\tau x)^{\beta}-\left(\frac{1+x}{2}\right)^{2 \beta \tau}} \geqslant \frac{(1-v+v x)^{\alpha}-\left(\frac{1+x}{2}\right)^{2 \alpha v}}{(1-\tau+\tau x)^{\alpha}-\left(\frac{1+x}{2}\right)^{2 \alpha \tau}}
$$

for $x>1$ and $0<v<\frac{1}{2}<\tau<1$.
By taking $x=\frac{b}{a}$, we can get our desired results directly.
Lemma 2.6. Let a, b be real positive numbers and let $h=\frac{b}{a}$. Then (a) If $\frac{1}{2}<v \leqslant \tau<1$, then

$$
\begin{equation*}
\frac{K(h, 2)^{v} a \sharp_{v} b-a \nabla_{v} b}{K(h, 2)^{\tau} a \sharp_{\tau} b-a \nabla_{\tau} b} \leqslant \frac{v}{\tau} \leqslant \frac{v(1-v)}{\tau(1-\tau)} \tag{2.4}
\end{equation*}
$$

(b) If $0<v \leqslant \tau<\frac{1}{2}$, then

$$
\begin{equation*}
\frac{K(h, 2)^{v} a \sharp_{v} b-a \nabla_{v} b}{K(h, 2)^{\tau} a \sharp_{\tau} b-a \nabla_{\tau} b} \geqslant \frac{v(1-v)}{\tau(1-\tau)} \geqslant \frac{v}{\tau} . \tag{2.5}
\end{equation*}
$$

Proof. Firstly we let for any $x>0$ and $0<v \leqslant 1$,

$$
f(v)=\frac{\left(\frac{x+1}{2}\right)^{2 v}-(1-v+v x)}{v}
$$

Then

$$
\begin{aligned}
f^{\prime}(v) & =\frac{\left(\frac{x+1}{2}\right)^{2 v}\left[2 v \ln \left(\frac{x+1}{2}\right)-1\right]+1}{v^{2}} \\
& \equiv \frac{h(x)}{v^{2}}
\end{aligned}
$$

and

$$
h^{\prime}(x)=2 v^{2}\left(\frac{x+1}{2}\right)^{2 v-1} \ln \left(\frac{x+1}{2}\right) .
$$

It means that $h^{\prime}(x) \leqslant 0$ for $x \in(0,1]$ and $h^{\prime}(x) \geqslant 0$ for $x \in[1, \infty)$. So $h(x) \geqslant h(1)=0$ and $f^{\prime}(v) \geqslant 0$. Therefore $f(v)$ is increasing on $(0,1)$, which implies that $\frac{f(v)}{1-v}$ is also increasing on $(0,1)$, that is to say

$$
\frac{\left(\frac{x+1}{2}\right)^{2 v}-(1-v+v x)}{v} \leqslant \frac{\left(\frac{x+1}{2}\right)^{2 \tau}-(1-\tau+\tau x)}{\tau}
$$

and

$$
\frac{\left(\frac{x+1}{2}\right)^{2 v}-(1-v+v x)}{v(1-v)} \leqslant \frac{\left(\frac{x+1}{2}\right)^{2 \tau}-(1-\tau+\tau x)}{\tau(1-\tau)}
$$

for any $0<v \leqslant \tau<1$.
Therefore,

$$
\frac{\left(\frac{x+1}{2}\right)^{2 v}-(1-v+v x)}{\left(\frac{x+1}{2}\right)^{2 \tau}-(1-\tau+\tau x)} \leqslant \frac{v}{\tau}
$$

for $\frac{1}{2}<v \leqslant \tau \leqslant 1$ by (1.5); and

$$
\frac{\left(\frac{x+1}{2}\right)^{2 v}-(1-v+v x)}{\left(\frac{x+1}{2}\right)^{2 \tau}-(1-\tau+\tau x)} \geqslant \frac{v(1-v)}{\tau(1-\tau)}
$$

for $0<v \leqslant \tau<\frac{1}{2}$ by (1.4).
Taking $x=\frac{b}{a}$, we can get our desired results directly.
THEOREM 2.7. Let a, b be real positive numbers, $h=\frac{b}{a}$, and $\beta \geqslant 1$. Then
(a) If $0<a<b$ and $\frac{1}{2}<v \leqslant \tau \leqslant 1$, then

$$
\begin{equation*}
\frac{K(h, 2)^{\beta v}\left(a \sharp_{v} b\right)^{\beta}-\left(a \nabla_{v} b\right)^{\beta}}{K(h, 2)^{\beta \tau}\left(a \sharp_{\tau} b\right)^{\beta}-\left(a \nabla_{\tau} b\right)^{\beta}} \leqslant \frac{v}{\tau} \leqslant \frac{v(1-v)}{\tau(1-\tau)} \tag{2.6}
\end{equation*}
$$

