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A SHARP MID–POINT TYPE INEQUALITY

MOHSEN ROSTAMIAN DELAVAR ∗ , MOHSEN KIAN AND MANUEL DE LA SEN

(Communicated by M. Krnić)

Abstract. This paper deals with a sharp version of mid-point type inequality in connection with
fractional integrals of real valued absolutely continuous functions as a generalization and refine-
ment of non-sharp classical mid-point inequality which is presented by the Riemann integrals of
differentiable real valued functions whose derivative absolute values are convex. Some special
functions, numerical means and a mid-point type formula are considered to discuss about some
applications of main results.

1. Introduction and preliminaries

Celebrated Hermite-Hadamard’s inequality gives a lower and an upper bound for
the mean value ([24, 34]) of a convex function F : [a,b] → R as follows (see also
[7, 9, 12, 13, 16, 19, 22, 28, 29, 31, 37]):

F

(
a+b

2

)
� 1

b−a

∫ b

a
F (x)dx � F (a)+F (b)

2
. (1)

Mid-point inequality related to (1) means how to estimate the difference between left
side and middle of (1). One of the most important answers to this question has been
presented in the following result which has been used to obtain various applications
in mathematical inequalities, operator theory, numerical approximation of integrals,
special means and random variables in statistics and special functions such as Euler’s
beta and gamma (see [6, 7, 15, 30, 33, 36]):

THEOREM 1.1. [15] Let F : I◦ ⊆ R → R be a differentiable mapping on I◦ ,
a,b ∈ I◦ with a < b. If |F ′| is convex on [a,b] , then∣∣∣∣F(a+b

2

)
− 1

b−a

∫ b

a
F (x)dx

∣∣∣∣ � (b−a)
8

(
|F ′(a)|+ |F ′(b)|

)
. (2)
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Note that (2) is not sharp ( 1
8 is not the smallest possible constant) and Theorem

1.1 does not work for functions whose derivative absolute values are not convex. Con-
sidering these mentioned points, we set some new criterions and work on the class of
absolutely continuous functions defined on [a,b] ⊂ R . In addition, we consider the
concept of generalized Riemann-Liouville fractional integrals as a generalized form of
Riemann integrals and also generalized Chebyshev functionals.

The concept of absolutely continuity is defined as the following [26]:

DEFINITION 1.2. A real function f is absolutely continuous on [a,b] if, corre-
sponding to any  > 0, we can produce a  > 0 such that for any collection {(ai,bi)}n

1
of disjoint open subintervals of [a,b] with n

1(bi−ai) <  , we get n
1 | f (bi)− f (ai)|<

 .

It would be interesting for readers to know that any convex function defined on
[a,b] , is M -Lipschitz and so absolutely continuous ([23, 26]). So the class of abso-
lutely continuous functions defined on [a,b] , includes any convex and M -Lipschitz
functions defined on [a,b] .

We consider the class of generalized Riemann-Liouville fractional integrals de-
fined in [27]:

DEFINITION 1.3. For any t ∈ [0,1] and  > 0,

J 
mt (L ,R)+F (s) =

1
()

∫ s

mt (L ,R)
(s−u)−1F (u)du, (s > mt(L ,R))

and

J 
Mt (L ,R)−F (s) =

1
()

∫ Mt (L ,R)

s
(u− s)−1F (u)du, (Mt (L ,R) < s),

where L (t) : [0,1] → [a,b] and R(t) : [0,1] → [a,b] are considered as

L (t) = tb+(1− t)a, R(t) = ta+(1− t)b

and

mt(L ,R) = min{L (t),R(t)}, Mt(L ,R) = max{L (t),R(t)}.

Also Euler’s Gamma function is defined as ([3, 5])

(s) =
∫ 

0
ts−1e−tdt (Re(s) > 0).

Fractional integrals J 
mt (L ,R)+

F (s) and J 
Mt (L ,R)−F (s) in special case (t =

0,1) reduce to Ja+F (s) and Jb−F (s) , respectively, which are known as the Riemann-
Liouville fractional integrals in literature (also see [10, 17, 32]).

