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Bs TYPE MIXED MORREY SPACES AND THEIR APPLICATIONS

YICHUN ZHAO AND JIANG ZHOU*

(Communicated by T. Buri¢)

Abstract. This paper defines and studies the By type mixed Morrey spaces. Furthermore, we
introduce the predual spaces of By type mixed Morrey spaces to establish the extrapolation
theorem. As applications of extrapolation theory, we character the BMO space in different ways.
On the one hand, we character the BMO spaces by the new John-Nirenberg inequality in terms
of By type mixed Morrey spaces. On the other hand, we establish the characterization of BMO
spaces by the boundedness of commutators of the singular integral operator on By type mixed
Morrey spaces.

1. Introduction

The study on Bs type spaces can be traced back to the work of Matsuoka and
Nakai [29], who introduced function spaces B”* with Morrey-Campanato norms, which
unify some central Morrey spaces and usual Morrey-Campanato spaces. After that,
Komori and Matsuoka et al. [24] introduced By type spaces by improving the function
spaces BP* with Morrey-Campanato norms.

Let r >0, 0 € [0,0). The By type spaces Bs(E)(R") and Bo(E)(R") are
defined as the sets of all functions f on R” such that

1710 =500 5 llz) <= and 1fll5,ce) = sup /o) < =
>R >0

Throughout this paper, E(Q,) is a function space with semi-norm || - ||z on Q,, where

O, is an open cube centered at the origin and side length 27, or an open ball centered

at the origin and radius r.

In recent decades, B, spaces have attracted wide attention as a natural gener-
alization of some classical spaces [22, 23,28, 33]. In fact, Bs type space is closely
related to the base space E. For example, E = L?, Bs(E)(R") can unify Lebesgue
spaces L (R"), BP (R") spaces [2], central mean oscillation spaces CMO? (R") and
CBMO” (R") [5,8,25] and Morrey spaces B’ (R") [29]. Therefore, the uniformity of
B type spaces can be used to establish the boundedness of operators on different clas-
sical spaces. For instance, Sawano and Yoshida introduced the B type Lebesgue space
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Bo (L") (R") and By type Morrey space Bo(.#}) (R") and established the bounded-
ness of some operators and their commutators by researching the predual of By type
spaces. For more details, we can refer to [38].

Morrey spaces were introduced by Morrey in 1938 [30]. They are valuable in the
regularity theory of partial differential equations, harmonic analysis, and mathematical
physics. For this reason, Morrey spaces were generalized to more general forms, such
as generalized Morrey space, local Morrey space, Morrey type space and so on [3,
12-14,32]. Moreover, the mixed-norm Lebesgue space L?(R"), as a generalization
of the Lebesgue space L”(R"), was established by Benedek and Panzone [1] in 1961,
which can be traced back to the work of Hémander [17]. Influenced by the pioneering
work on mixed-norm spaces, Nogyama introduced the mixed Morrey space in [35—
37]. Recently, Wei established a series of results, including embedding properties,
duality, and the boundedness of operators on some mixed-norm Morrey type spaces
[41-43]. Zhou et al. studied the mixed local and global Morrey space and obtained
some properties of spaces and boundedness of some operators [27,39,47]. As the
most profound application of weighted theory, extrapolation can concisely solve the
problem of the boundedness of operators on a certain space, but it depends heavily on
the duality of this space and the boundedness of the maximal operator on the dual or
predual space. Rubio de Francia [7] first introduced the classical extrapolation theory,
which has been extended to mixed-norm Morrey spaces [15,41], general Banach spaces
[16,34], weighted function spaces [21,44], and so on. Hence, this paper’s primary
purpose is to establish the extrapolation theory on By type mixed Morrey spaces and
character BMO spaces via these extrapolation theorems.

The paper is organized as follows. In Section 2, we first give some preliminaries,
define the Bs type mixed Morrey space and By type mixed Lebesgue space and then
obtain some basic properties. In Section 3, We gain the predual space of By type mixed
Morrey space is Hy type block space. In Section 4, we first establish the boundedness
of maximal operators on Hy type block spaces. Then, the extrapolation theory on
Bs type mixed Morrey spaces is obtained. In Section 5, by using the extrapolation
theory in Section 4, we character the equivalence of BMO spaces in terms of By type
Morrey space and classical BMO spaces. We solve the boundedness of some operators
and their commutators. Moreover, another new characterization of BMO space via the
boundedness of the commutator of the singular integral operator is also obtained.

Finally, we make some conventions on notation. We always denote by C a posi-
tive constant, which is independent of the main parameters, but it may vary from line
to line. The notation A < B means that A < CB with some positive constant C in-
dependent of appropriate quantities, and, if A < B < A, then we write A ~ B. For a
measurable set E, we denote by xg the characteristic function of E and by |E| its
n-dimensional Lebesgue measure. Moreover, the letter ¢ will denote n-tuples of the
numbers in (0,e0] (n>1). For any g € [1,o], we denote by ¢’ its conjugate index,
namely, 1/q+ 1/¢' = 1. In addition, if g € [1,0]", we denote by ¢’ = (¢},45,-.-.4,).
by t4 = (tq1,1q>2,. .. ,tq,) forany r € R. By definition, the inequality 0 < § < o> means
that 0 < g; < = for all i. In what follows, Q, be an open cube centered at the origin
and side length 2r, or an open ball centered at the origin and radius ». We also denote
by 2 (R") the set of all cubes whose edges are parallel to the coordinate axes.
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2. Bs-mixed Morrey spaces

In this section, we will define the Bs type mixed Morrey space. To begin this, let
us first recall the mixed Lebesgue space and mixed Morrey space.