(b) If $0<b<a$ and $0<v \leqslant \tau<\frac{1}{2}$, then

$$
\begin{equation*}
\frac{K(h, 2)^{\beta v}\left(a \sharp_{\Downarrow} b\right)^{\beta}-\left(a \nabla_{v} b\right)^{\beta}}{K(h, 2)^{\beta \tau}\left(a \not{ }_{\tau} b\right)^{\beta}-\left(a \nabla_{\tau} b\right)^{\beta}} \geqslant \frac{v(1-v)}{\tau(1-\tau)} \geqslant \frac{v}{\tau} . \tag{2.7}
\end{equation*}
$$

Proof. Let $J(v)=\frac{(1-v+v x)^{\beta}-\left(\frac{1+x}{2}\right)^{2 \beta v}}{1-v+v x-\left(\frac{(1+x}{2}\right)^{2 v}}$.
(i) If $x>1$ and $\frac{1}{2}<v \leqslant \tau \leqslant 1$, using Lemma 2.1 and Lemma 2.6, we have

$$
\begin{aligned}
\frac{(1-v+v x)^{\beta}-\left(\frac{1+x}{2}\right)^{2 \beta v}}{(1-\tau+\tau x)^{\beta}-\left(\frac{1+\tau}{2}\right)^{2 \beta \tau}} & =\frac{J(v)}{J(\tau)} \frac{1-v+v x-\left(\frac{1+x}{2}\right)^{2 v}}{1-\tau+\tau x-\left(\frac{1+x}{2}\right)^{2 \tau}} \\
& \leqslant \frac{1-v+v x-\left(\frac{1+x}{2}\right)^{2 v}}{1-\tau+\tau x-\left(\frac{1+x}{2}\right)^{2 \tau}} \\
& \leqslant \frac{v}{\tau} \leqslant \frac{v(1-v)}{\tau(1-\tau)}
\end{aligned}
$$

(ii) If $x \in(0,1)$ and $0<v \leqslant \tau<\frac{1}{2}$, using Lemma 2.1 and Lemma 2.6, we also have

$$
\begin{aligned}
\frac{(1-v+v x)^{\beta}-\left(\frac{1+x}{2}\right)^{2 \beta v}}{(1-\tau+\tau x)^{\beta}-\left(\frac{1+\tau}{2}\right)^{2 \beta \tau}} & =\frac{J(v)}{J(\tau)} \frac{1-v+v x-\left(\frac{1+x}{2}\right)^{2 v}}{1-\tau+\tau x-\left(\frac{1+x}{2}\right)^{2 \tau}} \\
& \geqslant \frac{1-v+v x-\left(\frac{1+x}{2}\right)^{2 v}}{1-\tau+\tau x-\left(\frac{1+x}{2}\right)^{2 \tau}} \\
& \geqslant \frac{v(1-v)}{\tau(1-\tau)} \geqslant \frac{v}{\tau}
\end{aligned}
$$

Taking $x=\frac{b}{a}$, we can get our desired results directly.
Now using (1.10), (1.11) and Lemma 2.1, by the same method as above, we can easily obtain the following result.

THEOREM 2.8. Let $0<v \leqslant \tau<1, \beta \geqslant 1$ and a, b real positive numbers. Then (1) If $b>a$, then

$$
\begin{equation*}
\frac{\left(a \nabla_{\nu} b\right)^{\beta}-\left(a!_{\nu} b\right)^{\beta}}{\left(a \nabla_{\tau} b\right)^{\beta}-\left(a!_{\tau} b\right)^{\beta}} \leqslant \frac{\left(a \nabla_{v} b\right)-\left(a!_{\nu} b\right)}{\left(a \nabla_{\tau} b\right)-\left(a!_{\tau} b\right)} \leqslant \frac{v(1-v)}{\tau(1-\tau)} \tag{2.8}
\end{equation*}
$$

