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Abstract. Let p(z) be a polynomial of degree n with zero of multiplicity s at the origin and the
remaining zeros be in |z|� k or in |z|� k , k > 0 . In this paper, we investigate the relative growth
of a polynomial p(z) with respect to two circles |z|= r and |z|= R and obtain inequalities about
the dependence of |p(rz)| on |p(Rz)| , where |z|= 1 , for 0 < r � R � k or 0 < k � R � r while
taking into account the placement of the zeros of the underlying polynomial. Our results improve
as well as generalize certain well-known polynomial inequalities. Some numerical examples are
also given in order to illustrate and compare graphically the obtained inequalities with some
recent results.

1. Introduction

Let p(z) =
n


=0

az
 be a polynomial of degree n and p′(z) its derivative. The

study of polynomial inequalities that relate the norms of the polynomial on different
circles in a disk in the complex plane and generalizing the classical polynomial in-
equalities is a fertile area in mathematical analysis for researchers which is important
especially for its wide range of applications in various fields of science and engineer-
ing. Here, we study some of the new inequalities centered around Rivlin’s inequality
that relate the uniform norms of the polynomial on different circles in a disk. These
inequalities play a vital role in the literature for its various applications in the geomet-
ric function theory and of course have their own intrinsic appeals. These approximate
bounds are quite accurate when computed effectively for the demands of investigators
and scientists. As a result, there is a constant need for updates and more precise bounds
that are superior to those described in the literature. We begin with the well-known
Bernstein’s inequality [2] for the uniform norm on the unit disk in the plane: Namely,
if p(z) is a polynomial of degree n , then

max
|z|=1

∣∣p′(z)∣∣� nmax
|z|=1

|p(z)| (1.1)

and
max
|z|=R

|p(z)| � Rn max
|z|=1

|p(z)|, whenever R � 1. (1.2)
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Inequality (1.1) is a direct consequence of Bernstein’s theorem on the derivative
of a trigonometric polynomial [18], and inequality (1.2) follows from the maximum
modulus theorem (see [16, Problem 269]). The reverse analogue of the inequality (1.2)
whenever R � 1 is given by Varga [19], and he proved that if p(z) is a polynomial of
degree n , then for 0 � r � 1

max
|z|=r

|p(z)| � rn max
|z|=1

|p(z)|. (1.3)

Equality in (1.3) holds whenever p(z) = azn .
For the class of polynomials having no zero inside the unit circle, it was Rivlin

[17] who proved that if p(z) is a polynomial of degree n having no zero in |z| < 1,
then for 0 � r � 1

max
|z|=r

|p(z)| �
(

1+ r
2

)n

max
|z|=1

|p(z)|. (1.4)

Equality holds in (1.4) if p(z) = (z+a)n whenever |a|= 1.
The above inequalities are the starting point of a rich literature concerning their

extensions, generalizations and improvements in several directions, see the papers ([1,
3, 4, 5, 7, 10, 11, 13, 15]) to mention only a few. For a deeper understanding about this
kind of inequalities and their applications, we refer to the monographs [14, 8].

It was Jain [10] who generalized Rivlin’s inequality (1.4) by studying the relative
growth of a polynomial p(z) having no zero in the open disk |z| < k , with respect to
two circles |z| = r and |z| = R whenever 0 � r < R � k . He proved that if p(z) has no
zero in |z| < k , k > 0, then for 0 � r < R � k

max
|z|=r

|p(z)| �
(

k+ r
k+R

)n

max
|z|=R

|p(z)|. (1.5)

Dewan et al. [7] further improved inequality (1.5) by proving the following result which
also involves min

|z|=k
|p(z)| . If p(z) is a polynomial of degree n having no zero in |z|< k ,

k > 0, then for 0 � r < R � k

max
|z|=r

|p(z)| �
(

k+ r
k+R

)n

max
|z|=R

|p(z)|+
{

1−
(

k+ r
k+R

)n}
m∗, (1.6)

where m∗ = min
|z|=k

|p(z)| throughout the paper.

Although, the above inequalities (1.4), (1.5) and (1.6) are best possible with equal-
ity holding for polynomials p(z) = (z+a)n satisfying |a| = 1 for (1.4) and |a| = k for
(1.5) and (1.6), definitely the bounds given by these inequalities do not address the is-
sue of how far the zeros of the polynomial of the respective inequalities (1.4) or (1.5)
and (1.6) lie outside the circle |z| = 1 or |z| = k . Now, naturally a question arises: Is
there any way to refine the inequalities (1.4), (1.5) and (1.6) for the class of polynomials
satisfying the same hypotheses of these inequalities, by capturing some information on
the moduli of the zeros? Can we obtain a bound via two extreme coefficients of p(z)
which are informative about the distances of these zeros from the origin? In view of the
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example for the equality case in (1.4) which holds the property |a0| = |an| , it should

be possible to improve upon the bounds for polynomials p(z) =
n


=0

az
 having no

zero in |z| < 1, satisfying |a0| �= |an| . In this direction, Kumar [12] recently proved the
following result which sharpens inequality (1.4) significantly. In fact, he proved that

if p(z) =
n


=0

az
 is a polynomial of degree n having no zeros in |z| < 1, then for

0 < r � 1

max
|z|=r

|p(z)| �
[(

1+ r
2

)n

+
( |a0|− |an|
|a0|+ |an|

)(
1− r

2

)n
]

max
|z|=1

|p(z)| . (1.7)