DEFINITION 2.1. (Mixed Lebesgue space) ([1]) Let p= (p1,pa,---,Pn) € (0,00]".
Then, the mixed Lebesgue space LP(R") is defined by the set of all measurable func-
tions f such that

1
P]
11l = /(/ (/|f(x17x27...,xn>mdxl> dx2> Y
R R R

If pj = oo, then we have to make appropriate modifications.

We now define the B, type mixed-norm Lebesgue space used in this paper.

DEFINITION 2.2. Let 0 < 0, 1 < p < oo. We define B, -mixed Lebesgue spaces
Bs (L?) (R") and Bo (LP) (R") as the set of all measurable functions f, such that
Hf”BO_(Lﬁ) < oo and Hf||BU(Lﬁ) < oo respectively, where

1 1
1£115 (17 =390 5 1F 20, llus - and [l fllg, (17 1= sup 5 1/ 2, o

REMARK 2.1.

(1) Bs (LP) (R") and By (LP) (R") are called the homogeneous B -mixed Lebesgue
space and the nonhomogeneous By -mixed Lebesgue space, respectively.

(2) If p={p,p,...,p}, then spaces Bs (L?) (R") and B, (L?) (R") are B, type
Lebesgue spaces, introduced by Sawano and Yoshida in [38].

(3) Inview of above definitions, when & =0, we have By(L?) (R") = By(L?) (R") =
L7 (R").

(4) Let 1 < p <o and 0 < 0 < 02 < eo. It is obviously that Bg, (L?) (R") —
B, (L7) (R").

(5) Let 1 < <o and 0 < o. Then, the following equivalence of norms is obtained
Bo‘ (Lﬁ> (R”) = K;% (R") = {f S Lﬁ)c : Hf”K;% = SEEZ*IO'HJCXIHU? < oo} :
’ J

where K9 (R") are special case of mixed Herz spaces K¢_., introduced by Wei
in [45]. Tﬁe corresponding classical Herz spaces were defined by Lu and Yang
[26], more details can refer to [40,46].
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Recall the deﬁnition of mixed Morrey space ./ P(R"). Let 0< p<oo, 0 <G <oo

and S Y 13 , then, mixed Morrey space /// P (R") is the collection of all locally

1ntegrab1e functlons on R" with norms

L olyn L
£l gz = sup [QI" "Z7% || fxollg < e
4 Qe2(R)

DEFINITION 2.3. Let 0< 0, 1 < p,g <o and <Y 17 . The homogeneous

B type mixed Morrey space Bg(///[; ) (R") is deﬁned to be the set of all measurable
functions f with

~ly
n

1
R PR :—sup— HfXQrH///P = sup sup —\QI” Y £ x0.n0ll g < e

Similarly, the nonhomogeneous By type mixed Morrey space Bg(g//lg ) (R™) consists
of all measurable functions f defined on R" for which

' 1 1, i_lye L
108o ) = sup 25 120 Ly = sup sup Z5 101" "= 1 3000l <=

REMARK 2.2.

(1) If p={p.p,...,p}. then spaces Bo(.#) (R") and Bo(.#} ) (R") are Bs type
Morrey spaces introduced by Sawano and Yoshida in [38].

(2) We note that By () (R") = Bo(4 ) (R") = .4} (R"). By the direct obser-
vation, we know that B, <//1§7> (R") < B, (///5) (R™) for 0 < 61 < 0 < oo.
3) If n/p = Yl /qi, then Bs type mixed Morrey spaces are By type mixed

Lebesgue spaces in Definition 2.2. Hence, the results in this paper also hold
for By type mixed Lebesgue spaces.

Let po > 0. By the pg-convexification of Lebesgue, we conclude that

Po 1 Po

. 1/po 1/p
\QI v i q;} pro)CQrﬁQHLri/I?O

1/po
1771l = sup sup
Bopy ( %ﬁ?) r>00c2 [ 7OP
Lyn

= sup sup \Q|” g

- lq’ Ifxo.noll = ”fHB(,({///,”)'
r>0Q0e2 4

That is, the po-convexification of Bo(.#}) (R") is Bop, (/// ,57/,71:, 0) (R™).

PROPOSITION 2.1. Let 0< 0, 1 <p,§<eoand ¥ <3, q . Then, Bg(///[;) (R")
is continuous embedding into Bg(//;) (R™), that is, for all f € Bg(%g)( "), we
have [|fllpo(.ap) < 1floa)-
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The proof of Proposition 2.1 can be quickly shown by the Definition 2.3. Hence,
we omit the details. One of the main results in this paper is to prove that By type mixed
spaces admit a predual respectively. Therefore, we introduce the following definitions
of Hys type block spaces.

DEFINITION 2.4. Let 0< 0, 1 <p,§<eeand 3 <Xj_ 1,11!