(2) If $b<a$, then

$$
\begin{equation*}
\frac{\left(a \nabla_{v} b\right)^{\beta}-\left(a!_{\nu} b\right)^{\beta}}{\left(a \nabla_{\tau} b\right)^{\beta}-\left(a!_{\tau} b\right)^{\beta}} \geqslant \frac{\left(a \nabla_{v} b\right)-\left(a!_{v} b\right)}{\left(a \nabla_{\tau} b\right)-\left(a!_{\tau} b\right)} \geqslant \frac{v(1-v)}{\tau(1-\tau)} \tag{2.9}
\end{equation*}
$$

Proof. (1) For $\alpha=1$, the function $K(v)=\frac{\left(1 \nabla_{v} x\right)^{\beta}-\left(1 \nabla_{v} x^{-1}\right)^{-\beta}}{\left(1 \nabla_{v} x\right)-\left(1 \nabla_{v} x^{-1}\right)^{-1}}$. We consider the numerator, put $x=\frac{b}{a}$ and multiply with a^{β}. This yields

$$
\begin{aligned}
\left(\left(1 \nabla_{v} \frac{b}{a}\right)^{\beta}-\left(1 \nabla_{v} \frac{a}{b}\right)^{-\beta}\right) a^{\beta} & =\left(1-v+v \frac{b}{a}\right)^{\beta} a^{\beta}-\left(1-v+v \frac{a}{b}\right)^{-\beta}\left(a^{-1}\right)^{-\beta} \\
& \left.=((1-v) a+v b)^{\beta}-\left((1-v) a^{-1}+v b^{-1}\right)^{-\beta}\right) \\
& =\left(a \nabla_{v} b\right)^{\beta}-(a!b)^{\beta}
\end{aligned}
$$

We will below use similar equations for τ in place of v and for 1 in place of β. Since $b>a$, we have $x>1$ and the hypothesis tells us $\beta \geqslant \alpha>0$. So if $0<v \leqslant \tau \leqslant 1$ we have by Lemma 2.1 the inequality $K(v) \leqslant K(\tau)$, that is

$$
\frac{\left(1 \nabla_{v} x\right)^{\beta}-\left(1 \nabla_{\nu} x^{-1}\right)^{-\beta}}{\left(1 \nabla_{\nu} x\right)-\left(1 \nabla_{v} x^{-1}\right)^{-1}} \leqslant \frac{\left(1 \nabla_{\tau} x\right)^{\beta}-\left(1 \nabla_{\tau} x^{-1}\right)^{-\beta}}{\left(1 \nabla_{\tau} x\right)-\left(1 \nabla_{\tau} x^{-1}\right)^{-1}}
$$

As $x>1$, for any $v \in(0,1)$ there holds $1 \nabla_{v} x>1 \nabla_{v} x^{-1}$. So we can interchange in above inequality the left lower with the right upper expression and we get

$$
\frac{\left(1 \nabla_{\nu} x\right)^{\beta}-\left(1 \nabla_{v} x^{-1}\right)^{-\beta}}{\left(1 \nabla_{\tau} x\right)^{\beta}-\left(1 \nabla_{\tau} x^{-1}\right)^{-\beta}} \leqslant \frac{\left(1 \nabla_{v} x\right)-\left(1 \nabla_{\nu} x^{-1}\right)^{-1}}{\left(1 \nabla_{\tau} x\right)-\left(1 \nabla_{\tau} x^{-1}\right)^{-1}}
$$

Here now we substitute $x=\frac{b}{a}$, then multiply both the parts of the left fraction with a^{β} and of the right fraction with a and get the left of (2.8), while the right part follows from Sababheh's inequality (1.11) for $k=1$.
(2) The proof of part (2) is similar.