Further, Kumar and Milovanović [13] generalized inequality (1.7) by considering a zero

free open disk |z|< k , k � 1 that if p(z) =
n


=0

az is a polynomial of degree n having

no zero in |z| < k , k � 1, then for 0 < r � 1

max
|z|=r

|p(z)| �
[(

k+ r
k+1

)n

+
1

kn−1

( |a0|− |an|kn

|a0|+ |an|
)(

1− r
k+1

)n
]

max
|z|=1

|p(z)| . (1.8)

In this paper, we approach this side of the inequality and obtain a bound which
further extends inequality (1.8) and generalizes as well as sharpens the inequalities
(1.4), (1.5) and (1.6) significantly.

2. Main results

THEOREM 2.1. If p(z) =
n


=s

az is a polynomial of degree n having no zero in

|z| < k , k > 0, except zero of multiplicity s at the origin 0 � s < n, then for 0 � l < 1
and 0 < r � R �  ,  � k

max
|z|=r

|p(z)| �
[(

k+ r
k+R

)n−s

+
(

R
k

)n−s−1
(
|as|− l m∗

ks −|an|kn−s

|as|− l m∗
ks + |an|Rn−s

)

×
(

R− r
k+R

)n−s
]( r

R

)s
max
|z|=R

|p(z)|

+

[
1−
{(

k+ r
k+R

)n−s

+
(

R
k

)n−s−1
(
|as|− l m∗

ks −|an|kn−s

|as|− l m∗
ks + |an|Rn−s

)

×
(

R− r
k+R

)n−s
}]( r

k

)s
lm∗. (2.1)

REMARK 2.2. When s = 0, Theorem 2.1 reduces to the following extension as
well as generalization of inequality (1.8) due to Kumar and Milovanović [13].
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COROLLARY 2.3. If p(z) =
n


=0

az is a polynomial of degree n having no zero

in |z| < k , k > 0 , then for 0 � l < 1 and 0 < r � R �  ,  � k

max
|z|=r

|p(z)| �
[(

k+ r
k+R

)n

+
(

R
k

)n−1( |a0|− lm∗− |an|kn

|a0|− lm∗+ |an|Rn

)(
R− r
k+R

)n
]

max
|z|=R

|p(z)|

+

[
1−
{(

k+ r
k+R

)n

+
(

R
k

)n−1( |a0|− lm∗− |an|kn

|a0|− lm∗+ |an|Rn

)(
R− r
k+R

)n
}]

lm∗.

(2.2)

REMARK 2.4. For s = 0 and further letting l → 1 in Theorem 2.1, we have under
the same hypotheses the following result which gives an improved bound over inequal-
ity (1.6) due to Dewan et al. [7].

COROLLARY 2.5. If p(z) =
n


=0

az is a polynomial of degree n having no zero

in |z| < k , k > 0 , then for 0 < r � R �  ,  � k

max
|z|=r

|p(z)| �
[(

k+ r
k+R

)n

+
(

R
k

)n−1( |a0|−m∗− |an|kn

|a0|−m∗+ |an|Rn

)(
R− r
k+R

)n
]

max
|z|=R

|p(z)|

+

[
1−
{(

k+ r
k+R

)n

+
(

R
k

)n−1( |a0|−m∗− |an|kn

|a0|−m∗+ |an|Rn

)(
R− r
k+R

)n
}]

m∗.

(2.3)

REMARK 2.6. Inequality (2.3) can be rewritten as

max
|z|=r

|p(z)| �
(

k+ r
k+R

)n

max
|z|=R

|p(z)|+
[
1−
(

k+ r
k+R

)n
]
m∗

+
(

R
k

)n−1( |a0|−m∗− |an|kn

|a0|−m∗+ |an|Rn

)(
R− r
k+R

)n
[

max
|z|=R

|p(z)|−m∗
]
.

(2.4)

By Lemma 4.4, we have
|a0|−m∗− |an|kn

|a0|−m∗+ |an|Rn � 0

and by minimum modulus principle, we have

m∗ = min
|z|=k

|p(z)| � min
|z|=R

|p(z)| � max
|z|=R

|p(z)|, for R � k,

which verifies our claim that Corollary 2.5 gives an improved bound over inequality
(1.6) due to Dewan et al. [7].
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REMARK 2.7. Setting s = 0, R =  = 1 and letting l → 1, and using the similar
argument as in Remark 2.6 for R = 1, Theorem 2.1 provides the following improvement
of a result proved by Aziz [1].

COROLLARY 2.8. If p(z) =
n


=0

az is a polynomial of degree n having no zero

in |z| < k , k � 1 , then for 0 < r � 1

max
|z|=r

|p(z)| �
[(

k+ r
k+1

)n

+
1

kn−1

( |a0|−m∗− |an|kn

|a0|−m∗+ |an|
)(

1− r
k+1

)n
]

max
|z|=1

|p(z)|

+

[
1−
{(

k+ r
k+1

)n

+
1

kn−1

( |a0|−m∗− |an|kn

|as|−m∗+ |an|
)(

1− r
k+1

)n
}]

m∗.

