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NORMAL APPROXIMATION FOR A

RANDOMLY INDEXED BRANCHING PROCESS
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(Communicated by L. Mihoković)

Abstract. Consider a supercritical Galton-Watson process {Zn,n � 0} and an independent re-
newal process {N(t),t � 0} , one-term Edgeworth expansions and Cramér type moderate devia-
tions for the logarithm of ZN(t) are developed. Examples are also given to illustrate our results.

1. Introduction

A randomly indexed branching process was introduced by Epps [3] as an alterna-
tive to geometric Brownian motion for modeling stock prices. Precisely, let {Zn,n∈N}
be a supercritical Galton-Watson process with offspring distribution {pi, i ∈ N} and
{N(t), t � 0} be a renewal process with the inter-arrival times {Tn,n ∈ N} , where
N = {0,1,2, · · ·} , if {Zn} is independent of {N(t)} , {Yt = ZN(t),t � 0} is said to be a
randomly indexed branching process (BPRI).

Assuming that the indexing process is a simple Poisson process and four particular
offspring distributions, Epps [3] studied the asymptotics of the moments, estimates of
certain parameters of the BPRI, and model calibration based on real data from the New
York Stock Exchange. When the indexed process is a general renewal process, [8]
and [9] investigated the probability of non-extinction, the asymptotic behavior of the
moments, and also limiting distributions under normalization. Results on subcritical
case were done in [10]. The large deviation results were given in [5]. More recently, in
[7], they extended the BPRI to controlled branching processes.

As the population grows exponentially fast on the survival set [6] and so, it is
convenient to consider the sequence {logYt ,t � 0} rather than {Yt ,t � 0} . It turns out
that behavior of logYt and N(t) is comparable and both processes admit similar limit
properties. In particular, for the sequence logYt , asymptotic normalities of BPRI were
given in [6] when the subordinate process is a Poisson process. Specifically, let {N(t)}
be a Poisson process with intensity  > 0, assume that p0 = 0 and the offspring mean
m = i ipi ∈ (1,) , one has

lim
t→

P

(
logYt − t logm√

 t logm
� x

)
=(x), x ∈ R,
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where (x) is the cumulative distribution function of a standard normal random vari-
able. Convergence rates in the form of Berry-Esseen type inequalities for above result
were investigated in [4].

In this manuscript, we consider the normal approximations for branching process
subordinated by a general renewal process. Our first result is about the one-term Edge-
worth expansions for the asymptotic normality. Corresponding results for branching
process in random environment were given in [2].

Throughout this paper, we assume that the inter-arrival time T is a non-lattice
random variable, where a lattice random variable X means that there exists a positive
number d such that the support of X is contained in {±nd,n∈ N} .

THEOREM 1.1. (Edgeworth expansions) Assume that p0 = 0 , m ∈ (1,) and
E(T 3) <  , we have

sup
x∈R

∣∣∣∣P
(

logYt − ( t−U) logm


√
 t logm

� x

)
−(x)− Q(x)(x)√

t

∣∣∣∣= o(t−1/2), t → ,

where at = o(bt) means at/bt → 0 as t →  , −1 = E(T ), 2 = Var(T ) ∈ (0,) ,
(x) is the probability density function of a standard normal random variable,

Q(x) = −E(logW )√


+
3 −3 4

6 3
√


(x2 −1)−  2 2−1

2
√


,

3 = E(T −E(T ))3 , W is the limit variable of martingale {Wn = Zn/mn,n ∈ N} and
U is a uniformly distributed random variable on (−1/2,1/2) and is independent of the
processes {Zn} and {N(t)} .

Consequently, we have the following Berry-Esseen type inequality, which extends
the result established in [4] where the subordinated process is a Poisson Process.

COROLLARY 1.2. (Berry-Esseen inequality) Assume that p0 = 0 , m∈ (1,) and
E(T 3) <  , we have

sup
x∈R

∣∣∣∣P
(

logYt − t logm


√
 t logm

� x

)
−(x)

∣∣∣∣� C · t−1/2

for some positive absolute constant C .

Edgeworth expansions investigate the absolute deviations between the target distri-
bution and normal distribution, while a Cramér-type moderate deviation theorem quan-
tifies the relative error of the tail probability approximation. It provides theoretical jus-
tification when the limiting tail probability can be used to estimate the tail probability
under study.