, 1 1
(1) Ifan L7 (R") function A satisfies supp(A)CQ,NQ and HA||L,7/<r“’|Q\P nZi-13;
for some r >0 and a cube Q € 2. Then, the function A is calleda (p’.q’,0,r)-
block.

j=1
which each A; is a (p/,4’,0,r;)-block. The homogeneous Hg-block space

Ho (qu{’ /> (R") is the set of all measurable functions f that can be represented
as

(2) Let 5 <%’;§’/> be the collection of all sequences {(A;r;,Q0;)}, , for

X) = i)tjAj(x) ae xR, (2.1)

for some {4}~ € ('(N) and {(4;,r;,0))} | € %o (ji” ) For any func-

tion £ its norm |||, (et
q

) can be defined by

1y ey = 0 Bl (0 €000 {401,007, < 0 (7).
j=1
(2.1) holds }
(3) Denote by <7 <%€’/> the set of all { Aj,rj,Qj)} € dy <,%€,/> such that
rj > 1 foreach j € N andany Q; € £. The nonhomogeneous Hy -block space

Hs (%‘f’ ) (R™) is the set of all measurable functions f that can be represented
as (2.1) and equips with the following norms

171, (,fp>¢=inf{i}/lj|i{%}?=1e£1( ) {(Ajr, 00} E%(‘%p )
p=

(2.1) holds }

It is easy to see that Ho(j%f’,) (R") = Ho(%”qf’,) (R") = 3%5’/ (R™). That is to say,
the Hs type block can recover to classical Lebesgue space and Block space.



334 Y. ZHAO AND J. ZHOU

3. The duality of B, type function spaces

In this section, we mainly establish the predual spaces of By type mixed Morrey
space. Before giving the key theorem in this section, we first recall the definition of
predual space. The spaces B are called the predual space of Banach space A, if B* =A.

THEOREM 3.1. Let 0 < 0, 1 < p,§d <o and ;’ lql . Then the spaces
Hs <,%%{’/> (R") and Hs <%§, )(R") are preduals of Bg <///£> (R")  and

Bs (//5 ) (R"), respectively.

By the Remark 2.1 and 2.2, Theorem 3.1 imply that space L7 (R") is predual of
L? (R"), which is shown in [1] by Benedek and Panzone. At the same time, Theorem
3.1 implies that space 3%5’ (R") is predual of ///Zj” (R™), which is shown in [36] by
Nogayama. To begin the proof, we first give the following key estimation and lemmas
of density.

LEMMA 3.1. Let 0< 0, 1 < p,§ <o and % <Y 1 77+ I function g e L4 (R,
0 € 2, then, for any 0 < r and 1 < r, we have the followzng estimations respectively.

1

ol - “”%Qng < gl

Ao ()

and

Lolsn 1
'V_GQI” et XQrﬂQg' < lgll,z -
Ho ()ﬁ’,’ )
q
The Lemma 3.1 can be seen as boundedness of linear operators 77 : g € L7 (R") —
X0,8 € Hs (%@5’ ) (R") — Hy (j‘ﬁf’ ) (R"). In particular, the norms of operators are
Lyn

less than or equal to 7°|Q|" “/~ 1‘1/ 5,

Proof of Lemma 3.1. We first claim that for any Q € 2 and 1 < r, the function

1oty L

— n = i

g Clol” " Yy,
TRz

know that suppB C QN Q. In the next, we will check that

98 isa (p',§,o,r) block. By definition of the function B, we

—0 l-%Z'LlL.

r |Q‘I’ I ngQer”Lﬁ/ 70“Q|p 111 j= lqu
~

HgHLﬁ’

1Bl =

It implies that B is a (p/,q’,0,r) block. So, we have
L Lyn
relo|P "> 7 X008 _ 3 5.4,
”g”Lq e

~ly
n

1
rolol”

Y xo.n08 = gl
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where A1 = [|g[|;7. A2 =43 =...=0and A; are (p’,g,0,r) blocks. Furthermore, we
directly conclude that

1 yn

1 1
Lo iety L
rClQI” "N xo,n08 <llgll,7 -

to ()

The proof is finished. [

DEFINITION 3.1. Let 0 < 0, 1 < p,4,p <o and E = j‘%’,’/ (R™).

(1) The B block space ./ (E) (R"), linear subspace of Hy(E) (R"), is defined to
be the set of all functions f satisfying supp(f) C Qr\Qg1 for some 0 < R.

(2) The By block space 5 (E) (R"), linear subspace of Hs(E) (R"), is defined to
be the set of all functions f satisfying supp(f) C Qg for some 1 < R.

LEMMA 3.2. Let 0<0, 1<p,g<ee and 5<¥)_, qi,_. The spaces %%(%%’,’,) (R™)

and %(,%ff/) (R™) are dense in Hy (%ﬂqf’) (R") and Hg (%”;/) (R™), respectively.

Proof of Lemma 3.2. It suffice to prove that for any f € Hy (%%’,7 /> , there ex-
ist g € 5 <¢%%’,7,>, such that Hf—g||H (# n — 0. Let f € Hy <ﬁi§5’/> (R™). Then
o\7q

a0l
!
function f can be represented as f = ¥7, AjA; and

Jj=1

inf{ PAVAE {/1,-};":1 e (Y(N), {(A,-,r,-,Q,-)};“=1 € Ay (jff) ,(2.1) holds } < oo,
Consequently, we evidently see that

J /

> A € Ay () (RY).

j=1

Hence, one just to prove Hf— 2511 AjAjHH (%””') — 0 when J — oo,

to ()

> A

J=I+1

< Y A

Hg (}ﬂq]/”) Jj=J+1

J
Hf — D AA;
j=1

then, ’

f—gj@,A,-HHG<%¢> —0 when J — oo,

It is implies that spaces 5 (%%’,7 /> (R") is dense in Hy <,%§,{’/> (R™).
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We now turn to prove %ﬂg(%ﬂqf’,) (R") is dense in Hg (%‘f’) (R"). Let f €