We define generalized Chebyshev functional as follows (see [4, 20, 21]):
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DEFINITION 1.4. For any t ∈ [0,1] \ { 1
2} and any pair of integrable functions

F ,G : [a,b] → R , the generalized Chebyshev functional is defined by

Tt(F ,G ) =
1

t(L ,R)

∫ Mt (L ,R)

mt(L ,R)
F (s)G (s)ds

− 1

2
t (L ,R)

∫ Mt (L ,R)

mt(L ,R)
F (s)ds

∫ Mt (L ,R)

mt (L ,R)
G (s)ds,

where t (L ,R) =
(
Mt(L ,R)−mt(L ,R)

) ,  > 0. For the case that F = G , we
use the notation Tt(F ) .

Motivated by [11], we state the following result in connection with generalized
Chebyshev functional Tt(F ,G ) and its bounds:

THEOREM 1.5. For any t ∈ [0,1] , If there exist real numbers t ,t ,t ,t such
that t � F (s) � t and t � G (s) � t for all s ∈ [mt(L ,R),Mt(L ,R)] then:

∣∣Tt(F ,G )
∣∣ � 1

4
(t −t)(t − t).

Proof. Technically the proof is similar to what was mentioned in [11]. It is just
enough to consider parameter “t ” and local bounds of F and G on [mt(L ,R),
Mt(L ,R)] . �

2. Main results

In this section, we obtain a sharp mid-point type inequality in connection with
Riemann-Liouville fractional integrals by using the concepts defined in previous sec-
tion . Also as corollaries, some special sharp and non-sharp mid-point type inequalities
are discussed. The following lemma is of interest and needed to obtain the main re-
sult of this section. In what follows we consider “mt ” and “Mt ” as “mt(L ,R)” and
“Mt(L ,R)”, briefly.

LEMMA 2.1. For real numbers a,b,,t with a < b, t ∈ [0,1]\ { 1
2} ,  > 0 and

absolutely continuous function F : [a,b]→ R , the following characterization holds:

1
t (L ,R)

∫ Mt

mt

P(t,s)F ′(s)ds

= F
(a+b

2

)
− ( +1)

2t (L ,R)

(
J 

Mt
−F (mt )+J 

mt+
F (Mt)

)
,

where the bifunction P(t,s) : [0,1]\ { 1
2}× [mt,Mt ] → R is defined as

P(t,s) =

⎧⎨
⎩

(s−mt)−(Mt−s)+t (L ,R)
2 , mt � s � a+b

2 ;

(s−mt)−(Mt−s)−t (L ,R)
2 , a+b

2 < s � Mt .



378 M. ROSTAMIAN DELAVAR, M. KIAN AND M. DE LA SEN

Proof. By the use of integration by parts rule and fundamental theorem of Lebesgue
integral calculus, we deduce the desired result:

∫ Mt

mt

P(t,s)F ′(s)ds = F
(a+b

2

)
P

(
t,

a+b
2

)
−F (mt)P(t,mt)+F (Mt)P(t,Mt)

−F
(a+b

2

)
. lim
s→ a+b

2
+
P(t,s)− 

2

∫ Mt

mt

[
(s−mt)−1 +(Mt − s)−1]F (s)ds

= F
(a+b

2

)
t (L ,R)− ( +1)

2

[
J 

Mt
−F (mt )+J 

mt+
F (Mt )

]
. �

COROLLARY 2.2. With all conditions of Lemma 2.1, for t = 0,1 we get (see
Lemma 1 in [14])

∫ b

a
P(s)F ′(s)ds = F

(a+b
2

)
(b−a)− ( +1)

2

(
J 

b−F (a)+J 
a+F (b)

)
,

where the function P(s) : [a,b] → R is defined as

P(s) =

⎧⎨
⎩

(s−a)−(b−s)+(b−a)
2 , a � s � a+b

2 ;

(s−a)−(b−s)−(b−a)
2 , a+b

2 < s � b.

In more special case we have

∫ b

a
P(s)F ′(s)ds = F

(a+b
2

)
(b−a)−

∫ b

a
F (s)ds,

where the function P(s) : [a,b] → R is defined as

P(s) =

⎧⎨
⎩

s−a, a � s � a+b
2 ;

s−b, a+b
2 < s � b.

which is equivalent to Lemma 2.1 in [15].