3. Applications

Let $M_{n}(\mathbb{C})$ denote the space of all $n \times n$ complex matrices and $M_{n}^{+}(\mathbb{C})$ denote the space of all $n \times n$ positive semidefinite matrices in $M_{n}(\mathbb{C})$. We recall that $X \in$ $M_{n}^{+}(\mathbb{C})$ implies $\operatorname{tr} X \geqslant 0$ and $\operatorname{det} X \geqslant 0$, see [12, Corollary 7.1.5] and the definition of the Loewner or positive semidefinite ordering, see [12, Definition 7.7.1]. A matrix norm $\left|\left|\left|.\left|| |\right.\right.\right.\right.$ is called unitarily invariant norm if $\| \| U A V\| \|=\left\|\left||A| \|\right.\right.$ for all $A \in M_{n}(\mathbb{C})$ and for all unitary matrices $U, V \in M_{n}(\mathbb{C})$. For $A=\left[a_{i j}\right] \in M_{n}(\mathbb{C})$, the trace norm of A is defined by

$$
\|A\|_{1}=\operatorname{tr}|A|=\sum_{i=1}^{n} s_{i}(A)
$$

where $s_{1}(A) \geqslant s_{2}(A) \geqslant \cdots \geqslant s_{n}(A)$ are the singular values of A, that is, the eigenvalues of the positive matrix $|A|=\left(A^{*} A\right)^{\frac{1}{2}}$, arranged in decreasing order and repeated according to multiplicity and tr is the usual trace function.

Lemma 3.1. (Minkowski's inequality, [12, Theorem 7.8.8]) Let $A, B \in M_{n}^{+}(\mathbb{C})$, then

$$
\operatorname{det}(A+B)^{\frac{1}{n}} \geqslant \operatorname{det} A^{\frac{1}{n}}+\operatorname{det} B^{\frac{1}{n}}
$$

Lemma 3.2. ([5]) Let $A, B, X \in M_{n}(\mathbb{C})$ and $A, B \in M_{n}^{+}(\mathbb{C})$. If $0 \leqslant v \leqslant 1$, then

$$
\left\|\left|A^{v} X B^{1-v}\right|\right\| \leqslant\left\||\|A X\||^{v}\right\|\|X B \mid\|^{1-v}
$$

THEOREM 3.1. Let $A, B \in M_{n}^{+}(\mathbb{C}), \beta \geqslant 1$ and $0<v \leqslant \tau<1$. Then (i) If $B \geqslant A \geqslant 0$, we have

$$
\frac{\|(1-v) A+v B\|_{1}^{\beta}-\left(\|A\|_{1}^{1-v}\|B\|_{1}^{v}\right)^{\beta}}{v(1-v)} \leqslant \frac{\|(1-\tau) A+\tau B\|_{1}^{\beta}-\left(\|A\|_{1}^{1-\tau}\|B\|_{1}^{\tau}\right)^{\beta}}{\tau(1-\tau)}
$$

(ii) If $A \geqslant B \geqslant 0$, we have

$$
\frac{\|(1-v) A+v B\|_{1}^{\beta}-\left(\|A\|_{1}^{1-v}\|B\|_{1}^{v}\right)^{\beta}}{v(1-v)} \geqslant \frac{\|(1-\tau) A+\tau B\|_{1}^{\beta}-\left(\|A\|_{1}^{1-\tau}\|B\|_{1}^{\tau}\right)^{\beta}}{\tau(1-\tau)}
$$

Proof. Suppose $B \geqslant A$. Then putting $a=\operatorname{tr}(A)$ and $b=\operatorname{tr}(B)$ we have $b \geqslant a$ and using Corollary 2.3 we deduce

$$
\begin{aligned}
& \|(1-v) A+v B\|_{1}^{\beta} \\
= & (\operatorname{tr}((1-v) A)+\operatorname{tr}(v B))^{\beta} \\
= & ((1-v) \operatorname{tr}(A)+v \operatorname{tr}(B))^{\beta} \\
\leqslant & \left(\operatorname{tr}(A)^{1-v} \operatorname{tr}(B)^{v}\right)^{\beta}+\frac{v(1-v)}{\tau(1-\tau)}\left[((1-\tau) \operatorname{tr}(A)+\tau \operatorname{tr}(B))^{\beta}-\left(\operatorname{tr}(A)^{1-\tau} \operatorname{tr}(B)^{\tau}\right)^{\beta}\right] \\
= & \left(\|A\|_{1}^{1-v}\|B\|_{1}^{v}\right)^{\beta}+\frac{v(1-v)}{\tau(1-\tau)}\left[\|(1-\tau) A+\tau B\|_{1}^{\beta}-\left(\|A\|_{1}^{1-\tau}\|B\|_{1}^{\tau}\right)^{\beta}\right] .
\end{aligned}
$$