(2.5)

REMARK 2.9. Putting s = 0, R = k = 1 and letting l → 1 in Theorem 2.1, we
obtain the following improvement of the famous result due to Rivlin [17] by following
the similar arguments as in Remark 2.6 for k = R = 1.

COROLLARY 2.10. If p(z) =
n


=0

az is a polynomial of degree n having no

zero in |z| < 1 , then for 0 < r � 1

max
|z|=r

|p(z)| �
[(

1+ r
2

)n

+
( |a0|−m1−|an|
|a0|−m1 + |an|

)(
1− r

2

)n
]

max
|z|=1

|p(z)|

+

[
1−
{(

1+ r
2

)n

+
( |a0|−m1−|an|
|as|−m1 + |an|

)(
1− r

2

)n
}]

m1, (2.6)

where m1 = min
|z|=1

|p(z)| throughout the paper.

REMARK 2.11. By taking s = l = 0, Theorem 2.1 provides an improvement of
inequality (1.5) due to Jain [10].

COROLLARY 2.12. If p(z) =
n


=s

az is a polynomial of degree n having no zero

in |z| < k , k > 0 , then for 0 < r � R �  ,  � k

max
|z|=r

|p(z)| �
[(

k+ r
k+R

)n

+
(

R
k

)n−1( |a0|− |an|kn

|a0|+ |an|Rn

)(
R− r
k+R

)n
]

max
|z|=R

|p(z)| . (2.7)

REMARK 2.13. When s = l = 0,  = 1, Theorem 2.1 yields the following result
which gives an improved bound over the result proved by Dewan [6].
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COROLLARY 2.14. If p(z) =
n


=0

az is a polynomial of degree n having no

zero in |z| < k , k � 1 , then for 0 < r � R � 1

max
|z|=r

|p(z)| �
[(

k+ r
k+R

)n

+
(

R
k

)n−1( |a0|− |an|kn

|a0|+ |an|Rn

)(
R− r
k+R

)n
]

max
|z|=R

|p(z)| . (2.8)

REMARK 2.15. Moreover, if we consider s = l = 0, R =  = 1 in Theorem 2.1,
we have inequality (1.8) recently proved by Kumar and Milovanović [13].

REMARK 2.16. Futher, if we assign s = 0, k = 1 and letting l → 1 in Theorem
2.1, we obtain the following result which generalizes as well as improves an inequality
proved by Govil [9].

COROLLARY 2.17. If p(z) =
n


=0

az is a polynomial of degree n having no

zero in |z| < 1 , then for 0 < r � R < 1

max
|z|=r

|p(z)| �
[(

1+ r
1+R

)n

+Rn−1
( |a0|−m1−|an|
|a0|−m1 + |an|

)(
R− r
1+R

)n
]

max
|z|=R

|p(z)|

+

[
1−
{(

1+ r
1+R

)n

+Rn−1
( |a0|−m1−|an|
|as|−m1 + |an|

)(
R− r
1+R

)n
}]

m1.

(2.9)

REMARK 2.18. Lastly, if s = l = 0, k = 1, Theorem 2.1 becomes the following
recent result of Kumar and Milovanović [13].

COROLLARY 2.19. If p(z) =
n


=0

az is a polynomial of degree n having no

zero in |z| < 1 , then for 0 < r � R � 1

max
|z|=r

|p(z)| �
[(

1+ r
1+R

)n

+Rn−1
( |a0|− |an|
|a0|+ |an|Rn

)(
R− r
1+R

)n
]

max
|z|=R

|p(z)| . (2.10)

REMARK 2.20. Inequalities (1.8) and (2.10) due to Kumar and Milovanović [13]
have a limitation in the sense that for k in (0,1), we do not have analogous bound of
inequalities (1.8) and (2.10) for 0 < r � R � k . It is easily seen that this loophole is
compensated by Theorem 2.1. Moreover, for k > 1, the limits of r and R extend from
(0,1] to (0,k] .

For the class of polynomials having all their zeros in |z| � k , k � 1, Aziz [1]
proved that if p(z) is a polynomial of degree n having all its zeros in |z| � k , k � 1,
then

max
|z|=r

|p(z)| �
(

r+ k
1+ k

)
max
|z|=1

|p(z)|, for r � 1. (2.11)
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As an application of Theorem 2.1, we obtain the following generalization as well
as improvement of (2.11) due to Aziz [1].

THEOREM 2.21. If p(z) =
n


=s

az is a polynomial of degree n having all its

zeros in |z| � k , k > 0 with zero of multiplicity s at the origin 0 � s < n, then for
0 � l < 1 and 0 < k �  � R � r

max
|z|=r

|p(z)| �
[(

k+ r
k+R

)n−s

·
(

R
r

)n−s

+
(

k
R

)n−s−1
(
|an|− lm∗

kn −|as| 1
kn−s

|an|− lm∗
kn + |as| 1

Rn−s

)

×
(

r−R
k+R

)n−s(k
r

)n−s
]( r

R

)n
max
|z|=R

|p(z)|

+

[
1−
{(

k+ r
k+R

)n−s

·
(

R
r

)n−s

+
(

k
R

)n−s−1
(
|an|− lm∗

kn −|as| 1
kn−s

|an|− lm∗
kn + |as| 1

Rn−s

)

×
(

r−R
k+R

)n−s(k
r

)n−s
}]( r

k

)n
lm∗. (2.12)

REMARK 2.22. Putting s = 0 and further letting l → 1 in Theorem 2.21, we have
the following interesting result.