THEOREM 2.3. For real numbers a,b,,t with a < b, t ∈ [0,1] \ { 1
2} ,  > 0

and absolutely continuous function F : [a,b] → R with F ′ ∈ L2([a,b]) , the following
mid-point type inequality holds:∣∣∣∣F(a+b

2

)
− (+1)

2t (L ,R)

(
J 

Mt
−F (mt)+J 

mt+
F (Mt )

)∣∣∣∣ � C1
t (L ,R)

(
Tt(F ′)

) 1
2 ,

(3)

where C =
(
(2+1)−2(+1)

2(2+2) + (−3)2−2+1
2 (+1)

) 1
2
. Also for any  > 0 , the value of C

is the best possible in the sense that can not be replaced by a smaller one.
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Proof. Because of the fact

∫ a+b
2

mt

[
(s−mt) − (Mt − s) +(Mt −mt)

]
ds

= −
∫ Mt

a+b
2

[
(s−mt) − (Mt − s) − (Mt −mt)

]
ds,

it is not hard to see that

∫ Mt

mt

P(t,s)ds = 0. (4)

So from Lemma 2.1, (4) and Hölder’s integral inequality we get

I =
∣∣∣∣F(a+b

2

)
− ( +1)

2t (L ,R)

(
J 

Mt
−F (mt )+J 

mt+
F (Mt )

)∣∣∣∣
=

1
t (L ,R)

∣∣∣∣
∫ Mt

mt

P(t,s)
[
F ′(s)− F (Mt )−F (mt)

1
t (L ,R)

]
ds

∣∣∣∣
� 1

t (L ,R)

{∫ Mt

mt

P2(t,s)ds

} 1
2
{∫ Mt

mt

[
F ′(s)− F (Mt )−F (mt)

1
t (L ,R)

]2
ds

} 1
2

.

Now we calculate the integral of P2(t,s) on [mt ,Mt ] with respect to the variable “s”
by considering the following equivalence:

∫ Mt

mt

P2(t,s)ds =
∫ a+b

2

mt

[ (s−mt) − (Mt − s) +t (L ,R)
2

]2
ds

+
∫ Mt

a+b
2

[ (s−mt) − (Mt − s) −t (L ,R)
2

]2
ds

=
1
2

∫ Mt

a+b
2

[
(s−mt) − (Mt − s) −t (L ,R)

]2
ds,

which holds by the fact

∫ a+b
2

mt

[
(s−mt) − (Mt − s) +(Mt −mt)

]2
ds

=
∫ Mt

a+b
2

[
(s−mt) − (Mt − s) − (Mt −mt)

]2
ds.
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It follows that∫ Mt

a+b
2

[
(s−mt) − (Mt − s) −t (L ,R)

]2
ds

=
∫ Mt

a+b
2

[
(s−mt) − (Mt − s)

]2
ds

−2t (L ,R)
∫ Mt

a+b
2

[
(s−mt) − (Mt − s)

]
ds+

∫ Mt

a+b
2

2
t (L ,R)ds

=
[ 1
2+1

− 2( +1)
(2 +2)

+
1−2

2−1( +1)
+

1
2

]
2+1

t (L ,R)

=
[(2 +1)−2( +1)

(2+2)
+

(−3)2−2 +1
2−1( +1)

]
2+1

t (L ,R),

which implies that {∫ Mt

mt

P2(t,s)ds

} 1
2

= C
+ 1

2
t (L ,R).

Also we have {∫ Mt

mt

[
F ′(s)− F (Mt )−F (mt)

1
t (L ,R)

]2
ds

} 1
2

=
{∫ Mt

mt

(F ′(s))2ds− 1

1
t (L ,R)

(∫ Mt

mt

F ′(s)ds
)2

} 1
2

=
(
1

t (L ,R)Tt(F ′)
) 1

2
.

By all above results we conclude

I � C1
t (L ,R)

(
Tt(F ′)

) 1
2 ,

which gives (3) as well. For the Sharpness of (3), whiteout loss of generality, set  > 0,
t = 0,1, a = 0, b = 1 and define

F (s) =

⎧⎪⎨
⎪⎩

s+1+(1−s)+1

2(+1) + s
2 , 0 � s � 1

2 ;

s+1+(1−s)+1

2(+1) + (1−s)
2 , 1

2 < s � 1.