Hs (%’}If /> (R™). By the definition of spaces Hy (,%’}If /> (R™), we see that f can be
represented as

flx) = i AjAj(x) ae.xeR",
=1

where Aj isa (p',§', 0,r;)-block. From this, we have supp(xg-1<|y<zA;) C Or\Qp-1
and supp(A; — Xg-1<|y<gA;) C QN Q for any block A; and some Q € 2.
Let g7 = Zle)tj)(ngxKRAj(x). Then, supp(g) C Or\Qg 1, hence, g €

,%%(,%”q{’ /) (R™). If we prove that Jlim Ilf —gsll . =0, the assertion follows.

o
We proceed to show that

=I+1I

%‘7’,’

> A

j=J+1

J
17 =851y < X2 [ (45— e caea) |+
Ky i=1 g

Hence, by definition of space 7% (%ﬂf /> (R") and Lemma 3.1, for any j € N, we just
estimate that
4= 2t (#7)
q

= 1|o|" 14
J

Aj = Xr-1<ixi<rAi ||

Aj— Xp-1<|x/<rAj

n 1

1 1
,Z 1y
V?‘QV =la; p (Aj_%RflglxléRAJ)

17 U (47
N /A
<710 A = X1 <pag<rAi|
Thus, the following result can be obtained
. (o} l 2”71 L_l
g
(3.1)
Since f € Hg (%ffj (R™), show that
lim '2 AjA; —0 (3.2)
j=J+1

/
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Combining (3.1) and (3.2), yields

lim lim Z/I,XRAQXKRAJ' =Y AjAj=f€Hs <%€7I> (R").
; st

J—00 R—00

Since Zle AjXr-1<x<rAj(X) € H5 <3%’,7/> (R™), hence, we deduce this lemma. [

Proof of Theorem 3.1. Let f € Bo(.#) (R") and g € Ho <jfg,7,> (R™). By defi-

nition of space Hy (%ff /> (R™), for any € > 0, there exist a decomposition
g= Y AjA; (3.3)
j=1

such that

[y

where {2;}7 | € ('(N) and {(4;,r;,0;)}_| € s (3%5’) .
Futhermore by decomposition (3.3), the Holder inequality on mixed-norm spaces
and Definition 2.4 yield

< (1+e)llell, Ha (7 G4

If-¢lhr < 3135 L |10, 00, (040

< 212 120,00, 51411

J=1 (3.5)

— 11

Z |A; |HfXQr noj|| ;7 1Rl

i=1

<A 1 e
Using the control relation of (3.4), we conclude that

1f-gller < (14 &)1 1l .r) - ||g||HU((;%7')~
Since € > 0 is arbitrary, letting € — 0, we have
1f -l < 1 llgg ) HgHHU(M/) <o, (3.6)

It implies that f g € L' (R") for all € Bo(.f)(R") and g € Ho () ) (R").
Moreover, for f € By (.#) (R"), we define the functional Ly : Ho (%’;’f (R™)
by

Li(e)= [ fwetdx. g Ho (7)) ®).
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In view of the definition of norm of operator Ly on Hy ( {;f;’) (R"), we obtain

[, @sds].

gy =28

¢#0 HgHH(,(;z{I,")
q

By the inequality (3.6), we deduce that

[ 7gas

< HfHB(,(///;) ||g||H(,(y§1,") :
Hence,

/1154 a8l 6(/fl>

B Ny s 3.7
Wl gy < 38 Wiy Ve O
q

We now turn to prove ”fHB(;(///” HLfH( ( ))* Let L:Hg (,%@{’)( ") —
q

C is a bounded linear functional. Furthermore, for 1 < r and Q € 2, the functional
L.o: LY (R") — C is defined by

- -3 i
Ligte) =L (r* 101" " g 08 ). gelT ().
From the Riesz representation theorem, for each cube Q and r > 1 there exists f.p €

L7(R") such that
(9)= [ ol

forall g € L9 (R") and that I frolls = HL,QH( 7y

According to the definition of norm of operator Lo on L9 (R"), we obtain

I’ %2’; lq
L{r -0 7 %0008

gll7

||Lr7Q||(La/)* = 51;1(3)
8

Using the functional L is bounded and Lemma 3.1, we deduce that

1 LI |
L G
( " Z Y XQ,ng>

j=14J

1
710" " H % 20,008

()
<L (to (ﬂ,)) 18Iz
q

Hence,

Iy < Wl g )
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Since

||L,Q||( 7y We deduce

[ froll < HL”(m,(;ﬁ',”))"' (3.8)

We will prove ||f]|g,. ) < ||froll 4 - By the definition of functional L, then, for

any 1 <rand Q € 2, we get

1

Lyn ___l
L(x0,n08) :/Rn ro-Q" U P f o(x) gdx.

Thus, when 1 < r; < rp and Q) C Oy, one deduces that

L(mrlmlé’) ZV?'|Q| Tt / fri.0/(%) %0, no, (x)8(x)dx
=L (Xer mQIXer m918> =L (Xer mQIXQrZMsz?)
=810 [ 00,0, (g

As a consequence, one concludes that

1 1 1 yn 1

%2’?: a: D ;2-: f*l
r7 O T P f 0 (x) =15 - |Q T P S 0,(x) ae.x€ QN0 (3.9)

The inequality (3.9) implies that the definition of function f independentto r and Q,

1
)12
flx)=r°-1Q|" 7= 1‘1/ Pf,Q() ae.x<€Q,NQ.
Moreover, by the inequation (3.8), we see that
—G lil 1
| T i 1/ x0,n0ll1a = lfroxonolla < lfrollps < HLH(HG(%,;’))“
7
(3.10)
Hence, taking the supremum on both side of (3.10), we get
<||IL N 3.11
Hf||36(,///;) | H(Ha(%%’,’)) (3.11)

By direct observe, one obtains

ety Ly (xg,n0g) forallge L7

/Rn f’=Q(x)g(X)dx =r |Q| p n

and

Lyn

-3 5
[ otia=L (210175 20,08 =101 B L 000
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Next, we show that g is a function in the set of finite linear combinations of
o,rj)-block. Since the L are identical on the (p'.q, o rj) -block, and the set

! =l
of finite linear combinations of (p’,q’,0,r;)-block are %(%%’,7 ) (R™).