COROLLARY 2.23. If p(z) =
n


=0

az is a polynomial of degree n having all its

zeros in |z| � k , k > 0 , then for 0 < k �  � R � r

max
|z|=r

|p(z)| �
[(

k+ r
k+R

)n

·
(

R
r

)n

+
(

k
R

)n−1
(
|an|− m∗

kn −|a0| 1
kn

|an|− m∗
kn + |a0| 1

Rn

)

×
(

r−R
k+R

)n(k
r

)n
]( r

R

)n
max
|z|=R

|p(z)|

+

[
1−
{(

k+ r
k+R

)n

·
(

R
r

)n

+
(

k
R

)n−1
(
|an|− m∗

kn −|a0| 1
kn

|an|− m∗
kn + |a0| 1

Rn

)

×
(

r−R
k+R

)n(k
r

)n
}]( r

k

)n
m∗. (2.13)

REMARK 2.24. Setting s = 0, R =  = 1 and further letting l → 1 in Theorem
2.21, we get under the same hypotheses, the following improvement of (2.11) due to
Aziz [1].
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COROLLARY 2.25. If p(z) =
n


=0

az is a polynomial of degree n having all its

zeros in |z| � k , k � 1 , then for 1 � r

max
|z|=r

|p(z)| �
[(

k+ r
k+1

)n

+ k2n−1
( |an|kn −m∗ − |a0|
|an|kn −m∗+ |a0|kn

)(
r−1
k+1

)n
]

max
|z|=1

|p(z)|

+

[
1−
{(

k+ r
k+1

)n

· 1
rn + kn−1

( |an|kn −m∗− |a0|
|an|kn−m∗ + |a0|kn

)

×
(

r−1
k+1

)n(k
r

)n
}]( r

k

)n
m∗. (2.14)

REMARK 2.26. Inequality (2.14) can be rewritten as

max
|z|=r

|p(z)| �
(

k+ r
k+1

)n

max
|z|=1

|p(z)|+
[
1−
(

k
r +1

k+1

)]( r
k

)n
m∗

+kn−1
( |an|kn−m∗ − |a0|
|an|kn −m∗+ |a0|kn

)(
r−1
k+1

)n [
kn max

|z|=1
|p(z)|−m∗

]
.

By Lemma 4.5, we have
|an|kn −m∗− |a0|
|an|kn−m∗ + |a0|kn � 0. (2.15)

Suppose p(z) is a polynomial of degree n having all its zeros in |z| � k, k � 1. Then

q(z) = zn p
(

1
z

)
has all it zeros in |z| � 1

k , 1
k � 1, i.e., has no zero in |z| < 1

k , 1
k � 1,

therefore applying minimum modulus principle to q(z), we get |q(z)| � min
|z|= 1

k

|q(z)| =
1
kn min

|z|=k
|p(z)| , for |z| � 1

k ,
1
k � 1. Hence, in particular, for |z| = 1

|q(z)| � 1
kn min

|z|=k
|p(z)|. (2.16)

Also, for |z| = 1, we know
|p(z)| = |q(z)|. (2.17)

From (2.16) and (2.17), we have

max
|z|=1

|p(z)| � 1
kn min

|z|=k
|p(z)|. (2.18)

The above two facts (2.15) and (2.18) verify our claim that under the same hypotheses,
Corollary 2.25 gives improved bound over (2.11) due to Aziz [1].

REMARK 2.27. When s = l = 0. Theorem 2.21 reduces to the following interest-
ing result.
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COROLLARY 2.28. If p(z) =
n


=0

az is a polynomial of degree n having all its

zeros in |z| � k , k > 0 , then for 0 < k �  � R � r

max
|z|=r

|p(z)|�
[(

k+ r
k+R

)n

+
(

k
R

)n−1( |an|kn −|a0|
|an|Rn + |a0|

)(
r−R
k+R

)n
]

max
|z|=R

|p(z)| . (2.19)

REMARK 2.29. Further, if we assign  = R = 1 and s = l = 0 in Theorem 2.21,
the following result recently proved by Kumar and Milovanović [13] is recovered.

COROLLARY 2.30. If p(z) =
n


=0

az is a polynomial of degree n having all its

zeros in |z| � k , k � 1 , then for r � 1

max
|z|=r

|p(z)| �
[(

k+ r
k+1

)n

+ kn−1
( |an|kn −|a0|

|an|+ |a0|
)(

r−1
k+1

)n
]

max
|z|=1

|p(z)| . (2.20)

REMARK 2.31. Lastly, if k = 1 and s = l = 0, Theorem 2.21 yeilds in particular
the following result recently proved by Kumar and Milovanović [13].

COROLLARY 2.32. If p(z) =
n


=0

az is a polynomial of degree n having all its

zeros in |z| � 1 , then for 1 � R < r

max
|z|=r

|p(z)| �
[(

1+ r
1+R

)n

+
1

Rn−1

( |an|− |a0|
|an|Rn + |a0|

)(
r−R
1+R

)n
]

max
|z|=R

|p(z)| . (2.21)

REMARK 2.33. Corollaries 2.30 and 2.32 due to Kumar and Milovanović [13]
have a limitation in the sense that for k � 1, we do not have analogous bounds of
inequalities (2.20) and (2.21) for 1 � k � R � r . It is easily seen that this deficiency is
compensated by Theorem 2.21. Moreover, for k � 1 the limits of r and R extend from
[1,) to [k,) .