Now suppose that there exists a real number D > 0 such that∣∣∣∣F(1
2

)
− ( +1)

2

(
J 

1−F (0)+J 
0+F (1)

)∣∣∣∣ � D .
(
T0(F ′)

) 1
2 ,

holds. It is not hard to see that ∫ 1

0
F ′(s)ds = 0,
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and ∫ 1

0
(F ′(s))2ds =

(
(2+1)−2( +1)

(2 +2)
+

(−3)2−2 +1
2−1( +1)

)
,

which imply that

(
T0(F ′)

) 1
2 = C . (5)

On the other hand

F
(1

2

)
=

( 1
2

)
 +1

+
1
4
,

and

J 
1−F (0) =

1
()

∫ 1

0
s−1F (s)ds =

1
()

∫ 1

0
(1− s)−1F (s)ds = J 

0+F (1).

(6)

If we calculate (6) directly, we obtain that

( +1)
2

(
J 

1−F (0)+J 
0+F (1)

)
=


2 +2

( 1
2+1

+
()( +2)
(2 +2)

)
+
(2−−2)
 +1

+
2−−2(2+1−−2)

+1
.

So, further calculations show that∣∣∣∣F(1
2

)
− ( +1)

2

(
J 

1−F (0)+J 
0+F (1)

)∣∣∣∣
=

∣∣∣∣(2+1)−2( +1)
2(2+2)

+
1
2 +(+1)2−2−2−1− 

4 − 1
4 (2+1−−2)

2( +1)

∣∣∣∣
=

∣∣∣∣(2+1)−2( +1)
2(2+2)

+
(−3)2−2 +1

2( +1)

∣∣∣∣ = C 2
 .

Then by (5), we get

C 2
 � D

(
T0(F )

) 1
2 = DC .

This means that

D � C . �

REMARK 2.4. With all conditions of of Theorem 2.3, for special case of  = 1
we have: ∣∣∣∣F(a+b

2

)
− 1

b−a

∫ b

a
F (s)ds

∣∣∣∣ � 1
t (L ,R)√

12

(
Tt(F ′)

) 1
2 , (7)
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and for t = 0 and t = 1 we get∣∣∣∣ f(a+b
2

)
− ( +1)

2(b−a)
(
J 

b−F (a)+J 
a+F (b)

)∣∣∣∣ � C (b−a)
(
T0(F ′)

) 1
2 . (8)

In more special case, by merging (7) and (8) we deduce∣∣∣∣F(a+b
2

)
− 1

b−a

∫ b

a
F (s)ds

∣∣∣∣ � b−a√
12

(
T0(F ′)

) 1
2 . (9)

Also a non-sharp kind of (9) can be

∣∣∣∣F(a+b
2

)
− 1

b−a

∫ b

a
F (s)ds

∣∣∣∣ �
√

b−a
12

‖F ′‖2.

3. Examples and applications

EXAMPLE 3.1. Consider the function F (t) = ln((t)) , t > 0. This function is
convex on (0,) , hence it is absolutely continuous on [x,x + 1] ⊂ (0,) (see [27]).
From (9), we obtain

0 � ln
(
x+

1
2

)−∫ x+1

x
ln((t))dt (10)

� 1√
12

{∫ x+1

x

[
(ln((t))′

]2dt−
[∫ x+1

x
(ln((t))′dt

]2
} 1

2

.

Consider the notion of digamma function which is defined as the logarithmic derivative
of the gamma function [1, 2, 18]:

(t) =
′(t)
(t)

R(t) > 0, (R(t) is the real part of t)

which is strictly increasing, strictly concave on (0,) and satisfies the following recur-
rence relation:

(t +1) = (t)+
1
t
.

Now, if we use Raabe’s formula [25]

∫ x+1

x
ln((t))dt = ln

√
2 + x ln(x)− x,

and Theorem 1.5 in (10), we get

0 � ln
(
x+

1
2

)
− ln

(√
2

(x
e

)x)
(11)

� 1

4
√

3
((x+1)−(x)) =

1

4
√

3x
, x > 0.
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From (11) we obtain

lim
x→

(x+ 1
2 )

√
2

(
x
e

)x = 1,

which is the basis of well-known generalized Stirling’s formula [8]:

(x+1)≈
√

2x
(x
e

)s
as x → .