Using the same method we can get (ii) similarly, so we omit it.
THEOREM 3.2. Let $A, B \in M_{n}^{+}(\mathbb{C}), n \beta \geqslant 1$ and $0<v \leqslant \tau<1$. Then
(i) If $B \geqslant A \geqslant 0$, we can get

$$
\begin{aligned}
& \quad \operatorname{det}((1-\tau) A+\tau B)^{\beta} \\
& \geqslant \frac{\tau(1-\tau)}{v(1-v)}\left[\left[(1-v) \operatorname{det} A^{\frac{1}{n}}+v \operatorname{det} B^{\frac{1}{n}}\right]^{\beta n}-\operatorname{det}\left(A^{1-v} B^{v}\right)^{\beta}\right]+\operatorname{det}\left(A^{1-\tau} B^{\tau}\right)^{\beta} \\
& \text { (ii) If } A \geqslant B \geqslant 0, \text { we can get } \\
& \quad \operatorname{det}((1-v) A+v B)^{\beta} \\
& \geqslant \\
& =\frac{v(1-v)}{\tau(1-\tau)}\left[\left[(1-\tau) \operatorname{det} A^{\frac{1}{n}}+\tau \operatorname{det} B^{\frac{1}{n}}\right]^{\beta n}-\operatorname{det}\left(A^{1-\tau} B^{\tau}\right)^{\beta}\right]+\operatorname{det}\left(A^{1-v} B^{v}\right)^{\beta}
\end{aligned}
$$

Proof. Suppose $B \geqslant A$. Then putting $b=\operatorname{det} B^{\frac{1}{n}}$ and $a=\operatorname{det} A^{\frac{1}{n}}$, we have $b \geqslant a$ and again by Corollary 2.3 and Lemma 3.1, we have

$$
\begin{aligned}
& \operatorname{det}((1-\tau) A+\tau B)^{\beta} \\
= & {\left[\operatorname{det}((1-\tau) A+\tau B)^{\frac{1}{n}}\right]^{\beta n} } \\
\geqslant & {\left[(1-\tau) \operatorname{det} A^{\frac{1}{n}}+\tau \operatorname{det} B^{\frac{1}{n}}\right]^{\beta n} }
\end{aligned}
$$

$$
\begin{aligned}
\geqslant & \frac{\tau(1-\tau)}{v(1-v)}\left[\left[(1-v) \operatorname{det} A^{\frac{1}{n}}+v \operatorname{det} B^{\frac{1}{n}}\right]^{\beta n}-\left[\operatorname{det} A^{\frac{1-v}{n}} \operatorname{det} B^{\frac{v}{n}}\right]^{\beta n}\right] \\
& +\left[\operatorname{det} A^{\frac{1-\tau}{n}} \operatorname{det} B^{\frac{\tau}{n}}\right]^{\beta n} \\
= & \frac{\tau(1-\tau)}{v(1-v)}\left[\left[(1-v) \operatorname{det} A^{\frac{1}{n}}+v \operatorname{det} B^{\frac{1}{n}}\right]^{\beta n}-\operatorname{det}\left(A^{1-v} B^{v}\right)^{\beta}\right]+\operatorname{det}\left(A^{1-\tau} B^{\tau}\right)^{\beta} .
\end{aligned}
$$

Using the same method we can get (ii) similarly, so we omit it.

THEOREM 3.3. Let $A, B, X \in M_{n}(\mathbb{C})$ with $A, B \in M_{n}^{+}(\mathbb{C}), \beta \geqslant 1$ and $0<v \leqslant$ $\tau<1$. Then for any unitarily invariant norm $\|\|\cdot\|\|$
(i) If $|\|X B\|\|\geqslant|\|A X \mid\|$, we get

$$
\begin{aligned}
& {\left[(1 - \tau) \left|\left\|A X|\|+\tau| ||X B|\|]^{\beta}\right.\right.\right.} \\
\geqslant & \frac{\tau(1-\tau)}{v(1-v)}\left[\left[(1 - v) \left|\left\|A X \left|\left\|+v\left|\|X B|\||]^{\beta}-\left(\left|\left\|\left.A X| |\right|^{1-v}| ||X B|\right\|^{v}\right)^{\beta}\right]+\left|\left|\left|A^{1-\tau} X B^{\tau}\right|\right|\right|^{\beta}\right.\right.\right.\right.\right.\right.\right.
\end{aligned}
$$