(r'.q,

From %(%ﬂq’/) (R") are dense Hy <,%§£’/> (R"), hence, we can obtain L= L.
According to the inequality (3.11), we have
< ||IL NN K 3.12
”fHBG(,///;) | f\\(HG(%g)> (3.12)
From (3.7) and (3.12), one deduces that || f]| 5 7 = HLfH(H () a
q o\ "7

In fact, Theorem 3.1 also implies the following characterization for the Bs type

spaces.
COROLLARY 3.1. If f € Bo () (R") and for all g € Ho <jfg,7> (R™) such that
Jrn F(x)g(x)dx < o. Then, for all g € Bs (.4 ) (R"), the following equivalence hold

/11 5 (a?) Nsup{/ f(x)gx)dx: g€ Hy <jfi1,7> (R") and Hg||H6(jﬂ,/) < 1}.
q/

Proof. By the Definition of space Bs(.#%)(R"), then, there exist a Q and O,

MY

q
~ly
n

i HfHLq (0,NQ) *

1 such that

such that .
1/ 1154 ¢ RZATEDRS —|Q\"

Furthermore, there exist 4 € L7 (Q, N Q) with ||A]| 17 (0n0) S

1
D nz 1
f u Q’ = qf/ f(x)h(x)|dx.
| ||B(y ///”)(R ‘ | ( er)| (x)h(x)]

1
Let g(x) = —|Q\" i1 g -h(x). We know that g(x) is a (p’,g’,0,r)-block. Then

gE€H, (%‘f’) (R") and

11y <C [, 1)

Thus, combining the (3.6), we complete the proof.

)| dx.

O

4. Extrapolation

In this section, we extend the extrapolation theory, firstly established by Rubio
de Francia, to By type space. The proof of the extrapolation relies on the iteration
algorithm and the Muckenhoupt weight function. Especially the iteration algorithm
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generated by the Hardy-Littlewood maximal operator. Hence. We recall the definitions
of the maximal operator and the Muckenhoupt weight.

Let any function f € L\, (R"). The Hardy-Littlewood maximal operator M(f) is
defined by

MU =sup o [ 17

B>x

DEFINITION 4.1.

(1) Let 1 < p <oo. We say that a locally integrable function ® : R” — [0,0) belongs
to A, weight if

@)y, = s (é/gw(x)dx) (é/Qw(x)_%dx)ﬁ < oo

(2) We say that a locally integrable function @ : R" — [0,c0) belongs to A; weight

if forany Q € 2
1
_/ o(y)dy <Cw(x), ae. x e Q,
0] Jo

for some constants C > 0. The infimum of all such C is denoted by [w]4, . We
define Ao = Up>14,.

The key ingredient of extrapolation is boundedness of the Hardy-Littlewood max-
imal operator on Hy type block spaces. Thus, we first give the following lemma.

LEMMA 4.1. Let 0 < o<n—Y" 1<pq<°oand . Then, the

qu Jl

Hardy-Littlewood maximal operator is bounded on Hg (3‘%’7 ) (R") and Hy (%p ) (R™).

Proof. Let f € Hy (jfp ) (R™). Then function f can be represented as f =

X AjA ;. From this reason, we just prove for any (p,q,0,r) block A , we can estab-
hsh ||MAH <C.
Let A isa (p,q,0,r) block. Then, we have the following decomposition

MA = x0, MA + Z‘HXQZ_HI,\QZJ;MA =1 +h.
j:

We first estimate I, for any x € R", we get

1
X0,711,\0,;,MA < (27r) /Qer [A(y)|dy

: —jn. 2
< W X0, 17 1Al g <277"r

1
A
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Hence, we know that

_iyn L
<27TE Al 4

Ld

‘ ‘ XQ2j+lr\Q2erA

N 1
. . i—17.-0
By a direct compute, one obtains that 21( 12,9

block, itis easy to see

XQZ.H’lr\QerMA is a (p?67 O-,er)

i = 1%_6)

2 K xszH,\sz,MA

1 _yn 1

. D
<Nl T,

14

which implies that

Jjlo=X4_

< \IH
—

HxQz.Hly\szrMAHHG ()ﬂ”) 52
q

Using the same way, we conclude that

1202 MA, () <€
q

Hence, we deduce that MA € H, (3‘%” ) (R™). Furthermore, by the Lemma 3.2, we
know that M is also bounded on % <%§’7 ) (RM. O

Based on the boundedness of the Hardy-Littlewood maximal operator, the follow-
ing iteration algorithm generated by the maximal operator is established.
1

Let 1 <p,§ <o, 0<py<p,G<e, 0<0<3 —and <Y 1 By

Lemma 4.1, then, we know M is bounded on Ho)p, (ffé% 1; ‘)),) ) (R”) Let B be the
operator norm of M on Hop, (%(f’ /p °,)l> (R™), that is