EXAMPLE 3.2. Consider hyperbolic function F (x) = tanh(x) , x∈R . This func-
tion is continuous and differentiable on [a,b]⊂R . Also it satisfies a Lipschitz condition
for M = 1 since

| tanh(b)− tanh(a)| �
∣∣∣∣ 1

cosh2
x∈(a,b)(x)

∣∣∣∣|b−a|� |b−a|,

for all a,b ∈ R (Mean-Value Theorem [24]). So F is absolutely continuous on R

whereas |F ′| is not convex neccessarily and we can not use Theorem 1.1. In order to
obtain an appropriate result we consider (3), where t ∈ [0,1]\ 1

2 . According to the fact
that (Theorem 1.5)

Tt

( 1

cosh2(x)

)
� 1

4
(t −t)2 � 1

4
, x ∈ [a,b]

we have ∣∣∣∣ tanh
(a+b

2

)
− 1
t(L ,R)

ln
cosh(Mt)
cosh(mt)

∣∣∣∣ � t(L ,R)
4
√

3
, (12)

which is interesting in its own way. For t = 0,1 and so closed values of a an b (let
b → a ), (12) implies that

tanh
(a+b

2

)
(b−a)≈ ln

cosh(b)
cosh(a)

.

3.1. Mid-point formula

Here, we present a mid-point formula to approximate the Riemann intgral of an
absolutely continuous function and give a bound for approximation error.

Choose a partition D = {a = x0,x1, . . . ,xn−1,xn = b} of interval [a,b] and set
hi = xi+1− xi , i ∈ {0,1, · · · ,n} . Consider the following formula

∫ b

a
F (s)ds = T (F ,D)+E(F ,D),

where we define

T (F ,D) =
n−1


i=0

F
(xi + xi+1

2

)
hi,
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and E(F ,P) as the approximation error. Suppose that F satisfies all conditions of
Theorem 2.3 on [a,b] . For each i ∈ {0,1, · · · ,n} , define

T i
0 (F ′) =

1
hi

∫ xi+1

xi

(F ′(s))2ds− 1

h2
i

(∫ xi+1

xi

F ′(s)ds
)2

.

So we have∣∣∣∣
∫ b

a
F (s)ds−

n−1


i=0

F
(xi + xi+1

2

)
hi

∣∣∣∣ �
n−1


i=0

∣∣∣∣
∫ xi+1

xi

F (s)ds−F
(xi + xi+1

2

)
hi

∣∣∣∣
� 1√

12

n−1


i=0

h2
i

√
T i

0 (F ′).

Then, we conclude that

|E(F ,P)| � 1√
12

n−1


i=0

h2
i

√
T i

0 (F ′).

If for all i ∈ {0,1, · · · ,n} we set hi = b−a
n , then by the use of Cauchy-Schwarz inequal-

ity [35] we get

n−1


i=0

√
T i

0 (F ′) �
√

n
n−1


i=0

T i
0 (F ′) � n

√
T0(F ′),

which finally implies that

|E(F ,P)| � (b−a)2
√

12n

√
T0(F ′).

3.2. Special means

For a,b > 0, consider the following well-known numerical special means:

A(a,b) =
a+b

2
, arithmetic mean;

G(a,b) =
√

ab, geometric mean;

furthermore for a �= b

L(a,b) =
b−a

ln(b)− ln(a)
, logarithmic mean;

Lp(a,b) =
[ bp+1−ap+1

(b−a)(p+1)

] 1
p
, p ∈ R\ {−1,0} generalized logarithmic mean.

Note that Lp
p(a,b) = (Lp(a,b))p . Two famous inequalities are happened between above

special means ([7]):

G(a,b) � L(a,b) � A(a,b), (13)
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and

Ap(a,b) � Lp
p(a,b) � A(ap,bp). (14)

To estimate differences between the left and middle parts of (13) and (14), consider
F (x) = bxa1−x,x ∈ [0,1] and a �= b . It is not hard to see that F is absolutely continu-
ous because of

F ′′(x) = F (x)(ln(a)− ln(b))2 > 0

on [0,1] and also

∫ 1

0
F (x)dx = L(a,b) and

∫ 1

0
[F ′(x)]2dx =

1
2
(a2−b2)(ln(a)− ln(b)).

So from Corollary 2.4, we have∣∣∣∣G(a,b)−L(a,b)
∣∣∣∣ � ln(b)− ln(a)√

12
G

(
A(a,b),L(a,b)

)
.

Also if we consider the function F (x) = xp on [a,b] , the following inequality holds:

∣∣∣∣Ap(a,b)−Lp
p(a,b)

∣∣∣∣ � p(b−a)(bp−1−ap−1)
2
√

12
.
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