(ii) If $\||A X|\| \geqslant||X B| \|$, we get

$$
\begin{aligned}
& {\left[(1 - v) \left|\left\|A X \left|\|+v \mid\| X B\|\|]^{\beta}\right.\right.\right.\right.} \\
\geqslant & \frac{v(1-v)}{\tau(1-\tau)}\left[\left[(1 - \tau) \left|\left\|A X \left|\|+\tau|\|X B\| \||]^{\beta}-\left(\left\|\left||A X|\left\|\left.\right|^{1-\tau}|\|X B\| \||^{\tau}\right)^{\beta}\right]+\right\|\left|A^{1-v} X B^{v} \|\right|^{\beta} .\right.\right.\right.\right.\right.\right.
\end{aligned}
$$

Proof. Suppose $\||X B|\| \geqslant|\|A X \mid\|$ and by Corollary 2.3 and Lemma 3.2, we have

$$
\begin{aligned}
& {\left[(1-\tau)|||A X|\||+\tau||X B|\||]^{\beta}-\left\|\left|\left|A^{1-\tau} X B^{\tau} \|\right|^{\beta}\right.\right.\right.} \\
& \geqslant[(1-\tau)| ||A X|| |+\tau| ||X B|| |]^{\beta}-\left(|||A X|||^{1-\tau}| ||X B|| |^{\tau}\right)^{\beta} \\
& \geqslant \frac{\tau(1-\tau)}{v(1-v)}\left[\left[(1 - v) \left|\left\|A X \left|\left\|+v|\|X B \mid\|]^{\beta}-\left(\left|\left\|\left.A X| |\right|^{1-v}| | X B\right\|^{v}\right|^{\beta}\right)^{\beta}\right] .\right.\right.\right.\right.\right.
\end{aligned}
$$

Using the same method we can get (ii) similarly, so we omit it.

Theorem 3.4. Let $A, B \in M_{n}^{+}(\mathbb{C})$ such that $0 \leqslant A \leqslant B, \beta \geqslant 1$ and $\frac{1}{2}<v \leqslant \tau \leqslant 1$. Then

$$
\begin{aligned}
& \frac{K(h, 2)^{\beta v}\|A\|_{1}^{\beta(1-v)}\|B\|_{1}^{\beta v}-\|(1-v) A+v B\|_{1}^{\beta}}{v} \\
& \leqslant \frac{K(h, 2)^{\beta \tau}\|A\|_{1}^{\beta(1-\tau)}\|B\|_{1}^{\beta \tau}-\|(1-\tau) A+\tau B\|_{1}^{\beta}}{\tau}
\end{aligned}
$$

where $h=\frac{\operatorname{tr}(B)}{\operatorname{tr}(A)}$.

Proof. According to (2.6), we have

$$
\begin{aligned}
& \|(1-v) A+v B\|_{1}^{\beta} \\
= & {[(1-v) \operatorname{tr}(A)+v \operatorname{tr}(B)]^{\beta} } \\
\geqslant & K(h, 2)^{\beta v} \operatorname{tr}(A)^{\beta(1-v)} \operatorname{tr}(B)^{\beta v} \\
& -\frac{v}{\tau}\left[K(h, 2)^{\beta \tau} \operatorname{tr}(A)^{\beta(1-\tau)} \operatorname{tr}(B)^{\beta \tau}-((1-\tau) \operatorname{tr}(A)+\tau \operatorname{tr}(B))^{\beta}\right] \\
= & K(h, 2)^{\beta v}\|A\|_{1}^{\beta(1-v)}\|B\|_{1}^{\beta v}-\frac{v}{\tau}\left[K(h, 2)^{\beta \tau}\|A\|_{1}^{\beta(1-\tau)}\|B\|_{1}^{\beta \tau}-\|(1-\tau) A+\tau B\|_{1}^{\beta}\right] .
\end{aligned}
$$

This completes the proof.