THEOREM 1.3. (Cramér type moderate deviations) Assume that p0=0 , m∈(1,)
and E(exp(s0T )) < for some positive s0 , we have for 0 � x = o(t1/6) , as t →  ,

1−Ft(x)
1−(x)

= 1+O(1)
(1+ x3)E(T 3)√

t
, (1.1)
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where O(1) is a sequence of real numbers bounded by a universal constant for t � 0
and

Ft(x) = P

(
logYt − t logm


√
 t logm

� x

)
.

As a consequence of (1.1),

1−Ft(x)
1−(x)

→ 1 (1.2)

as t → , uniformly in x∈ [0,o(t1/6)) . It is known in general that o(t1/6) is the largest
possible value for the range of x such that (1.2) holds.

The rest of the paper is organized as follows. In Section 2, we prove a one-term
Edgeworth expansion for the asymptotic normality. Two examples are also given to
illustrated our result. Section 3 is devoted to the Cramér type moderate deviations.

2. Edgeworth expansions

A crucial result about the one-term Edgeworth expansions of a renewal process
are needed to prove Theorem 1.1, which is due to Babu et al. [1].

LEMMA 2.1. For a renewal process {N(t),t > 0} , if  > 0 , E(T 3) <  , T is
a non-lattice random variable and U is a uniformly distributed random variable on
(−1/2,1/2) and is independent of the processes {N(t)} , then as t →  ,

sup
x∈R

∣∣∣∣P
(

N(t)− t +U


√
 t

� x

)
−(x)− S(x)(x)√

t

∣∣∣∣= o(t−1/2),

where

S(x) =
3 −3 4

6 3
√


(x2 −1)−  2 2−1

2
√


.

The proof of Theorem 1.1. For any real x ,

P

(
logYt − ( t +U) logm


√
 t logm

� x

)

= P

(
N(t)− t +U


√
 t

� x+
N(t)− t−U


√
 t

− logYt − ( t +U) logm


√
 t logm

)

= P

(
N(t)− t +U


√
 t

� x− logYt −N(t) logm


√
 t logm

)

= P

(
N(t)− t +U


√
 t

� x− logW (t)


√
 t logm

)
,
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where W (t) = WN(t) , Wn = Zn/mn and m is the offspring mean. Define

xt = x− logW (t)


√
 t logm

,

according to Lemma 2.1, conditioning on W (t) , we have

sup
x∈R

∣∣∣∣P
(

logYt − ( t +U) logm


√
 t logm

� x|W (t)
)
−(xt)− S(xt)(xt )√

t

∣∣∣∣= o(t−1/2),

as t →  . By Taylor series expansions

(xt) = (x)+ (xt − x)(x)− 1
2
(xt − x)2(1(t))1(t)

= (x)− logW (t)√
 t

(x)− (logW (t))2

2 t
(1(t))1(t),

x2
t (xt) = x2(x)+ (xt − x){22(t)− 3

2 (t)}(2(t))

= x2(x)+
logW (t)√

 t
{22(t)− 3

2 (t)}(2(t)),

(xt ) = (x)− (xt − x)3(t)(3(t)) = (x)− logW (t)√
 t

3(t)(3(t))

for some 1(t),2(t),3(t) between xt and x . By Lemma 2 of [4], for k = 1,2,
supn E| logWn|k <  . Since yk(y) is uniformly bounded for any k � 0, we have

sup
x∈R

∣∣∣∣P
(

logYt − ( t +U) logm


√
 t logm

� x

)
−(x)− Q̃(x,t)(x)√

t

∣∣∣∣= o(t−1/2),

as t →  , where

Q̃(x, t) = −E(logW (t))√


+
3 −3 4

6 3
√


(x2 −1)−  2 2−1

2
√


.

It is sufficient to show that |E(logW (t))−E(logW )| = o(1) , as t →  . In fact, from
Lemma 2 of [4], there exists constants C > 0 and r ∈ (0,1) such that

|E(logWn)−E(logW )| � E| logWn− logW | � Crn.

Accordingly,

|E(logW (t))−E(logW )| �



n=0

E| logWn− logW |P(N(t) = n) � CE(rN(t)).