3. Numerical examples and graphical illustration

EXAMPLE 3.1. Consider the polynomial p(z) = z3−18z2+101z−168 of degree
3 having all its zeros in |z| � 3. We take k = 2. On the circle |z| = R , we have

|p(Rei )| =
√

(R2 +9−6Rcos ) (R2 +49−14Rcos )(R2 +64−16Rcos )

and the level graphs for R = 0.4,1,1.5 in 0 �  < 2 are presented in Fig. 1.
And also,

MR = max
|z|=R

|p(z)| = R3 +18R2 +101R+168,
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Figure 1: Level graphs of the function  �−→ |p(Rei )| for R = 0.4,1,1.5 in 0 �  � 2 .

M0.4 = max
|z|=0.4

|p(z)| = 211.344

as well as m∗ = min
|z|=2

|p(z)|= 30. We consider the difference between M0.4 and the right

hand side of inequality (2.2),

(l,R) = 211.344−
(

2.4
2+R

)3 (
R3 +18R2 +101R+168

)−30l

[
1−
(

2.4
2+R

)3
]

−
(

R
2

)2

· 160−30l
168−30l+R3

(
R−0.4
2+R

)3 (
R3 +18R2 +101R+168−30l

)
.

In Fig. 2, we present the difference (R) , 0.2 � R � 2 between the left(M0.4) and
right hand sides of inequalities (1.5), (2.3) and (2.7). i.e.,

(R) =

⎧⎪⎨
⎪⎩

211.344− ( 2.4
2+R

)3 (
R3 +18R2 +101R+168

)
, inequality (1.5),

(1,R), inequality (2.3),

(0,R), inequality(2.7).

REMARK 3.2. At any point on the R−axis, the inequality whose (R) graph is
nearer to the R−axis gives improved bound over the others. From Fig. 2, it is clear that
inequality (2.3) gives the most improved bound for all values of R , 0.4 � R � 2 for this
particular example. When R = 1 inequalities (1.5), (2.3) and (2.7) reduce respectively
to inequalities (1.4), (2.5) and (1.8) and hence at the point R = 1, (R) corresponds to
the difference between the left and right hand sides of inequalities (1.4), (2.5) and (1.8).
In general, it is not possible to compare the bounds of inequalities (2.5) and (1.8) with
regard to sharpness. However, from the graph in Fig. 2, it is evident that the bound (2.5)
of Corollary 2.8 gives a significant improvement over the bound (1.8) due to Kumar and
Milovanović [13] for this particular example 3.1.
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Figure 2: Comparison of the difference R �−→ (R) for 0.4 � R � 2 in the inequalities (1.5),
(2.3) and (2.7).

EXAMPLE 3.3. Consider the polynomial p(z) = 6z2 −5z+1 of degree 2 having
all its zeros in |z| � 0.5. We take k = 0.6. On the circle |z| = R , we have

|p(Rei )| =
√

(4R2 +1−4Rcos )(9R2 +1−6Rcos )

and their level graphs for R = 1,1.5,2 in 0 �  < 2 are presented in Fig. 3.

Figure 3: Level graphs of the function  �−→ |p(Rei )| for R = 1,1.5,2 in 0 �  � 2 .

And also,
MR = max

|z|=R
|p(z)| = 6R2 +5R+1,

M2 = max
|z|=2

|p(z)| = 35
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as well as m∗ = min
|z|=0.6

|p(z)| = 0.16.

In Fig. 4, we present the difference (R) , 0.6 � R � 2 between the left(M2) and
right hand sides of inequalities (2.13) and (2.19). i.e.,

(R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

35−
[(

2.6
0.6+R

)2
+
(

0.6
R

)3 · 2.7778
5.5556+ 1

R2
· ( 2−R

0.6+R

)2](
6R2 +5R+1

)
−
[
1−
{(

2.6
0.6+R

)2 · R2

4 + 0.054
R · 2.7778

5.5556+ 1
R2

· ( 2−R
0.6+R

)2}]
1.7778,

inequality (2.13),

35−
[(

2.6
0.6+R

)2
+
(

0.6
R

)3 · 3.222
6+ 1

R2
· ( 2−R

0.6+R

)2](
6R2 +5R+1

)
,

inequality (2.19).

Figure 4: Comparison of the difference R �−→ (R) for 0.6 � R � 2 in the inequalities (2.13)
and (2.19).

REMARK 3.4. At any point on R−axis, the inequality whose (R) graph is nearer
to the R−axis gives improved bound over the others. From Fig. 4, it is clear that in-
equality (2.13) provides the most improved bound for all values of R , 0.6 � R � 2 for
this particular example. When R = 1 inequalities (2.13) and (2.19) reduce to inequali-
ties (2.14) and (2.20) and hence, at the point R = 1, (R) corresponds to the difference
between the left and right hand sides of inequalities (2.14) and (2.20). Generally, it is
not possible to compare the bounds given by inequalities (2.14) and (2.20) in regard to
sharpness. However, from the graph in Fig. 4, it is evident that the bound (2.14) of
Corollary 2.23 gives significant improvement over the bound (2.20) due to Kumar and
Milovanović [13] for this particular example 3.3.
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4. Lemmas

We shall need the following lemmas in order to prove the above theorems and

verify the claims. For a polynomial p(z) of degree n , we will use q(z) = zn p
(

1
z

)
.