(@/po)
B = ||M|| (p/py / AW
. 0)\_, 4P/ Pg)
Hop, <‘”(:7/p0>' > Hop, <')%/po>' >
For any non-negative locally integral function £, the iteration algorithm is defined by
o Mk
A= 2,

where M* is the k-th iterations of M and we denote by M°h = h.
Next, we will check that the indices o, po, p,4 meet the conditions of the Lemma

4.1. Since (G/po)" = ((q1/p0)’(a2/po)’;- -, (an/pPo)’) and (q;/po) = q;/(q; — po),

then
n , qJ n l
opo <n— 3 1/(ai/po)) =n— 3, BP0 PoY, —
j=1 =1 4j j=14j
Form this, we conclude that o < ¥/_ lql . Similarly, (p/po)’ = p/(p — po), by
the direct calculation, n(p/po) > n — Fll/(qj/po)’ shows that 1 — po/p >

1—1/n¥j i po/q;- Itimplies that 7 i 1[11
J
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PROPOSITION 4.1. Let 1 < p,G <e°, 0<py<p,<e, 0<0 <X 1q— and
% < ;’ 17 . Forany h € Hs <,%€{’ ) (R™), the operator % has the following proper-
ties:
h(x) < Zh(x), (R1)
||‘%h|| (r/Po ||h|| (p/po)/ 9 (Rz)
Hop, (‘W(q/zio) ) Hop, (‘}ﬁé/po)’ )
[%2h]4, < 2B. (R3)

These properites above can be deduced from the definition of operator % and the
boundedness of the Hardy-Littlewood maximal operator M on space Hs (%‘f’ ) (R™)
(Lemma 4.1).

THEOREM41 Let 1 < p,g <o, 0< py<p,g<eo, 0<G<2, 1q— and
% < ” . Assume that for some family F of pairs (f,g) of nonnegative functions
f,e such that for every
0 € 3 Fh:h € Hop (A1) with | <1 4.1
v \ Gy ) With ||| 61}()(/%1;21;0 > 4.1)
we have
[ wimowa<c [ 7o <« 4.2)
R" R"

Then, for any (f,g) € F and g € BG(///[;) (R™), we get

Islza.ar) < ClF boap):

Proof. Let (f,g) € 7 and g € Bo(.4]) (R"). Forany h & Hop, (A1) ) (R?)

(d/po)
with ||A]] ,> < 1,the pg-convexification of Hs (fféf’ ,> (R™) and the Corol-

L (P/Po)
oro \ "(d/po)

lary 3.1 deduce that

/ £ () h(x)dx] .
Rn

152 gy =1 (apmy = S0
: ﬂ

‘alvo ) lAl (p/po) ) St
Hopo (‘”@/po)' )

Since g € BG(///qp ) (R"), by the property (R1) and (R2) of k-iterations operators, the
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Holder inequality and the boundedness of Hardy-Littlewood maximal operator, then
L@ < [ 1e)mantds
<C [ lstl (s

< C||gPo h
<Cllg ” <///I’/P0) [ ||Hcp0<)ﬁ(p/ﬁo)>

alro a/pro)
<Cligl (ar)
which implies that
I8ll55(.n7) < CIfllpynry- O
q q
COROLLARY41 Let 1 < p,g <oo, 0< py< p,g <eo, O<0<Zj 1q— and
% < ;’ 13 . Assume that for every
. (/o) . ;
we Bh:heHyy, (%@/m), ) with ] <%<p/m>'> <1y
20\ 7" (@/py)
the operator T : L)’ (R") — LI (R") satisfies
L Tseorow@dx s [ 17l @3
Rn

Then, for every f € BG(///;) (R™), we obtain

T Fllboapy < 1 llgoah):

Proof. We just need to check the conditions in this theorem satisfy the Theorem

(p/po)’
4.1. Forany f € Bo(4) (R") 1 € Hop, (,%”@/po;’, ) (R™) and HhHH . <ﬂ(v/vo)’) <
o “@/po)

1. Using Proposition 4.1 and (3.6), one deduces that

IF )P lh(x)ldx < [lg™ | noy [|22A]|
Je pon () i

Q

S
—~
N

S llgllz, r) 171
q

P AN
Hopo <”(:7/p0>' >

Thus, we have
Bo (A7) (R") — N L% (R"). (4.4)

(p/po) )
heH, v <1
Upo( (@/po) el Hop (%ﬂ((ri%l(’)(;m
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Then, let .F = {(|Tf\,|f|) :fEBo'(%qp)(Rn)}. For any

) (p/po) ;
weESRh:he HO'PO (%ZI’/I’O)/ ) with Hh”HGPO (

<1
A r/po) | S ’
)f@/,,o)/>

the inclusion (4.4) deduces that BG(%g ) (R") — LY (R"). Hence, by (4.3), we assure
(4.2) in Theorem 4.1 is valid for the pairs .. As a corollary of Theorem 4.1, we
conclude that

1T Pty S 1 gz ¥F € Bolc) (RY).

This proof is completed. [

REMARK 4.1. In this section, although we only proved the extrapolation theory
on space Bo (.7 ) (R"), the extrapolation theory on space By (.#;)(R") can be es-
tablished because the proof is similar. Significantly, the Remark 2.2 and the Theorem
4.1 assure that the extrapolation theorems on Bs type mixed Lebesgue space hold, but
we omit the details.

5. Applications

In this section, we give some applications to illustrate the advantages and effects of
extrapolation theory. On the one hand, we character the BMO space via John-Nirenberg
inequality in terms of the By type mixed Morrey space BG(///£ ) (R") and the bound-
edness of commutator generated by BMO space. On the other hand, we solve the
boundedness of some classical operators.