Using Lemma 3.1 of [5], E(rN(t)) has an exponential decay rate, we complete the proof
of Theorem 1.1. �
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EXAMPLE 2.2. Assume that offspring distribution {pk,k � 0} of the Galton-
Watson process {Zn} satisfies p0 = 0 and pk = 1/2k for any k � 1, {N(t)} is a Poisson
process with intensity  = 1, then as t →  ,

sup
x∈R

∣∣∣∣P
(

logYt − (t−U) log2√
t log2

� x

)
−(x)−

(
− (x2 −1)

6

)
(x)√

t

∣∣∣∣= o(t−1/2),

where  is the famous Euler-Mascheroni constant 0.5772 · · ·.
Proof. Denote the probability generating function of the offspring distribution by

f , that is, f (s) =i pisi for s ∈ [0,1] . In this example, we have

f (s) =



i=1

1
2i s

i =
s/2

1− s/2
=

s
2− s

.

By iteration, the probability generating function of Zn is

fn(s) =
s

2n− (2n−1)s
.

Denote the Laplace transformation of W by �(v) , one has

�(v) = lim
n→

fn
(
exp
(
− v

mn

))
= lim

n→

exp
(− v

2n

)
2n− (2n−1)exp

(− v
2n

) =
1

1+ v
.

Consequently, W has an exponential distribution with parameter 1. Thus,

E(logW ) =
∫ 

0
e−x logxdx = −.

Note that  = E(T ) = 1,  2 = Var(T ) = 1 and

3 = E(T −E(T ))3 =
∫ 

0
(x−1)3e−xdx = 2,

we complete the proof of Example 2.2. �

Finite-sample (sample size is 10000) performance are showed in Figure 1–Figure
4. The results indicate that Edgeworth expansion is more efficient than the central limit
theorem.

EXAMPLE 2.3. Assume that the probability generating function of the offspring
distribution {pk,k � 0} satisfies

f (s) =
s

(
√

2− (
√

2−1)
√

s)2
, s ∈ [0,1],

{N(t)} is a renewal process where the inter-arrival time T has probability density
function

p(x) =

{
4xe−2x, x > 0;

0, x � 0,



394 D. YUAN AND Z. GAO

Figure 1: t = 10 Figure 2: t = 20

Figure 3: t = 50 Figure 4: t = 100

then as t →  ,

sup
x∈R

∣∣∣∣∣P
(

logYt − (t−U) log
√

2

(
√

2t log
√

2)/2
� x

)
−(x)− Q(x)(x)√

t

∣∣∣∣∣= o(t−1/2),

where

Q(x) = −1+ log2− 1

6
√

2
(x2 −4).

Proof. By iteration, the probability generating function of Zn is

fn(s) =
s

(2n/2− (2n/2−1)
√

s)2
.
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The Laplace transformation of W satisfies

�(v) = lim
n→

fn
(
exp
(
− v

mn

))
= lim

n→

exp
(
− v√

2
n

)
(

2n/2− (2n/2−1)
√

exp
(
− v√

2
n

))2

=
4

(2+ v)2 .

Consequently, W has a gamma distribution with parameters (2,2) . Thus,

E(logW ) =
∫ 

0
4xe−2x logxdx

u=2x=
∫ 

0
ue−u logudu− log2 = −(−1)− log2.

Note that  = E(T ) = 1, 2 = Var(T ) = 1/2 and

3 = E(T −E(T ))3 =
∫ 

0
4(x−1)3xe−2xdx = 1/2,

we complete the proof of Example 2.3. �

The proof of Corollary 1.2. Note that

P

(
logYt − t logm


√
 t logm

� x

)
= P

(
logYt − ( t−U) logm


√
 t logm

� x+
U


√
 t

)
,

according to Theorem 1.1,

P

(
logYt − t logm


√
 t logm

� x

)
� E((xt ))+

E(Q(xt)(xt ))√
t

+C0(t−1/2) (2.1)

and

P

(
logYt − t logm


√
 t logm

� x

)
� E((xt ))+

E(Q(xt)(xt ))√
t

−C0(t−1/2) (2.2)

for some positive absolute constant C0 , where

xt = x+
U


√
 t

.

Note that

Q(x) = −E(logW )√


+
3 −3 4

6 3
√


(x2−1)−  2 2 −1

2
√




396 D. YUAN AND Z. GAO

and yk(y) is uniformly bounded for any k � 0, we have

sup
x∈R

∣∣∣∣P
(

logYt − t logm


√
 t logm

� x

)
−E((xt))

∣∣∣∣� C1 · t−1/2

for some positive absolute constant C1 . By Taylor series expansion

(xt) = (x)+ (xt − x)(x)− 1
2
(xt − x)2(1(t))1(t)

= (x)− U


√
 t
(x)− U2

 3 2t
(1(t))1(t),

for some 1(t) between xt and x . Since U is a uniformly distributed random variable
on (−1/2,1/2) and is independent of the processes {Zn} and {N(t)} , we complete
the proof of Corollary 1.2 by dominated convergence theorem. �

3. Cramér type moderate deviations

A basic result on partial sums of a sequence of i.i.d. random variables is needed to
prove Theorem 1.3, see [11] for instance.