LEMMA 4.1. For any a � km , k � R > 0 , and m is any positive integer, the
function

f (x) = kRm−1(a− km)(x− k)+ kRm−1(a− km)(x+R)
+ km(x− k)(a+Rm)−2Rm(ax− km+1) � 0 (4.1)

for all values of x in [k,) .

Proof. Considering the first derivative of f with respect to x , we have

f ′(x) = kRm−1(a− km)+ kRm−1(a− km)+ km(a+Rm)−2aRm

= kRm−1(a− km)+Rm−1(k−R)(a− km)+a(km−Rm) � 0

which is a non-decreasing function of x by derivative test, and

f (k) = kRm−1(a− km)(k+R)−2kRm(a− km)
= kRm−1(k−R)(a− km) � 0,

which verifies the claim. �

LEMMA 4.2. If a � km , b � k , k � R > 0 , and m is any positive integer, then

(
R
k

)m−1 a− km

a+Rm · b− k
b+R

+
(

R
k

)m−1 a− km

a+Rm +
b− k
b+R

�
(

R
k

)m ab− km+1

ab+Rm+1 · (4.2)

Proof. We need to show

(
R
k

)m−1 a− km

a+Rm · b− k
b+R

+
(

R
k

)m−1 a− km

a+Rm +
b− k
b+R

−
(

R
k

)m ab− km+1

ab+Rm+1 � 0.

Equivalently, it suffices to show that

kRm−1 (ab+Rm+1)(a− km)(b− k)+ kRm−1 (ab+Rm+1)(a− km)(b+R)

+km (b− k)
(
ab+Rm+1)(a+Rm)−Rm (ab− km+1)(a+Rm)(b+R) � 0.

Since
(a+Rm) (b+R) = ab+Rm+1 +aR+bRm

and
ab+Rm+1−aR−bRm = (a−Rm) (b−R) � 0,
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we must have 2(ab+Rm+1) � (a+Rm)(b+R) and therefore it is sufficient to prove
that

kRm−1(a− km)(b− k) + kRm−1(a− km)(b+R)+ km(b− k)(a+Rm)
− 2Rm(ab− km+1) � 0,

which is always true by Lemma 4.1 and hence the proof is complete. �

LEMMA 4.3. For any 0 < r � R � k, and Rl � k > 0, 1 � l � n, we have

n


l=1

r+Rl

R+Rl
�
(

k+ r
k+R

)n

+
(

R
k

)n−1[ R1R2 · · ·Rn − kn

R1R2 · · ·Rn +Rn

](
R− r
k+R

)n

. (4.3)

Proof. We prove the result by induction on n . The identity

r+R1

R+R1
=
(

k+ r
k+R

)
+
[

R1− k
R1 +R

](
R− r
k+R

)
, (4.4)

justifies the validity of (4.3) for n = 1. Let us assume that (4.3) is true for n = m . Then
using the result for m and with the help of (4.4), we will have

m+1


l=1

r+Rl

R+Rl
=

(
m


l=1

r+Rl

R+Rl

)(
r+Rm+1

R+Rm+1

)

�
[(

k+ r
k+R

)m

+
(

R
k

)m−1 [ R1R2 · · · Rm − km

R1R2 · · · Rm +Rm

](
R− r
k+R

)m
]

×
[(

k+ r
k+R

)
+
[

Rm+1 − k
Rm+1 +R

](
R− r
k+R

)]

=
(

k+ r
k+R

)m

+
(

R
k

)m−1 [ R1R2 · · · Rm− km

R1R2 · · · Rm +Rm

][
Rm+1 − k
Rm+1 +R

](
R− r
k+R

)m+1

+
(

k+ r
k+R

)m(R− r
k+R

)[
Rm+1− k
Rm+1 +R

]

+
(

R
k

)m−1(R− r
k+R

)m( k+ r
k+R

)[
R1R2 · · · Rm − km

R1R2 · · · Rm +Rm

]
.

Therefor, we will have

m+1


l=1

r+Rl

R+Rl
�
(

k+ r
k+R

)m+1

+
(

R− r
k+R

)m+1

×
[(

R
k

)m−1 [R1R2 · · · Rm − km

R1R2 · · · Rm +Rm

][
Rm+1 − k
Rm+1 +R

]

+
Rm+1− k
Rm+1 +R

+
(

R
k

)m−1 R1R2 · · · Rm − km

R1R2 · · · Rm +Rm

]
.
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Applying Lemma 4.2 to the second term in the right hand side of the above inequality,
we obtain

m+1


l=1

r+Rl

R+Rl
�
(

k+ r
k+R

)m+1

+
(

R
k

)m [ R1R2 · · ·Rm+1− km+1

R1R2 · · ·Rm+1 +Rm+1

](
R− r
k+R

)m+1

,

by which the method of induction is completed. �

LEMMA 4.4. If p(z) =
n


=0

az
 is a polynomial of degree n having no zero in

|z| < k, k > 0 , then for any complex number  with || < 1 and m∗ = min
|z|=k

|p(z)|

|a0|− ||m∗− kn|an| � 0. (4.5)