The bounded mean oscillation space BMO(RR") introduced by John and Niren-
berge [20] can be seen as a natural generalization of essentially bounded function space
L= (R"™). We first recall the definition of BMO (R") space.

Let f € Lioc (R") and fp = @ Jo f(x)dx. The mean oscillation space BMO(R")
is defined by

BMO(R") i= {1 € L (B) s o = 157 [ £0) ~ folar <=.

This generalization can be used to solve the endpoint estimation of classical sin-
gular integral operators and commutators. For this reason, BMO space plays a vital
role in harmonic analysis. Therefore, the characterization of BMO space has gradually
become a topic of concern to researchers. On the one hand, BMO (R") space can be
characterized via John-Nirenberg inequality as follows.

{x € Q:|f(x) - fol > 1}] < ce 1/ I/lmvo| g, (5.1)
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where ¢ and ¢ are positive constants. This John-Nirenberg inequality for BMO(RR")
tells us that the following norms are equivalent for any 1 < p < oo,

1 »
o, =sup (157 [ 170~ ol ax) "
SN ¢
where the supremum is taken over all balls Q in 2.

5.1. John-Nirenberg Inequality and a new Characterization of BMO

The John-Nirenberg inequality can be extended to some other function spaces,
such as on variable one exponents spaces [11], Morrey spaces [12] and ball Banach
function spaces [18]. The following theorem further generalizes the John-Nirenberg
inequalities in terms of By type mixed Morrey spaces.

THEOREM 5.1. Let 1 < p,g < oo, % < ’;:1 qi and 0 < o < Z’;:l qi Then, there
k J h J
exist constants C,Cy > 0 such that for any y > 0, f € BMO\¥, where € denotes the
set of constant functions and Q € R", we have

__ Sy
< Ce Wismo o .
< 120l )

Hx{er¢|f<X>—fQ|>Y}‘ Bo(.Y)

Proof. ® € A assure that there exist an € > 0 and a constant C > 0 such that

o(E) E[\*
©(Q) “(@) 62

forany Q € 2 and all measurable subsets E of B, where C depends on n and [w]a.. .
On the other hand, the classical John-Nirenberg inequalities (5.1) and characteri-
zation of A.. (5.2) yield that

__Gr
/X{er:‘f(x)_bey}(x)w(x)dxgC2e [/ TBMO /XQ(X)U)(X)dx7

where C, depends on [w]a.,. By [9, section 7.3.2], [w]a. < [®]4,, we find that C»
depends on [w]y, .

Forany w € Ay, in view of the fact A| C A.., the conditions (4.1) given in Theorem
4.1 are fulfilled. According to Theorem 4.1 and

= Cyey
7= { ("{er:f<x>fQ>y}’e e "Q) gek }

yield

_ G
f
< Ce I/TBMO ||XQ||BO-(///‘7’)) .

HX{%Q:V (0)—fol>} Bo(A?)

This proof is completed. [
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In the following, we define a new BMO space in terms of By type mixed Morrey
space. Let 0 < 0, 1 <p,§ <e and <X >+ The BMOy ( ,») (R") space be
q

defined by

10 = fo) Zolgyeam

= sup <o
B”("”g) 02 HXQHBG(,///;)

BMOg, ar) (R") = ¢ f € Lioce : | fllBMO

To ensure that || - |gyo is a well-defined. We claim that

Bo (.47
a(ﬁq)

||?CQ||B(,({///;) >C, VQe 2.

Proof. It just to show that for any 0 < R and r > 1, there exist C > 0,such that
Xo(R) EBU(///;) (R") because |g| < |f] a.e.,then,HgHB(y () < Hf||BU (D) Hence,

when 1 < r < R, by the direct compute, we have
_ Lgn L
1%0x g, (.arry = supsupr™?|Q|P <=1 || o, 20,00l 4
q rz1 Q0
-0 lZ"_l L n/p—oc
= RC|Or|P =714 [ 20glla = R =C>0.
Similarly, when r > R > 0, we have
- isn L
%0kl ) = Supsupr 71017 == % || xor x0,n0ll
> 010 [ 51 ||, | 19 = 7 = C >0,
which implies the proof is finished. [J

THEOREM 5.2. Let 1 < p,g < e, §< e 1— and 0 < o <} e Then the

norms || - |[smo and || - ||smo are mutually equlvalent.

Bo (//5 )

To begin the proof of Theorem 5.2, we first establish the below lemma.

LEMMA 5.1. Let 1 < p,g < oo, %g e 1q andO<O'<Z;f:1qij. Then, there

is a constant C > 1 such that

Col < Ixellg,(.ar 20l () SCI0L V0€2
q

Proof. According to inequality (3.6) yields the left inequality. For any Q € 2, we
define the projection

(20 0) = (157 | letlax) 200
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There exists a constant C > 0 such that for any Q € 2,Py(f) < CM(f). Because of
(2) of Lemma 4.1, the Hardy-Littlewood maximal operator is bounded on Hs <ij’,7 /> .
Then, for any Q € 2, one concludes that

1Py, ey < M 'y < EM Ny ()
q q q
Then, there exists a constant C > 0 such that

sup || Po| / N <C.

o |t () Ha(])
Furthermore, by Corollary 3.1 yields that

Il o) 12l

— sup{‘/Qg(x)dx

<lollesl,

[0l ) 2 Hor () el ) <1
[ ﬁ/ o |- ‘7/
72{,;/) < (o]
g
It is finished with the proof. [
Proof of Theorem 5.2. From inequality (3.6), we know that

[ 1769 = foldx < (= fo) xollyap) el (7}
[0} q o \- i
By Lemma 5.1, we deduce that

I(f = fo) xelln, .