LEMMA 3.1. Let X1,X2, · · · be i.i.d. random variables with E(X1) = 0 , E(X2
1 ) =

1 and E(exp(s0|X1|)) <  for some positive s0 , set Un = n
i=1 Xi/

√
n, one has

1−P(Un � z)
1−(x)

= 1+O(1)
(1+ z3)E|X1|3√

n

for 0 � z � n1/6/ 3
√

E|X1|3 .

The proof of Theorem 1.3.

1−Ft(x) = P

(
logYt − t logm


√
 t logm

> x

)

= P

(
N(t)− t


√
 t

> x− logYt − t logm


√
 t logm

+
N(t)− t


√
 t

)

= P

(
N(t)− t


√
 t

> x− logW (t)


√
 t logm

)
. (3.1)

For any real 0 � x = o(t1/6) , define

at = at(x) =  t + x
√
 t− logW (t)

logm
, nt = [at ]+1,

where [a] is the integer part of a . By (3.1), one has

1−Ft(x) = P(N(t) > at) = P(N(t) � nt) = P(Snt � t),
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where Sn = T1 + · · · +Tn . Conditioning on W (t) , we have

P

(
logYt − t logm


√
 t logm

> x

∣∣∣∣W (t)
)

= P(Snt � t|W (t))

= P

(
−Snt −−1nt

√nt
� − t−−1nt

√nt

∣∣∣∣W (t)
)

= P

(
−Snt −−1nt

√nt
� xt

∣∣∣∣W (t)
)

,

where

xt = − t−−1nt

√nt
=

nt − t
√nt

.

It is well known that W (t) a.s.−−→ W , which has an absolute continuous distribution on

(0,) , then with probability one, we have xt = o(n1/6
t ) as t → . According to Lemma

3.1,

P

(
logYt − t logm


√
 t logm

> x

∣∣∣∣W (t)
)

= (1−(xt))
(

1+O(1)
(1+ x3

t )ET 3

√
nt

)
.

By Taylor series expansions

(xt) = (x)+ (xt − x)(1(t)), x3
t = x3 +3(xt − x) 2

2 (t)

for some 1(t),2(t) between xt and x . Note that
√

nt/
√
 t → 1 as t →  and

xt − x =
nt − t
√nt

− x = O(t−1/2),

we complete the proof of Theorem 1.3. �

EXAMPLE 3.2. Consider Example 2.2 again. We choose x = t1/10,t1/9,t1/8,t1/7,
t1/6 for t = 20,50,100 and 200 respectively. The finite-sample (sample size is 1000000)
performance are showed in Table 1–Table 4, where ‘ETP’ means empirical tail proba-
bilities:

P

(
logYt − t log2√

t log2
> x

)

The results indicate that our result on Cramér type moderate deviation works well.
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Table 1: t = 20
x = t1/10 x = t1/9 x = t1/8 x = t1/7 x = t1/6

ETP 0.08063800 0.07467100 0.06756800 0.05875100 0.04842800

1−(x) 0.08862307 0.08151534 0.07294329 0.06249916 0.04972263

Table 2: t = 50
x = t1/10 x = t1/9 x = t1/8 x = t1/7 x = t1/6

ETP 0.06426400 0.05711300 0.04870300 0.03864400 0.02716500

1−(x) 0.06960255 0.06123942 0.05147794 0.04017329 0.02746793

Table 3: t = 100
x = t1/10 x = t1/9 x = t1/8 x = t1/7 x = t1/6

ETP 0.0529910 0.04525500 0.03636300 0.02635000 0.01604900

1−(x) 0.0564953 0.04764789 0.03767899 0.02676022 0.01560305

Table 4: t = 200

x = t1/10 x = t1/9 x = t1/8 x = t1/7 x = t1/6

ETP 0.04265000 0.03455900 0.02557200 0.01642200 0.008093000

1−(x) 0.04469291 0.03580038 0.02623682 0.01651728 0.007797225
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