Proof. By hypothesis, p(z) =
n


=0

az
 is a polynomial of degree n having all its

zeros in |z| � k , k > 0. Then, the polynomial P(z) = e−iarga0 p(z) has the same zeros
as p(z) . Now,

P(z) = e−iarga0
{|a0|eiarga0 +a1z+ · · ·+an−1z

n−1 +anz
n}

= |a0|+ e−iarga0
{
a1z+ · · ·+an−1z

n−1 +anz
n} . (4.6)

Now, on |z| = k for any complex number  with || < 1 and m∗ = min
|z|=k

p(z) �= 0, we

have

||m∗ < m∗ � |P(z)|.
Then by Rouche’s theorem, R(z) = P(z)−||m∗ has all its zeros in |z|> k and in case
m∗ = 0, R(z) = P(z) . Thus, in any case R(z) has all its zeros in |z|� k . Now, applying
Vieta’s formula to R(z) , we get

|a0|− ||m∗

|an| � kn,

i.e.,

|a0|− ||m∗− kn|an| � 0. �

LEMMA 4.5. If p(z) =
n


=0

az
 is a polynomial of degree n having all its zeros

in |z| � k, k > 0 , then for any complex number  with || < 1 and m∗ = min
|z|=k

|p(z)|

|an|kn−||m∗ − |a0| � 0. (4.7)
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Proof. Following the same argument as in the beginning of the proof of Lemma
4.4, it follows that, R(z) = p(z) + ||m∗ has all its zeros in |z| � k . Now, applying
Viet’s formula to R(z) , we get

|a0|+ ||m∗

|an| � kn,

i.e.,
kn|an|− ||m∗− |a0| � 0. �

5. Proofs of the theorems

Proof of Theorem 2.1. Without loss of generality, we assume that p(z) = zsh(z) ,
where h(z) is a polynomial of degree n− s having all its zeros in |z| � k , k > 0.

Now, min
|z|=k

|h(z)| = min
|z|=k

∣∣∣∣ p(z)
zs

∣∣∣∣= 1
ks min

|z|=k
|p(z)| = m∗

ks , where m∗ = min
|z|=k

|p(z)| .
By Rouche’s Theorem, for any complex number  with || < 1, the polynomial

F(z) = h(z)+
m∗
ks =

p(z)
zs +

m∗
ks (5.1)

has all its zeros in |z| � k .
If R1ei1 ,R2ei2 , · · · ,Rn−sein−s , are the zeros of F(z) , then for any 0 � r � R , and

0 �  � 2 ∣∣∣∣ F(rei )
F(Rei )

∣∣∣∣=
∣∣∣∣∣∣

p(rei )
(rei )s + m∗

ks

p(Rei )
(Rei )s + m∗

ks

∣∣∣∣∣∣ . (5.2)

Also, we have

|F(rei )|
|F(Rei )| =

n−s


l=1

|rei −Rleil |
|Rei −Rleil |

=
n−s


l=1

|rei(−l)−Rl|
|Rei(−l)−Rl|

=
n−s


l=1

(
r2 +R2

l −2rRl cos( −l)
R2 +R2

l −2RRl cos( −l)

) 1
2

�
n−s


l=1

r+Rl

R+Rl
.

Therefore we have

|F(rei )| �
n−s


l=1

r+Rl

R+Rl
|F(Rei )|. (5.3)

Now applying Lemma 4.3 to the right hand side of the inequality (5.3) and using the
fact that

R1,R2, · · · ,Rn−s =
|as +m∗|

|an| ,
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we have the following inequality

|F(rei )| �
[(

k+ r
k+R

)n−s

+
(

R
k

)n−s
(
|as + m∗

ks |− |an|kn−s

|as + m∗
ks |+ |an|Rn−s

)

×
(

R− r
k+R

)n−s
]
|F(Rei )|.

Now, using the fact that the function x−a
x+b is a non-decreasing function of x �= −b for

a � 0,b � 0, and |as + m∗
ks | � |as|− |m∗

ks | , we have

|F(rei )| �
[(

k+ r
k+R

)n−s

+
(

R
k

)n−s
(
|as|− m∗| |

ks −|an|kn−s

|as|− m∗| |
ks + |an|Rn−s

)

×
(

R− r
k+R

)n−s
]
|F(Rei )|. (5.4)

From (5.2) and (5.4), we have

max
∈[0,2)

∣∣∣∣ p(rei )
(rei )s +

m∗
ks

∣∣∣∣ �
[(

k+ r
k+R

)n−s

+
(

R
k

)n−s
(
|as|− m∗| |

ks −|an|kn−s

|as|− m∗| |
ks + |an|Rn−s

)

×
(

R− r
k+R

)n−s
]

max
∈[0,2)

∣∣∣∣ p(Rei )
(Rei )s +

m∗
ks

∣∣∣∣ . (5.5)

Let 0 ∈ [0,2) be such that

max
∈[0,2)

∣∣∣∣ p(rei )
(rei )s +

m∗
ks

∣∣∣∣=
∣∣∣∣ p(rei0)
(rei0)s +

m∗
ks

∣∣∣∣ . (5.6)

We choose the argument of  in the right-hand side of (5.6) such that∣∣∣∣ p(rei0)
(rei0)s