—foldx<C
/Q|f(x) foldx< C|0Q| 120l a2

Therefore,
| fllBMO < C”fHBMOBG(‘//{;y

For any j € N, the John-Nirenberg inequality on Bg(g///[; ) ensures that

e
< Cel Tavo

Hx{xegzzk|f<x)_fQ\<2j+1} ‘BG(%;) 120ll .7 -

Multiplying 2U+1) on both sides and summing over j, then

1f = o) Xollpo(.r) < ClifllBmo X0l 54 ) -
Hence, we obtain that
<C[/fllemo, VY f €BMO.

Hf||BMoBGW§)

It is finished with this proof. [
On the other hand, the BMO (R") space can be characterized via the boundedness

of commutators, which are generated by the singular integral operator or the fractional
integral operator, on different spaces.
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5.2. Characterization of BMO space via the boundedness of commutator

It is well know that the commutators [b, T](f)(x) = b(x)T(f)(x) — T(bf)(x) are
introduced by Coifman et al. [6], who also proved the commutators [b, T] is bounded on
LP, 1< p<eo,if and only if b € BMO, where T is the classical Calderén-Zygmund
operator. We next introduce the convolution type Calderén-Zygmund singular integral
operator T f is defined by

T =p-v: | Kx=y)f()dy

where function K is called kernel satisfying (i) the size condition:
[K(x)| <Clx[™, x#0

and (ii) the regularity conditions: for some & > 0

|.X — xl| ‘ —n
|K(x—y) —K(x/—y)’ + ’K(y—x) —K(y—x’)} < ( P |x—y|
whenever 2 |x —x/| < |x—y|.
Let f € Lo (R"), then the fractional integral operator I,, are defined by

af ()= [ L)

andy, O<a<n.

In particular, Chanillo [4] proved a similar characterization for the fractional integral
operator . That is to say, the commutator [b,I,] is bounded from L? to L7, if and
only if » € BMO, when 1 < p <n/a and 1/q=1/p— a/n. The theory has been
extended to more general spaces for the last thirty years. Thus, we extend the charac-
terization of BMO space via commutators on Bg(.#%) (R") in the following. In order
to state the results in this section, we need the following lemma.

LEMMA 5.2. ([10]) Let the Calderon-Zygmund singular integral operator T be
defined as above. Then for all 1 < p < e, w€ A, and b € BMO, also have

116, T Mg, ey S 1] 22 ey -

THEOREM 5.3. Let 1 < p,g <, 0< p,g<e, 0<0 < Z?ﬂ% and % <
J

w1

Jj=1gq;

(1) b€ BMO (R");

»
. Then, the follwing statements are equivalent
(2) the commutator [b,T| is bounded from Bg(j/(; ) (R™) into itself,

Proof. (1) = (2): In view of the Corollary 4.1 and Lemma 5.2 can quickly gain
the boundedness of commutator [b,T].
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(2) = (1): We follow the idea of Janson [19]. Assume that the commutator [b,T]
is bounded on Bc(//f) (R"). We choose zp # 0 and 0 > 0 such that ﬁ can be

expressed in the cube Q(zo,+/nd) as an absolutely convergent Fourier series,
1 - ;
= 2 apetm.
)C) m=0

Set z1 = z9/8 . Note that for all z such that |z —z;| < \/n, we have
1 5" n i0,
R — - ape 1VmZ
K(x) ~ K(d2) >

For given cubes Q = Q(xp,7) and Q' = Q1 (yo,7), where yg = xo — z17 if x € Q and
y € O, then
X — X0

<+/n.

Let s(x) = sgn(b(x) — by ). Then we have the following estimates:
/ |b(x) — by |dx
- / (b0) ~ bor) ol
— |Q’| / // ( )dxdy

=107 x) - ;mx
N |Q/|//,<b<> b(y))s) RGO

~ S [ [ 00 b)) 01 s

+

Y=Y
r

Setting o
gm(x) = &P 0 (0)3(),

fuly) = et 20 (),
one obtains that

/Q|b( —bgy|d

//\
DM

/R / b)) K (x — 3)gm(x) fn () dxdy

3
I

Mz

< X an [ 1.T1 () (0] lgm (0l dx

3
I
sl
=

N
M8

116, T] (fo) () IIngIHG(%,,,,>

3
I

TN Y an || (fo) gyt llgmll, (o)
=l q o\ 7y

<. T Y aml|x|l5, r) 2]l ()"
m=1 4 o\
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From the choice of Q’, we can find a proper cube Qy C R”, such that Q,Q" C Qy and
|Qo| ~ |Q|. According to Lemma 5.1, we get

/ Ib(x) — by|d

Furthermore,

||[b»T]|| 2 am HXQOHBG(//I;) HXQOHHU((;W’/) 5 ||[b7T]H |Q|
m=1 q

1 / 1
— [ 1b(x) = boldx < —/ b(x) = bey| dx < 2|[b, T]| < C < o,
0l Jo o< 157 Jo| ol

This proof is finished. [

REMARK 5.1. We do not know whether the index ¢ in the Theorem 5.3 is sharp.
By the proof of this theorem, we know that the boundedness of the commutator is ob-
tained through extrapolation theory. However, the extrapolation theorem relies heav-
ily on the boundedness of the Hardy-Littlewood maximal operator on block space

- (%’}If /> (R™). Moreover, the condition of ¢ is strong when the Hardy-Littlewood

maximal operator is bounded on block space Hs (j%’,’ /> (R").
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