Applying Theorem 2.8, we also have
Theorem 3.5. Let $A, B \in M_{n}^{+}(\mathbb{C}), \beta \geqslant 1$ and $0<v \leqslant \tau<1$. Then
(1) If $B \geqslant A \geqslant 0$, we obtain

$$
\frac{\|(1-v) A+v B\|_{1}^{\beta}-\left(\|A\|_{1}!_{v}\|B\|_{1}\right)^{\beta}}{v(1-v)} \leqslant \frac{\|(1-\tau) A+\tau B\|_{1}^{\beta}-\left(\|A\|_{1}!_{\tau}\|B\|_{1}\right)^{\beta}}{\tau(1-\tau)}
$$

(2) If $A \geqslant B \geqslant 0$, we obtain

$$
\frac{\|(1-v) A+v B\|_{1}^{\beta}-\left(\|A\|_{1}!_{v}\|B\|_{1}\right)^{\beta}}{v(1-v)} \geqslant \frac{\|(1-\tau) A+\tau B\|_{1}^{\beta}-\left(\|A\|_{1}!_{\tau}\|B\|_{1}\right)^{\beta}}{\tau(1-\tau)} .
$$

Proof. (1) We can write

$$
\|(1-v) A+v B\|_{1}^{\beta}-\left(\|A\|_{1}!_{v}\|B\|\right)^{\beta}=((1-v) \operatorname{tr} A+v \operatorname{tr} B)^{\beta}-\left(\operatorname{tr} A!_{v} \operatorname{tr} B\right)^{\beta}
$$

and a similar expression for τ in place of v. So, with the substitutions $a=\operatorname{tr} A$ and $b=\operatorname{tr} B$, we see the inequality claimed can be written

$$
\frac{\left(a \nabla_{\nu} b\right)^{\beta}-\left(a!_{\nu} b\right)^{\beta}}{v(1-v)} \leqslant \frac{\left(a \nabla_{\tau} b\right)-\left(a!_{\tau} b\right)}{\tau(1-\tau)}
$$

Here again because of $a \nabla_{v} b \geqslant a!v b$ we can interchange the left lower expression with the right upper and get this way an inequality which follows directly from Theorem 2.8 as $b \geqslant a$.

Using the same method we can get (2) similarly, so we omit it.

Acknowledgement. This work was partially supported by the NNSF of China (No. 11771126; 12371139).

REFERENCES

[1] H. Alzer, C. M. da Fonseca and A. Kovačec, Young-type inequalities and their matrix analogues, Linear and Multilinear Algebra, 63, 3 (2015), 622-635.
[2] C. He and L. Zou, Some inequalities involoving unitarily invariant norms, Math. Inequal. Appl., 15 (2012), 767-776.
[3] O. Hirzallah and F. Kittaneh, Matrix Young inequalities for the Hilbert-Schmidt norm, Linear Algebra Appl, 308 (2000), 77-84.
[4] R. Horn and C. R. Johnson, Matrix Analysis, Cambridge UP 1985.
[5] W. Liao and J. Wu, Matrix inequalities for the difference between arithmetic mean and harmonic mean, Ann. Funct. Anal., 6, 3 (2015), 191-202.
[6] W. Liao, J. Wu and J. Zhao, New version of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese Journal of Mathematics, 19 (2015), 467-479.
[7] D. S. Mitrinovic, Analytic inequalities, Springer-Verlag, Berlin, Heidelberg, New York, 1970.
[8] Y. H. REN, Some results of Young-type inequalities, RACSAM, 114, article number 143 (2020).
[9] M. SabABHEH, Convexity and matrix means, Linear Algebra Appl., 506 (2016), 588-602.
[10] M. Sababheh, On the matrix harmonic mean, J. Math. Inequal., 12, 4 (2018), 901-920.
[11] C. Yang and Z. Wang, Some new improvements of Young's inequalities, J. Math. Inequal., 17, 1 (2023), 205-217.
[12] H. Zuo, G. Shi and M. Fujil, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.
(Received October 6, 2023)

> Xiangrun Yang College of Mathematics and Information Science
> Henan Normal University
> Xinxiang, Henan, 453007, P. R. China
> $e-m a i l:$ doss65130206@163.com
> Changsen Yang
> College of Mathematics and Information Science
> Henan Normal University
> Xinxiang, Henan, 453007, P. R. China
> e-mail: yangchangsen0991@sina.com
> Haiying Li
> College of Mathematics and Information Science
> Henan Normal University
> Xinxiang, Henan, 453007, P. R. China
> e-mail: lihaiying@htu. edu. cn