+
m∗
ks

∣∣∣∣ =
∣∣∣∣ p(rei0)
(rei0)s

∣∣∣∣− m∗||
ks

� max
∈[0,2)

∣∣∣∣ p(rei0)
(rei0)s

∣∣∣∣− m∗||
ks . (5.7)

Also, ∣∣∣∣ p(Rei )
(Rei )s

∣∣∣∣− m∗||
ks �

∣∣∣∣ p(Rei )
(Rei )s +

m∗
ks

∣∣∣∣ . (5.8)

Using (5.7) and (5.8) in (5.5), we get

max
∈[0,2)

∣∣∣∣ p(rei0)
(rei0)s

∣∣∣∣− m∗||
ks �

[(
k+ r
k+R

)n−s

+
(

R
k

)n−s
(
|as|− m∗| |

ks −|an|kn−s

|as|− m∗| |
ks + |an|Rn−s

)

×
(

R− r
k+R

)n−s
]

max
∈[0,2)

{∣∣∣∣ p(Rei )
(Rei )s

∣∣∣∣− m∗||
ks

}
.
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i.e.,

max
|z|=r

|p(z)|
rs − m∗||

ks �
[(

k+ r
k+R

)n−s

+
(

R
k

)n−s
(
|as|− m∗| |

ks −|an|kn−s

|as|− m∗| |
ks + |an|Rn−s

)

×
(

R− r
k+R

)n−s
]⎧⎨
⎩

max
|z|=R

|p(z)|
Rs − m∗||

ks

⎫⎬
⎭ . (5.9)

Setting || = l , 0 � l < 1 in (5.9) gives

max
|z|=r

|p(z)| � lm∗rs

ks +

[(
k+ r
k+R

)n−s

+
(

R
k

)n−s
(
|as|− lm∗

ks −|an|kn−s

|as|− lm∗
ks + |an|Rn−s

)

×
(

R− r
k+R

)n−s
]( r

R

)s
{

max
|z|=R

|p(z)|− lm∗Rs

ks

}
,

which on simplification gives the required result. �

Proof of Theorem 2.21. If p(z) is a polynomial of degree n having all its zeros in

|z| � k , k > 0 with zero of multiplicity s at the origin 0 � s < n , then q(z) = znp
( 1

z

)
,

is a polynomial of degree at most n− s having no zero in |z| < 1
k , 1

k > 0. Now, if
k � R � r , then 1

r � 1
R � 1

k . Therefore applying Corollary 2.3 to the polynomial q(z) ,
we get

max
|z|= 1

r

|q(z)| �
[(

1
k + 1

r
1
k + 1

R

)n−s

+
(

k
R

)n−s−1
(
|an|− lm′ − |as| 1

kn−s

|an|− lm′+ |as| 1
Rn−s

)

×
(

1
R − 1

r
1
k + 1

R

)n−s]
max
|z|= 1

R

|q(z)|

+

[
1−
{(

1
k + 1

r
1
k + 1

R

)n−s

+
(

k
R

)n−s−1
(
|an|− lm′ − |as| 1

kn−s

|an|− lm′+ |as| 1
Rn−s

)

×
(

1
R − 1

r
1
k + 1

R

)n−s}]
m′. (5.10)

where m′ = min
|z|= 1

k

|q(z)| .
Substituting the following results

max
|z|= 1

r

|q(z)| = 1
rn max

|z|=r
|p(z)|, max

|z|= 1
R

|q(z)| = 1
Rn max

|z|=R
|p(z)|
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and min
|z|= 1

k

|q(z)| = 1
kn min

|z|=k
|p(z)|, in (5.10) and simplifying, we finally have

max
|z|=r

|p(z)| �
[(

k+ r
k+R

)n−s

·
(

R
r

)n−s

+
(

k
R

)n−s−1
(
|an|− lm∗

kn −|as| 1
kn−s

|an|− lm∗
kn + |as| 1

Rn−s

)

×
(

r−R
k+R

)n−s(k
r

)n−s
]( r

R

)n
max
|z|=R

|p(z)|

+

[
1−
{(

k+ r
k+R

)n−s

·
(

R
r

)n−s

+
(

k
R

)n−s−1
(
|an|− lm∗

kn −|as| 1
kn−s

|an|− lm∗
kn + |as| 1

Rn−s

)

×
(

r−R
k+R

)n−s(k
r

)n−s
}]( r

k

)n
lm∗, (5.11)

where m∗ = min
|z|=k

|p(z)| .
This completes the proof of Theorem 2.21. �

6. Conclusion

In the past few years, a series of papers related to the Rivlin-type inequalities has
been published and significant advances have been achieved in different directions. In
this paper, we continue the study of this type of inequality for polynomials, following
up on a study started by various authors in the recent past. Generally, under similar
hypotheses, Rivlin’s inequality has been improved and generalized by adopting two
different approaches (see the papers [3, 4, 5, 7, 11, 13, 15]) to mention only a few.
More precisely, we adopt one of these approaches and established some new inequali-
ties while taking into account the placement of the zeros of the underlying polynomial.
Our results generalize as well as refine some well-known polynomial inequalities. The
techniques we have used in this paper could implicate further work in polynomial in-
equalities. Two numerical examples are given in order to graphically illustrate and
compare the obtained inequalities with some recent results.
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